
Rational Software Corporation ®

RATIONAL ® CLEARCASE®

BUILDING SOFTWARE

VERSION: 2002.05.00 AND LATER

PART NUMBER: 800-025061-000

UNIX EDITION

Building Software
Document Number 800-025061-000 October 2001

Rational Software Corporation 20 Maguire Road Lexington, Massachusetts 02421

IMPORTANT NOTICE

Copyright
Copyright © 1992, 2001 Rational Software Corporation. All rights reserved.
Copyright 1989, 1991 The Regents of the University of California
Copyright 1984–1991 by Raima Corporation

Permitted Usage
THIS DOCUMENT IS PROTECTED BY COPYRIGHT AND CONTAINS INFORMATION PROPRIETARY TO
RATIONAL. ANY COPYING, ADAPTATION, DISTRIBUTION, OR PUBLIC DISPLAY OF THIS
DOCUMENT WITHOUT THE EXPRESS WRITTEN CONSENT OF RATIONAL IS STRICTLY PROHIBITED.
THE RECEIPT OR POSSESSION OF THIS DOCUMENT DOES NOT CONVEY ANY RIGHTS TO
REPRODUCE OR DISTRIBUTE ITS CONTENTS, OR TO MANUFACTURE, USE, OR SELL ANYTHING
THAT IT MAY DESCRIBE, IN WHOLE OR IN PART, WITHOUT THE SPECIFIC WRITTEN CONSENT OF
RATIONAL.

Trademarks
Rational, Rational Software Corporation, the Rational logo, Rational the e-development company, Rational
Suite ContentStudio, ClearCase, ClearCase MultiSite ClearQuest, Object Testing, Object-Oriented Recording,
Objectory, PerformanceStudio, PureCoverage, PureDDTS, PureLink, Purify, Purify'd, Quantify, Rational
Apex, Rational CRC, Rational PerformanceArchitect, Rational Rose, Rational Suite, Rational Summit, Rational
Unified Process, Rational Visual Test, Requisite, RequisitePro, RUP, SiteCheck, SoDA, TestFactory, TestMate,
TestStudio, The Rational Watch, among others are trademarks or registered trademarks of Rational Software
Corporation in the United States and in other countries. All other names are used for identification purposes
only, and are trademarks or registered trademarks of their respective companies.

Sun, Solaris, and Java are trademarks or registered trademarks of Sun Microsystems, Inc.

Microsoft, the Microsoft logo, the Microsoft Internet Explorer logo, Windows, the Windows logo,
Windows NT, the Windows Start logo are trademarks or registered trademarks of Microsoft Corporation in
the United States and other countries.

Patent
U.S. Patent Nos. 5,574,898 and 5,649,200 and 5,675,802. Additional patents pending.

Government Rights Legend
Use, duplication, or disclosure by the U.S. Government is subject to restrictions set forth in the applicable
Rational License Agreement and in DFARS 227.7202-1(a) and 227.7202-3(a) (1995),
DFARS 252.227-7013(c)(1)(ii) (Oct 1988), FAR 12.212(a) 1995, FAR 52.227-19, or FAR 52.227-14, as applicable.

Warranty Disclaimer
This document and its associated software may be used as stated in the underlying license agreement. Rational
Software Corporation expressly disclaims all other warranties, express or implied, with respect to the media
and software product and its documentation, including without limitation, the warranties of merchantability
or fitness for a particular purpose or arising from a course of dealing, usage, or trade practice.

Technical Acknowledgments
This software and documentation is based in part on BSD Networking Software Release 2, licensed from the
Regents of the University of California. We acknowledge the role of the Computer Systems Research Group
and the Electrical Engineering and Computer Sciences Department of the University of California at Berkeley
and the Other Contributors in its development.

This product includes software developed by Greg Stein <gstein@lyra.org> for use in the mod_dav module
for Apache (http://www.webdav.org/mod_dav/).

Contents

Preface ...xv

About This Manual ..xv

ClearCase Documentation Roadmap.. xvi

Typographical Conventions .. xvii

Online Documentation .. xviii

Technical Support ...xix

1. ClearCase Build Concepts ..1

1.1 Overview of the ClearCase Build Scheme..2

View Context Required ...3

How Builds Work...3

Build Reference Time and Build Sessions ..4

Exit Status..4

1.2 Dependency Tracking of MVFS and Non-MVFS Files5

Automatic Detection of MVFS Dependencies..5

Tracking Non-MVFS Files...6

1.3 Derived Objects and Configuration Records ...6

1.4 Build Avoidance...6

Hierarchical Builds...8

Automatic Dependency Detection...8

1.5 Express Builds...8

1.6 Build Auditing with clearaudit ..9

1.7 Compatibility with Other make Programs...9

1.8 Parallel Building...10

The Parallel Build Procedure..11

1.9 Building on a Non-ClearCase Host ...12

2. Derived Objects and Configuration Records ...13

2.1 Derived Objects Overview..13

Derived Object Naming ..14
Contents iii

/vobs/doc/ccase/build/cc_build.uxTOC.fm — October 3, 2001 4:44 pm

2.2 Configuration Records...15

Configuration Record Example ..16

Contents of a Configuration Record ..17

Header Section...17

MVFS Objects Section ...18

Non-MVFS Objects Section ..18

Variables and Options Section...18

Build Script Section ...19

Configuration Record Hierarchies ...19

Configuration Record Cache...22

2.3 Kinds of Derived Objects...22

Shareable DOs...22

Nonshareable DOs..23

Storage of Derived Objects ..23

Promotion and Winkin ...24

DO Versions ..26

2.4 Reuse of DO-IDs ...27

2.5 Derived Object Reference Counts ..27

3. Pointers on Using ClearCase Build Tools ...31

3.1 Invoking clearmake..31

3.2 A Simple clearmake Build Scenario ...32

3.3 Accommodating Build Avoidance...34

Increasing the Verbosity Level of a Build ...34

Handling Temporary Changes in the Build Procedure34

Specifying Build Options ...35

Handling Targets Built in Multiple Ways...36

Using a Recursive Invocation of clearmake..36

Optimizing Winkin by Avoiding Pseudotargets ...37

Accommodating the Build Tool’s Different Name......................................37

3.4 Declaring Source Dependencies in Makefiles ..38

Source Dependencies Declared Explicitly ...38

Explicit Dependencies on Searched-For Sources39
iv Building Software: Rational ClearCase

/vobs/doc/ccase/build/cc_build.uxTOC.fm — October 3, 2001 4:44 pm

3.5 Build-Order Dependencies ...41

3.6 Problems with Forced Builds ...41

3.7 How clearmake Interprets Double-Colon Rules ...41

3.8 Continuing to Work During a Build..42

3.9 Using Config Spec Time Rules ...43

Inappropriate Use of Time Rules ...44

3.10 Build Sessions, Subsessions, and Hierarchical Builds45

Subsessions..45

Versions Created During a Build Session...45

Coordinating Reference Times of Several Builds ..46

Objects Written at More Than One Level ...46

3.11 Build Auditing and Background Processes..47

3.12 Working with Incremental Update Tools...48

Example: Building an Archive ...48

Makefile Restructuring for Incremental Archive Targets49

A Note on the Use of ar Keys ..50

Example: Incremental Linking ...51

Additional Incremental-Update Situations ..51

3.13 Adding a Version String or Time Stamp to an Executable52

Creating a what String...52

Implementing a –Ver Option..53

4. Working with Derived Objects and Configuration Records55

4.1 Setting Correct Permissions for Derived Objects ..55

4.2 Listing and Describing Derived Objects ...56

Listing Derived Objects Created at a Certain Pathname............................56

Listing a Derived Object’s Kind ...57

Displaying a DO’s OID..58

Displaying a Description of a DO Version ...58

4.3 Identifying the Views That Reference a Derived Object58

Caching Unavailable Views..59

4.4 Specifying Views That Can Wink In Derived Objects59

4.5 Specifying a Derived Object in Commands ...60

4.6 Winking In a DO Manually ..61
Contents v

/vobs/doc/ccase/build/cc_build.uxTOC.fm — October 3, 2001 4:44 pm

4.7 Preventing Winkin ...61

Preventing Winkin to Your View...62

Preventing Winkin to Other Views..62

Using Express Builds to Prevent Winkin to Other Views62

Enabling Express Builds...63

Configuring an Existing View for Express Builds................................63

Creating a New View That Uses Express Builds63

Preventing Winkin to or from Other Architectures63

4.8 Converting Derived Objects to View-Private Files......................................64

4.9 Working with DO Versions...64

Creating DO Versions ..64

Checking In DOs During a Build ...65

Accessing DO Versions..65

Displaying Configuration Records for DO Versions...................................66

DOs in Unavailable Views ...68

Releasing DOs ...69

4.10 Converting Nonshareable DOs to Shared DOs..69

Automatic Conversion of Nonshareable DOs to Shareable DOs70

4.11 Creating Links to Derived Objects ...70

4.12 Displaying VOB Disk Space Usage for Derived Objects71

4.13 Deleting Derived Objects...71

Removing Data Containers for Derived Objects..71

Scrubbing Derived Objects and Data Containers ..72

Degenerate Derived Objects..72

Data Container Deleted ..72

DO Deleted from VOB Database...72

CR Unavailable ..73

4.14 Displaying Contents of Configuration Records...73

4.15 Comparing Configuration Records..73

4.16 Attaching Labels or Attributes to Versions in a CR74

4.17 Configuring a View to Select Versions Used to Build a DO74

4.18 Including a Makefile Version in a Configuration Record...........................74
vi Building Software: Rational ClearCase

/vobs/doc/ccase/build/cc_build.uxTOC.fm — October 3, 2001 4:44 pm

5. clearmake Makefiles and BOS Files ...77

5.1 Makefile Overview...77

5.2 Build Options Specification Files ...78

5.3 Format of Makefiles ...80

Restrictions..80

Libraries ...80

Command Echoing and Error Handling ..81

Built-In Rules ..81

Include Files ..81

Macros..82

Order of Precedence of Make Macros

and Environment Variables...82

Make Macros..83

Internal Macros..83

VPATH Macro ...84

Special Targets ..85

Special Targets for Use in Makefiles ..85

Special Targets for Use in Makefiles or BOS Files................................86

5.4 Sharing Makefiles Between UNIX and Windows90

5.5 BOS File Entries ..91

Standard Macro Definitions..91

Target-Dependent Macro Definitions ...91

Shell Command Macro Definitions ...91

Special Targets ..92

Include Directives ..92

Comments ...92

5.6 Conflict Resolution...92

5.7 SHELL Environment Variable..93

5.8 CCASE_BRANCH0_REUSE Environment Variable...................................94

6. Using clearmake Compatibility Modes ..95
Contents vii

/vobs/doc/ccase/build/cc_build.uxTOC.fm — October 3, 2001 4:44 pm

7. Using ClearCase to Build C++ Programs ..97

7.1 Working with Templates...98

Explicit Instantiation ..98

Alternative to Using the Procedures in This Chapter99

Precompiled Header Files ...99

7.2 Working with Cfront-Based C++ Compilers..100

Cfront Template Instantiation: Interaction with clearmake.....................100

Link-Time Cfront Template Instantiation..101

How Link-Time Instantiation Interferes with clearmake..................102

Models for Working with Cfront-Based Compilers103

The Simple Model...103

How the Simple Model Works ..104

Sample Scenario Using the Simple Model...105

Limitations of the Simple Model...105

The Multiple Repositories Model...106

Using a Recognized Compiler Macro...107

Inserting Special Build Rules in Your Makefile108

Using an Alternate (CM-safe) Multiple Repository Model...............109

Example Makefile Using the Multiple Repository Model.................110

Testing the Makefile..110

How the Multiple Repositories Model Works111

Limitations of the Multiple Repositories Model.................................112

The Forced Instantiation Model ...113

Maintaining Dummy Source Files ..114

Setting Up the Makefile ..115

How the Forced Instantiation Model Works.......................................116

Limitations of the Forced Instantiation Model117

7.3 Working with SPARCompiler C++..117

SPARCompiler Template Instantiation:

Interaction with clearmake..117

Setting Up the Repository ...118

Cleaning the Repository ..119

Models for Working with SPARCompiler C++ ...119
viii Building Software: Rational ClearCase

/vobs/doc/ccase/build/cc_build.uxTOC.fm — October 3, 2001 4:44 pm

The Simple Model ..120

How the Simple Model Works..120

Sample Scenario Using the Simple Model ..120

Limitations of the Simple Model ..121

Building Archives That Contain Template Code122

Managing Template References..122

Building the Archive ..123

The Multiple Repositories Model ..123

Using a Recognized Compiler Macro ..124

Inserting Special Build Rules in Your Makefile..................................124

Example Makefile Using the Multiple Repositories Model..............126

Testing the Makefile ...126

How the Multiple Repositories Model Works....................................127

Limitations of the Multiple Repositories Model127

Building Archives That Contain Template Code128

Multiple Repositories Example...129

7.4 Working with the SGI Delta/C++ Compiler ...130

SGI Delta/C++ Compiler Template Instantiation:

Interaction with clearmake ...131

Automatic Instantiation ...131

Compile-Time Demand Instantiation ..131

Explicit Instantiation...132

7.5 Working with the IBM AIX XLC C++ Compiler133

XLC Compiler Template Instantiation:

Interaction with clearmake ...133

Models for Working With IBM XLC ...134

The Simple Model ..134

Modifying the Source Files ..135

Designing Your Makefile ...135

Limitations of the Simple Model ..135

The Compile-Time Demand Instantiation Model136

Modifying the Source Files ..137

Designing Your Makefile ...137
Contents ix

/vobs/doc/ccase/build/cc_build.uxTOC.fm — October 3, 2001 4:44 pm

Duplicate Symbol Warnings from the Linker137

The Explicit Instantiation Model ..138

Modifying the Source Files ..138

Designing Your Makefile ...139

7.6 Working with the HP aC++ Compiler...139

Automatic Instantiation...139

Command-Line Option Instantiation ..140

Explicit Instantiation ..140

8. Using ClearCase Build Tools with Java ...141

8.1 ClearCase Build Problems with Java ...141

Java Toolkits ..142

Scope of the Problems..142

8.2 Benefits of Using make Tools with javac...142

Using javac Inside a Makefile ...142

Using javac with clearmake Instead of make ...143

8.3 Unnecessary Rebuilds and Prevention of Winkin143

8.4 Building Java Applications Successfully...144

Writing Correct Makefiles ...144

No Mutually Dependent Files ...144

Mutually Dependent Files..145

Allowing Rebuilds..146

Configuring Makefiles to Behave Like make ...147

9. Setting Up a Parallel Build ...149

9.1 Overview of Parallel Building ..149

Parallel Build Scheduler ..151

Failure Modes ..151

9.2 Setting Up the Client Host ..151

Creating Build Hosts Files...152

Load Balancing..154

Randomizing Host Selection ...155

Idleness Threshold ..155
x Building Software: Rational ClearCase

/vobs/doc/ccase/build/cc_build.uxTOC.fm — October 3, 2001 4:44 pm

Include File Facility..156

Including Comments in a File ..156

Examples ...157

Setting Up Trust Relationships ..158

9.3 Setting Up Server Hosts ..158

Examples ..162

9.4 Starting a Parallel Build...162

Setting CCASE_HOST_TYPE in a Shell Startup Script163

9.5 Preventing Parallel Builds of Targets..164

9.6 Preventing Exponential Invocations of abe..164

10. Building Software for Multiple Platforms ..165

10.1 Issues in Multiple Platform Development..165

10.2 Handling Source Code Differences ...166

10.3 Handling Build Procedure Differences...167

Alternative Approach Using imake...168

10.4 Segregating the Derived Objects of Different Variants168

Approach 1: Use Architecture-Specific Subdirectories.............................169

Approach 2: Use Different Views ..169

10.5 Multiple Architecture Example..170

Scenario..170

Defining Architecture-Specific CPP Macros ..171

Creating Makefiles in the Source and Build Directories171

11. Setting Up a Build on a Non-ClearCase Host ...173

11.1 Build Scenario ...173

11.2 Setting Up an Export View ...173

11.3 Mounting the VOB Through the Export View...174

11.4 Revising the Build Script...174

11.5 Performing an Audited Build in the Export View176

Index ...177
Contents xi

/vobs/doc/ccase/build/cc_build.uxTOC.fm — October 3, 2001 4:44 pm

xii Building Software: Rational ClearCase

/vobs/doc/ccase/build/cc_build.uxTOC.fm — October 3, 2001 4:44 pm

Figures

Figure 1 Building Software with ClearCase: Isolation and Sharing3

Figure 2 Parallel Building...11

Figure 3 Extended Pathname of a Derived Object ...14

Figure 4 Kinds of Information in a Configuration Record..16

Figure 5 Configuration Record Hierarchy...20

Figure 6 Storage of a Shareable Derived Object..25

Figure 7 clearmake Build Scenario..33
Figures xiii

/vobs/doc/ccase/build/cc_build.uxLOF.fm — October 3, 2001 4:41 pm

xiv Building Software: Rational ClearCase

/vobs/doc/ccase/build/cc_build.uxLOF.fm — October 3, 2001 4:41 pm

Preface

Rational ClearCase is a comprehensive software version control and configuration management

system.

About This Manual

This manual provides an overview of ClearCase build management features and describes how

to use ClearCase build tools. It is for new or experienced users of ClearCase who are familiar

with software build concepts.

If you are not familiar with ClearCase build concepts and tools, read Chapter 1, ClearCase Build
Concepts, Chapter 2, Derived Objects and Configuration Records, and Chapter 3, Pointers on Using
ClearCase Build Tools.

For information about using ClearCase build tools with C++ programs or with Java tools, read

Chapter 7, Using ClearCase to Build C++ Programs or Chapter 8, Using ClearCase Build Tools with
Java.
Preface xv

ClearCase Documentation Roadmap

More Information

Command Reference
Quick Reference

Online documentation

 Administration

Installation Guide

Administrator’s Guide
(Rational ClearCase)

Administrator’s Guide
(Rational ClearCase MultiSite)

Platform Information
(See online help)

Project
Management

Managing Software Projects

Orientation

Introduction
Release Notes

Online Tutorials

Development

Developing Software

Build
Management

OMAKE Guide
(Windows platforms)

Building Software
xvi Building Software: Rational ClearCase

Typographical Conventions

This manual uses the following typographical conventions:

➤ ccase-home-dir represents the directory into which the ClearCase Product Family has been

installed. By default, this directory is /usr/atria on UNIX and

C:\Program Files\Rational\ClearCase on Windows.

➤ attache-home-dir represents the directory into which ClearCase Attache has been installed.

By default, this directory is C:\Program Files\Rational\Attache, except on Windows 3.x,

where it is C:\RATIONAL\ATTACHE.

➤ Bold is used for names the user can enter; for example, all command names, file names, and

branch names.

➤ Italic is used for variables, document titles, glossary terms, and emphasis.

➤ A monospaced font is used for examples. Where user input needs to be distinguished

from program output, bold is used for user input.

➤ Nonprinting characters are in small caps and appear as follows: <EOF>, <NL>.

➤ Key names and key combinations are capitalized and appear as follows: SHIFT, CTRL+G.

➤ [] Brackets enclose optional items in format and syntax descriptions.

➤ { } Braces enclose a list from which you must choose an item in format and syntax

descriptions.

➤ | A vertical bar separates items in a list of choices.

➤ ... In a syntax description, an ellipsis indicates you can repeat the preceding item or line

one or more times. Otherwise, it can indicate omitted information.

NOTE: In certain contexts, ClearCase recognizes “...” within a pathname as a wildcard, similar

to “*” or “?”. See the wildcards_ccase reference page for more information.

➤ If a command or option name has a short form, a “medial dot” (⋅) character indicates the

shortest legal abbreviation. For example:

lsc·heckout

This means that you can truncate the command name to lsc or any of its intermediate

spellings (lsch, lsche, lschec, and so on).
Preface xvii

Online Documentation

The ClearCase graphical interface includes a Microsoft Windows-like help system.

There are three basic ways to access the online help system: the Help menu, the Help button, or

the F1 key. Help > Contents provides access to the complete set of ClearCase online

documentation. For help on a particular context, press F1. Use the Help button on various dialog

boxes to get information specific to that dialog box.

ClearCase also provides access to full “reference pages” (detailed descriptions of ClearCase

commands, utilities, and data structures) with the cleartool man subcommand. Without any

argument, cleartool man displays the cleartool overview reference page. Specifying a command

name as an argument gives information about using the specified command. For example:

% cleartool man (display the cleartool overview page)

% cleartool man man (display the cleartool man reference page)

% cleartool man checkout (display the cleartool checkout reference page)

ClearCase’s –help command option or help command displays individual subcommand syntax.

Without any argument, cleartool help displays the syntax for all cleartool commands. help
checkout and checkout –help are equivalent.

% cleartool uncheckout –help
Usage: uncheckout | unco [-keep | -rm] [-cact | -cwork] pname ...

Additionally, the online ClearCase Tutorial provides important information on setting up a user’s

environment, along with a step-by-step tour through ClearCase’s most important features. To

start the ClearCase Tutorial from the command line, type hyperhelp cc_tut.hlp.
xviii Building Software: Rational ClearCase

Technical Support

If you have any problems with the software or documentation, please contact Rational Technical

Support via telephone, fax, or electronic mail as described below. For information regarding

support hours, languages spoken, or other support information, click the Technical Support link

on the Rational Web site at www.rational.com.

Your Location Telephone Facsimile Electronic Mail

North America 800-433-5444

toll free or

408-863-4000

Cupertino, CA

408-863-4194

Cupertino, CA

781-676-2460

Lexington, MA

support@rational.com

Europe, Middle

East, and Africa

+31-(0)20-4546-200

Netherlands

+31-(0)20-4546-201

Netherlands

support@europe.rational.com

Asia Pacific 61-2-9419-0111

Australia

61-2-9419-0123

Australia

support@apac.rational.com
Preface xix

xx Building Software: Rational ClearCase

11 ClearCase Build Concepts

Rational ClearCase supports makefile based building of software systems and provides a software

build environment closely resembling that of the make program. make was developed for UNIX

systems, and has been ported to other operating systems. You can use files controlled by

ClearCase to build software, and use native make programs, third-party build utilities, your

company’s own build programs, or the ClearCase build tools clearmake and clearaudit.

The clearmake build tool provides compatibility with other make variants, along with powerful

enhancements:

➤ Build auditing, with automatic detection of source dependencies, including header file

dependencies

➤ Automatic creation of permanent bill-of-materials documentation of the build process and

its results

➤ Sophisticated build-avoidance algorithms to guarantee correct results when building in a

parallel development environment

➤ Sharing of binaries among views, saving both time and disk storage

➤ Parallel building, applying the resources of multiple processors and/or multiple hosts to

builds of large software systems

The clearaudit build tool provides build auditing and creation of bill-of-materials

documentation.

clearmake and clearaudit are intended for use in dynamic views. You can use them in a snapshot
view, but the features that distinguish them from ordinary make programs (build avoidance,

build auditing, derived object sharing, and so on) are not enabled in snapshot views and,

therefore, these features are not available when using clearmake within Rational ClearCase LT.
1 - ClearCase Build Concepts 1

1.1 Overview of the ClearCase Build Scheme

Developers perform builds, along with all other work related to ClearCase, in views. Typically,

developers work in separate, private views. Sometimes, a team shares a single view (for example,

during a software integration period).

As described in Developing Software, each view provides a complete environment for building

software that includes a particular configuration of source versions and a private work area in

which you can modify source files, and use build tools to create object modules, executables, and

so on.

As a build environment, each view is partially isolated from other views. Building software in

one view never disturbs the work in another view, even another build of the same program at

the same time. However, when working in a dynamic view, you can examine and benefit from

work done previously in another dynamic view. A new build shares files created by previous

builds, when appropriate. This sharing saves the time and disk space involved in building new

objects that duplicate existing ones.

You can (but need not) determine what other builds have taken place in a directory, across all

dynamic views. ClearCase includes tools for listing and comparing past builds.

The key to this scheme is that the project team’s VOBs constitute a globally accessible repository

for files created by builds, in the same way that they provide a repository for the source files that

go into builds. A file produced by a software build is a derived object (DO). Associated with each

derived object is a configuration record (CR), which clearmake uses during subsequent builds to

determine whether the DO can be reused or shared.

Figure 1 illustrates the ClearCase software build scheme.
2 Building Software: Rational ClearCase

Figure 1 Building Software with ClearCase: Isolation and Sharing

The section Dependency Tracking of MVFS and Non-MVFS Files describes how ClearCase keeps

track of the objects produced by software builds. Build Avoidance on page 6 describes the

mechanism that enables such objects to be shared among views.

View Context Required

For a build that uses the data in one or more VOBs, the shell or command interpreter from which

you invoke clearmake must have a view context. On UNIX systems, the view context must be

either a set view or a working directory view. If you have a working directory view, but it differs

from the set view, clearmake changes its set view to the working directory view.

You can build objects in a standard directory, without a view context, but this disables many of

clearmake’s special features.

How Builds Work

In many ways, ClearCase builds adhere closely to the standard make paradigm:

View storage VOB

DO

CR

DO

CR

View A View B View C
1 - ClearCase Build Concepts 3

1. You invoke clearmake, optionally specifying the names of one or more targets. (Such

explicitly specified targets are called “goal targets.”)

2. clearmake reads zero or more makefiles, each of which contains targets and their associated

build scripts. It also reads zero or more build options specification (BOS) files, which

supplement the information in the makefiles.

3. clearmake supplements the makefile-based software build instructions with its own built-in

rules, or, when it runs in a compatibility mode, with built-in rules specific to that mode.

4. For each target, clearmake performs build avoidance, determining whether it actually needs

to execute the associated build script (target rebuild). It takes into account both source

dependencies (Have any changes occurred in source files used in building the target?) and

build dependencies (Must other targets be updated before this one?).

5. If it decides to rebuild the target, clearmake executes its build script.

Build Reference Time and Build Sessions

clearmake takes into account the fact that as your build progresses, other developers can

continue to work on their files, and may check in new versions of elements that your build uses.

If your build takes an hour to complete, you do not want build scripts executed early in the build

to use version 6 of a header file, and scripts executed later to use version 7 or 8. To prevent such

inconsistencies, clearmake locks out any version that meets both of these conditions:

➤ The version is selected by a configuration specification rule that includes the LATEST
version label.

➤ The version was checked in after the time the build began (the build reference time).

This reference-time facility applies to checked-in versions of elements only; it does not lock out

changes to checked-out versions, other view-private files, and non-MVFS objects. clearmake
adjusts for the fact that the system clocks on different hosts in a network may be somewhat out

of sync (clock skew).

Exit Status

clearmake returns a zero exit status if all goal targets are successfully processed. It returns a

nonzero exit status in two cases:
4 Building Software: Rational ClearCase

➤ clearmake itself detects an error, such as a syntax error in the makefile. In this case, the error

message includes the string “clearmake”.

➤ A makefile build script terminates with a nonzero exit status (for example, a compiler

error).

1.2 Dependency Tracking of MVFS and Non-MVFS Files

During build-script execution in a dynamic view, a host’s MVFS (multiversion file system) audits

low-level system calls performed on ClearCase data: create, open, read, and so on. Calls

involving the following objects are monitored:

➤ Versions of elements used as build input

➤ View-private files used as build input (for example, the checked-out version of a file

element)

➤ Files created within VOB directories during the build

Some of these objects are stored in the VOB, and others are view-private files. The view combines

them into a virtual work area, where they appear to be located in VOB directories. They are called

MVFS files because they are accessed through the MVFS.

Automatic Detection of MVFS Dependencies

Because auditing of MVFS files is completely automated, you don’t have to keep track of exactly

which files are being used in builds. ClearCase does the tracking instead. For example, it

determines which C-language source files referenced with #include directives are used in a

build. Tracking eliminates the need both to declare such files in the makefile and for

dependency-detection tools, such as makedepend.

If you store your build tools (compilers, linkers, and so on) as ClearCase elements and run them

from the VOB, they are recorded in the configuration record as implicit detected dependencies.
1 - ClearCase Build Concepts 5

Tracking Non-MVFS Files

A build can also involve files that are not accessed through VOB directories. Such non-MVFS files

are not audited automatically, but are tracked if you declare them as dependencies in a makefile.

This tracking enables auditing of build tools that are not stored as ClearCase elements (for

example, a C-language compiler), flag files in the user’s home directory, and so on. Tracking

information on a non-MVFS file includes its absolute path, time stamp, size, and checksum.

1.3 Derived Objects and Configuration Records

When it finishes executing a build script, clearmake records the results, including build audit

information, in the form of derived objects and configuration records.

A derived object (DO) is a file created in a VOB during a build or build audit with clearmake.

Each DO has an associated configuration record (CR), which is the bill of materials for the DO.

The CR documents aspects of the build environment, the assembly procedure for a DO, and all

the files involved in the creation of the DO.

NOTE: All derived objects created by executing a build script have equal status, even though some

of them may be explicit build targets, and others may be created as side effects of the build script

(for example, compiler listing files). The term siblings describes a group of DOs created by the

same script and associated with a single CR.

For more detailed information about DOs and CRs, see Chapter 2, Derived Objects and
Configuration Records.

1.4 Build Avoidance

clearmake attempts to avoid rebuilding derived objects. If an appropriate derived object exists

in the view, clearmake reuses that DO. If there is no appropriate DO in the view, clearmake looks

for an existing DO built in another view that can be winked in to the current view. The search

process is called shopping.

The process of qualifying a candidate DO is called configuration lookup. It involves matching

information in the VOB from the candidate DO’s config record against the user’s current build
configuration. This process guarantees correct results in a parallel development environment,
6 Building Software: Rational ClearCase

which the standard time-stamp-based algorithm used by make cannot do. Even if an object

module is newer than a particular version of its source file, the module may have been built using

a different version. In fact, reusing object modules and executables built recently is likely to be

incorrect when rebuilding a previous release of an application from old sources. The

configuration lookup algorithm that ClearCase uses guarantees that your builds will be both

correct (inappropriate objects are not reused) and optimal (appropriate objects are always

reused).

For a DO to be reused or winked in, the build configuration documented in its configuration

record must match the current view’s build configuration. The build configuration consists of

two items:

The search ends when clearmake finds a DO whose configuration matches the view’s current

build configuration exactly. In general, a configuration lookup can have three outcomes:

➤ Reuse. If the DO (and its siblings) in the view match the build configuration, clearmake
keeps them.

➤ Winkin. If a DO built previously matches the build configuration, clearmake causes that

DO and its siblings to appear in this view. This operation is termed winkin.

NOTE: clearmake does not contact all views to determine whether they contain DOs that can

be winked in. Instead, it uses DO information in the VOB to eliminate inappropriate

candidates. Only if it finds a candidate does it contact the containing view to retrieve the

DO’s configuration record.

➤ Rebuild. If configuration lookup fails to find a DO that matches the build configuration,

clearmake executes the target’s build script, which creates one or more new DOs, and a

new CR.

Reuse and winkin take place only if clearmake determines that a newly built derived object

would be identical to the existing one. Winkin takes place when two or more views select the

Files The versions of elements listed in the CR must match the versions

selected by the view in which the build is performed. Any

view-private files or non-MVFS files listed in the CR must also match.

Build procedure The build options in the CR must match the build options specified

on the command line, in the environment, in makefiles, or in build

options specification files.

The build script listed in the CR must match the script that will be

executed if the target is rebuilt. The scripts are compared with all

make macros expanded; thus, a match occurs only if the same build

options apply (for example, “compile for debugging”).
1 - ClearCase Build Concepts 7

same versions of source elements used in a build. For example, you can create another view that

has the same configuration as an existing view. Initially, the new view sees all the sources but

contains no derived objects. Running clearmake winks in many derived objects from the existing

view.

Hierarchical Builds

In a hierarchical build, some objects are built and then used to build others. clearmake performs

configuration lookup separately for each target. To ensure a consistent result, clearmake also

applies this principle: when a new object is created, all targets that depend on it are rebuilt. Note

that winkin does not cause rebuilds of dependencies.

Automatic Dependency Detection

Configuration records enable automatic checking of source dependencies as part of build

avoidance. All such dependencies (for example, on C-language header files) are logged in a

build’s configuration record, whether or not they are explicitly declared in a makefile.

1.5 Express Builds

During an audited build, clearmake writes to the VOB information about a newly built DO.

Configuration lookup by future builds uses that information to determine whether the DO is a

candidate for winkin.

There is a performance tradeoff when you create DOs. While the build is writing the DO

information to the VOB database, other users cannot write to the VOB. This performance loss is

offset when the DO is used by subsequent builds, which can make the builds faster. However, if

the DO is never used by another view, the performance loss is not offset.

ClearCase express builds create derived objects, but do not write information to the VOB.

Therefore, these DOs are nonshareable and are not considered for winkin by other views. They

can be reused by the view in which they were built.

Express builds offer two advantages over regular builds:
8 Building Software: Rational ClearCase

➤ Scalability: During an express build, write access to the VOB is not blocked by

time-consuming DO write operations. More users can build in a VOB without making VOB

access slower.

➤ Performance: Express builds are faster than regular builds, because the build does not write

DO information into the VOB.

Which kind of build occurs when you invoke clearmake depends on how your view is

configured. To use express builds, you must use a dynamic view whose DO property is set to

nonshareable. For information on enabling express builds, see Using Express Builds to Prevent
Winkin to Other Views on page 62.

1.6 Build Auditing with clearaudit

Some organizations, or some developers, may want to use ClearCase build auditing without

using the clearmake program. Others may want to audit development activities that do not

involve makefiles. These users can do their work in an audited shell, a standard shell with build

auditing enabled.

For example, a technical writer produces formatted manual page files by running a shell script

that invokes nroff(1). When the script is executed in a dynamic view in a shell created by

clearaudit, ClearCase creates a single configuration record, recording all the source versions

used. All MVFS files read during execution of the audited shell are listed as inputs to the build.

All MVFS files created become derived objects, associated with the single configuration record.

For more information, see the clearaudit reference page.

1.7 Compatibility with Other make Programs

Many make utilities are available in the multiple-architecture, multiple-vendor world of open

systems. The ClearCase clearmake program shares features with many of them and has some

unique features.

You can adjust the level of compatibility that clearmake has with other make programs:

➤ Suppress special features of clearmake.
1 - ClearCase Build Concepts 9

Use command options to turn off such features as winkin, comparison of build scripts,

comparison of detected dependencies, and creation of DOs and CRs. You can turn off

configuration lookup altogether, so that the standard time-stamp-based algorithm is used for

build avoidance.

➤ Enable features of other make programs.

clearmake has several compatibility modes, which provide for partial emulations of popular

make programs. For more information, see the makefile compatibility commands in the

Command Reference.

To achieve absolute compatibility with other make programs, you can actually use them to

perform builds. However, builds with a standard make do not provide build auditing,

configuration lookup, or sharing of DOs. The MVFS files that the build creates are view-private

files, not derived objects. However, you can execute the make program in a clearaudit shell,

which performs an audited build.

1.8 Parallel Building

clearmake includes support for parallel building (concurrent execution of a set of build scripts on

one or most hosts). A command option specifies the number of hosts to use; host names to use

are read from a build hosts file (Figure 2).
10 Building Software: Rational ClearCase

Figure 2 Parallel Building

For example, you can perform a three-way build, all of whose processes execute on a single

multiprocessor server; an overnight build can be distributed across all the workstations in the

local network.

The Parallel Build Procedure

Before starting a build, clearmake parses the makefile to analyze the hierarchy of intermediate

targets needed to build the final target. In a serial build, clearmake constructs each target (or

reuses an existing DO) before continuing the analysis of subsequent builds.

In a parallel build, when clearmake detects that a target is out of date, it dispatches the build

script for that target to one of the hosts listed in the build hosts file. clearmake continues to

analyze the build hierarchy to detect other targets that can be built at the same time. It dispatches

the build script for subsequent targets to one of the hosts in the build hosts file. The total number

of build scripts being executed at any particular time is equal to or less than the number you

specify with –J. Each target is built as soon as system resources on the build host allow.

abe

User's host

abeabe

Build server hosts

Build hosts file

clearmake
1 - ClearCase Build Concepts 11

Execution of build scripts is managed on each remote host by the ClearCase audited build executor
(abe), which is invoked through standard remote-shell facilities.

For more information about parallel builds, see Chapter 9, Setting Up a Parallel Build.

1.9 Building on a Non-ClearCase Host

Many organizations develop multiple variants of their products, targeted at different platforms.

If ClearCase is not available for some of the platforms, you can still build all the required product

variants by using either cross-development or non-ClearCase access:

➤ Cross-development allows you to perform a build on a supported host to produce

executables for the unsupported host.

➤ Non-ClearCase access allows hosts on which ClearCase is not installed to access ClearCase

data, using standard network file-sharing services (such as NFS).

Non-ClearCase access takes advantage of view transparency. Through automatic

version-selection, a view makes any VOB appear to be a standard directory tree. Any such VOB

image can be exported to a non-ClearCase host.

Developers on the non-ClearCase host can perform builds within these VOB image directory

trees, using native make utilities or other local build tools. The object modules and executables

produced by such builds are stored in the view used to export the VOB.

For more information about building on a non-ClearCase host, see Chapter 11, Setting Up a Build
on a Non-ClearCase Host.
12 Building Software: Rational ClearCase

22 Derived Objects and Configuration
Records

This chapter describes derived objects and configuration records. Rational ClearCase creates

derived objects and configuration records only if you build in a dynamic view with one of the

ClearCase build tools. For information on managing derived objects and configuration records,

see Chapter 4.

2.1 Derived Objects Overview

As described in Chapter 1, derived objects are created during builds with ClearCase build tools.

They are used for build avoidance and derived object sharing.

In a parallel-development environment, it is likely that many DOs with the same pathname will

exist at the same time. For example, suppose that source file msg.c is being developed on three

branches concurrently, in three different views. ClearCase builds performed in those three views

produce object modules named msg.o. Each of these is a DO, and each has the same standard

pathname, for example, /vobs/proj/src/msg.o.

NOTE: Symbolic links created by a build script and files created in non-VOB directories are not

DOs.

In addition, each DO can be accessed with ClearCase extended names:

➤ Within each dynamic view, a standard UNIX pathname accesses the DO referenced by that

view. This is another example of the ClearCase transparency feature.

msg.o (the DO in the current view)
2 - Derived Objects and Configuration Records 13

➤ You can use a view-extended pathname to access a DO in any view:

Derived Object Naming

No name collisions occur among derived objects built at the same pathname, because each DO

is cataloged in the VOB database with a unique identifier, its DO-ID. The DO-ID references a DO

independently of views. The lsdo (list derived objects) command can list all DOs created at a

specified pathname, regardless of which views (if any) can select them:

% cleartool lsdo hello.o
07-May.16:09 akp "hello.o@@07-May.16:09.623" on neptune
06-May.12:47 akp "hello.o@@06-May.12:47.539" on neptune
01-May.21:49 akp "hello.o@@01-May.21:49.282" on neptune
03-Apr.21:40 akp "hello.o@@01-May.21:40.226" on neptune

Together, a DO’s standard name (hello.o) and its DO-ID (07-May.16:09.623) constitute a

VOB-extended pathname to that particular derived object (Figure 3). (The extended naming

symbol is host specific; most organizations use the default value, @@.)

Figure 3 Extended Pathname of a Derived Object

Standard software must access a DO through a dynamic view, using a standard pathname or

view-extended pathname. You can use such names with debuggers, profilers, rm, tar, and so on.

Only ClearCase programs can reference a DO using a VOB-extended pathname, and only the

DO’s metadata is accessible in this way. You can use a view-extended pathname with the winkin
command, to make the file system data of any DO available to your view. See Winking In a DO
Manually on page 61.

The following example describes a DO with an extended pathname (hello@@07-Mar.11:40.217)
and its configuration record:

/view/drp/vobs/proj/src/msg.o (the DO in view drp)
/view/2_integ/vobs/proj/src/msg.o (the DO in view R2_integ)

DO-ID

/usr/project/util.o@@07-May.16:09.6f8

pathname at which
object was built

extended
naming
symbol

time
stamp

hex file-name extension
14 Building Software: Rational ClearCase

2.2 Configuration Records

A configuration record (CR) is the bill of materials for a derived object or set of DOs. The CR

documents aspects of the build environment, the assembly procedure for a DO, and all the files

involved in the creation of the DO.

% cleartool describe hello@@07-Mar.11:40.217
created 07-Mar-99.11:40.217 by Allison K. Pak (akp.users@phobos)
references: 1 => cobalt:/usr1/tmp/akp/tut/old.vws

% cleartool catcr hello@@07-Mar.11:40.217
Target hello built by akp.user
Host "cobalt" running SunOS 5.7 (sun4u)
Reference Time 07-Mar-99.11:40:41, this audit started
 07-Mar-99.11:40:46
View was cobalt:/var/tmp/akp/tut/old.vws
Initial working directory was /vobs/akp_cobalt_hw/src

MVFS objects:

/vobs/akp_cobalt_hw/src/hello@@07-Mar.11:40.217
/vobs/akp_cobalt_hw/src/hello.o@@07-Mar.11:40.213
/vobs/akp_cobalt_hw/src/util.o@@07-Mar.11:40.215

Variables and Options:

MKTUT_CC=cc

Build Script:

cc -o hello hello.o util.o

%ls hello.@@07-Mar.11:40.217
Cannot access hello@@07-Mar.11:40.217: No such file or directory.
2 - Derived Objects and Configuration Records 15

Configuration Record Example

The catcr command displays the configuration record of a specified DO. Figure 4 shows a CR,

with annotations to indicate the various kinds of information in the listing.

Figure 4 Kinds of Information in a Configuration Record

Some notes on Figure 4:

➤ Directory versions. By default, catcr does not list versions of the VOB directories involved

in a build. To list this information, use the –long option:

cleartool catcr –long util.o
directory version /vobs/hw/.@@/main/1 <25-Feb-99.16:59:31>
directory version /vobs/hw/src@@/main/3 <26-Feb-99.20:53:07>
...

➤ Declared dependencies. One principal feature of ClearCase is the automatic detection of

source dependencies on MVFS files: versions of elements and objects in view-private

storage. In addition, a CR includes non-MVFS objects that are explicitly declared as

dependencies in the makefile. Figure 4 shows one such declared dependency, on file

build.notes.1, located in the non-VOB directory /tmp.

version of source
element, listed
with version-ID

view-private file

checked-out version,
highlighted and listed with

standard pathname

DO created in
this build, listed

with DO-ID

non-MVFS file
(pathname outside VOB),

explicitly declared as
dependency

% cleartool catcr util.o
Target util.o built by mike.dvt
Host "proton" running OSF1V1.3 (alpha)
Reference Time 26-Feb-99.20:41:33,
this audit started 26-Feb-99:20:41:34
View was proton:/net/proton/home/mike/mike.vws
Initial working directory was /vobs/hw/src
- -
MVFS objects:
- -
/vobs/hw/src/hello.h@@/main/2 <25-Feb-99.17:03:11>
/vobs/hw/src/my.flag.file <26-Feb-99.20:21:56>
/vobs/hw/src/util.c <25-Feb-99.17:02:27>
/vobs/hw/src/util.o@@26-Feb.20:41:465
- -
non-MVFS objects:
- -
/tmp/build.notes.1 <26-Feb-99.20:31:30>

Variables and Options:
- -

- -
MKTUT_CC=cc
- -
Build Script:
- -

cc -c util.c
- -

information
from
makefile
16 Building Software: Rational ClearCase

➤ Listing of checked-out versions. Checked-out versions of file elements are highlighted.

Checked-out versions of directory elements are listed like this:

directory version /vobs/hw/src@@/main/CHECKEDOUT <26-Feb-99.17:05:23>

When the elements are subsequently checked in, a listing of the same configuration record

shows the updated information. For example,

/vobs/hw/src/util.c <25-Feb-99.17:02:27>

becomes

/vobs/hw/src/util.c@@/main/4 <25-Feb-99.17:02:27>

The actual configuration record contains a ClearCase internal identifier for each MVFS

object. After the version is checked in, catcr lists that object differently.

NOTE: The time stamps in the configuration record are for informational purposes and are

not used by ClearCase during rebuild or winkin decisions. ClearCase uses OIDs to track

versions used in builds.

Contents of a Configuration Record

The following sections describe the contents of configuration records.

Header Section

As displayed by catcr, the header section of a CR includes the following lines:

➤ Makefile target associated with the build script and the user who started the build:

Target util.o built by akp.dvt

For a CR produced by clearaudit, the target is ClearAudit_Shell .

➤ Host on which the build script was executed, along with information from the uname(2)
system call:

Host ’neon’ running SunOS 5.5.1 (sun4m)

➤ Reference time of the build (the time clearmake or clearaudit began execution), and the

time when the build script for this particular CR began execution:
2 - Derived Objects and Configuration Records 17

Reference Time 15–Sep–99.08:18:56, this audit started 15–Sep–99.08:19:00

In a hierarchical build, involving execution of multiple build scripts, all the resulting CRs

share the same reference time. (For more on reference time, see the clearmake reference

page.)

➤ View storage directory of the view in which the build took place:

View was neptune:/home/akp/views/930825.vws

➤ Working directory at the time build script execution or clearaudit execution began:

Initial working directory was /vobs/hw/src

MVFS Objects Section

An MVFS object is a file or directory in a VOB. The MVFS Objects section of a CR includes this

information:

➤ Each MVFS file or directory read during the build. These include versions of elements and

view-private files used as build input, checked-out versions of file elements, DOs read, and

any tools or scripts used during the build that are under version control.

➤ Each derived object produced by the target rebuild.

Non-MVFS Objects Section

A non-MVFS object is an object not accessed through a VOB (compiler, system-supplied header

file, temporary file, and so on). The Non-MVFS Objects section of a CR includes each non-MVFS

file that appears as an explicit dependency in the makefile or is a dependency inferred from a

suffix rule. See Declaring Source Dependencies in Makefiles on page 38.

This section is omitted if there are no such files or if the CR was produced by clearaudit.

Variables and Options Section

The Variables and Options section of a CR lists the values of make macros referenced by the build

script and command-line options.

This section is omitted from a CR produced by clearaudit.
18 Building Software: Rational ClearCase

Build Script Section

The Build Script section of a CR lists the script that was read from a makefile and executed by

clearmake.

This section is omitted from a CR produced by clearaudit.

Configuration Record Hierarchies

A typical makefile has a hierarchical structure. Thus, running clearmake once to build a

high-level target can cause multiple build scripts to be executed and multiple CRs to be created.

Such a set of CRs can form a configuration record hierarchy, which reflects the structure of the

makefile (Figure 5).
2 - Derived Objects and Configuration Records 19

Figure 5 Configuration Record Hierarchy

Resulting CR hierarchy

hello

libhello.a hello.o msg.o

user.o env.o

Make file hierarchy # makefile to build ’hello’ program

 Top-level target hello :hello.o msg.o libhello.a

 cc -o hello -L. hello.o msg.o -lhello

 Second-level target hello.o:

 cc -c hello.c
 msg.o:

 cc -c msg.c

 libhello.a : user.o env.o

 ar r libhello.a user.o env.o

 Third-level target user.o:

 cc -c user.c
 env.o:

 cc -c env.c
20 Building Software: Rational ClearCase

An individual parent/child link in a CR hierarchy is established in one of two ways:

➤ In a target/dependencies line

For example, the following target/dependencies line declares derived objects hello.o, msg.o,

and libhello.a to be build dependencies of derived object hello:

hello: hello.o msg.o libhello.a
...

Accordingly, the CR for hello is the parent of the CRs for the .o files and the .a file.

➤ In a build script

For example, in the following build script, derived object libhello.a in another directory is

referenced in the build script for derived object hello:

hello: $(OBJS)
cd ../lib ; $(MAKE) libhello.a
cc -o hello $(OBJS) ../lib/libhello.a

Accordingly, the CR for hello is the parent of the CR for libhello.a.

NOTE: The recursive invocation of clearmake in the first line of this build script produces a

separate CR hierarchy, which is not necessarily linked to the CR for hello. The second line of

the build script links the CR for ../lib/libhello.a with that of hello.

The catcr and diffcr commands have options for handling CR hierarchies:

➤ By default, they process individual CRs.

➤ With the –recurse option, they process the entire CR hierarchy of each derived object

specified, keeping the individual CRs separate.

➤ With the –flat option, they combine (or flatten) the CR hierarchy of each specified derived

object.

Some ClearCase features process entire CR hierarchies automatically. For example, when the

mklabel command attaches version labels to all versions used to build a particular derived object

(mklabel –config), it uses the entire CR hierarchy of the specified DO. Similarly, ClearCase

maintenance procedures do not scrub the CR associated with a deleted DO if it is a member of

the CR hierarchy of a higher-level DO.
2 - Derived Objects and Configuration Records 21

Configuration Record Cache

When a derived object is created in a view, both its data container and its associated

configuration record are stored in the view’s private storage area. The CR is stored in the view

database, in compressed format. To speed configuration lookup during subsequent builds in this

view, a compressed copy of the CR is also cached in a view-private file, .cmake.state, located in

the directory that was current when the build started.

When a DO is winked in for the first time, the associated CR moves from the view’s private

storage area to the VOB database, as shown in Figure 6.

2.3 Kinds of Derived Objects

The following sections describe the kinds of DOs and their lifecycles.

During a regular build, ClearCase build tools create shareable derived objects. During an express

build, they create nonshareable derived objects. Both kinds of DOs have configuration records,

but only shareable DOs can be winked in by other views.

Shareable DOs

When a ClearCase build tool creates a shareable DO, it creates a configuration record for the DO

and writes information about the DO into the VOB. (At this point, the DO is shareable but

unshared.) Builds in other views use this information during configuration lookup. If the build

determines that it can wink in an existing DO, it contacts the view containing the DO and

promotes the DO to the VOB. (The DO is now shareable and shared.)

As noted in Express Builds on page 8, you must consider whether the performance benefit of

winking in DOs is worth the performance cost of making them available for winkin.

NOTE: The process of looking for a DO to wink in uses an efficient algorithm to eliminate

mismatches. The build tool does not contact other views to retrieve configuration records unless

the configuration lookup process determines that there is a winkin candidate.

The configuration lookup process cannot guarantee that the DO is suitable for use. The process

uses details in the config record to determine whether a DO is suitable for winkin, but the config

record does not record all parameters of a build. For example, a config record may list only a
22 Building Software: Rational ClearCase

compiler’s name and the options used. If two builds use incompatible compilers with the same

name, unwanted winkins from one build to the other can occur.

NOTE: To minimize occurrences of incorrect winkin, all developers must use the same set of tools.

For example, put your build tools under version control and always run them from the VOB.

Nonshareable DOs

During an express build, the ClearCase build tool creates nonshareable DOs. The build tool

creates a configuration record for the DO, but does not write information about the DO into the

VOB. Because scanning the information in the VOB is the only method other builds use to find

DOs, other builds cannot wink in nonshareable DOs. However, a nonshareable DO can be reused

by the view in which it was built.

A nonshareable DO can have shareable sub-DOs, but not shareable siblings. A nonshareable DO

can be built using a winked-in shareable DO. (However, a shareable DO cannot have

nonshareable sub-DOs or siblings.)

For information on enabling express builds, see Using Express Builds to Prevent Winkin to Other
Views on page 62.

You can use the same commands that you use with shareable DOs on nonshareable DOs, but

some commands work differently on the two kinds of DOs. The reference pages for the

commands describe the differences.

Storage of Derived Objects

When a DO is created, its data container is located in the view storage area. For a shareable DO,

the ClearCase build tool creates the VOB database object for the DO; it also writes to the VOB

information about the DO that can be used during configuration lookup. A nonshareable DO has

no VOB database object, and the build tool does not write any configuration lookup information

into the VOB (Figure 6).

A DO consists of the following parts:

➤ VOB database object (shareable DOs only)—Each DO is cataloged in the VOB database,

where it is identified by an extended name that includes both its standard pathname (for

example, /vobs/hw/src/hello.c) and a unique DO-ID (for example, 23-Feb.08:41.391).
2 - Derived Objects and Configuration Records 23

➤ Data container—The data portion of a derived object is stored in a standard file within a

ClearCase storage area. This file is called a data container; it contains the DO’s file system

data.

➤ Configuration record—Actually, a CR is associated with a DO; it is not part of the DO itself.

More precisely, a CR is associated with the entire set of sibling DOs created by a particular

invocation of a particular build script. See Configuration Records on page 15.

When a shareable DO is first created, it is unshared:

➤ It appears only in that view.

➤ Its data container is a file in the view’s private storage area.

➤ clearmake writes information about the DO into the VOB.

Promotion and Winkin

The first time a shareable derived object is winked in by another dynamic view, or when either

kind of DO is promoted manually with a winkin or view_scrubber –p command, its status

changes to shared:

➤ Its data container is promoted to a derived object storage pool in the VOB.

➤ (shareable DOs only) If the winkin was done by the build tool or the command was

executed in another view, the DO now appears in two dynamic views.

When the winkin occurs during a clearmake build:

➤ The dynamic view to which the DO is winked in, and all other views to which the DO is

subsequently winked in, use the data container in VOB storage.

➤ The original view continues to use the data container in view storage. (The view_scrubber
utility removes this asymmetry, which causes all dynamic views to use the data container in

VOB storage.)

When the winkin is done with the winkin or view_scrubber –p command, the data container in

the view is removed after it is promoted to VOB storage. The original view and all other views

to which the DO is subsequently winked in use the data container in VOB storage.
24 Building Software: Rational ClearCase

Figure 6 Storage of a Shareable Derived Object

VOB database

CR

Nonshareable DO

VOB database

CR

Database entry

Database entry

DO
storage pool

Shareable DO
(unshared)

VOB database

CR

Shareable DO
(shared)

Data
container

Data
container

Data
container

Data
container

CR
2 - Derived Objects and Configuration Records 25

After a derived object is winked in, it remains shared, no matter how many times it is winked in

to additional dynamic views, and even if subsequent rebuilds or deletion commands cause it to

appear in only one dynamic view (or zero views).

When a derived object’s data container is in the VOB, any number of views can share the derived

object without having to communicate with each other directly. For example, view alpha can be

unaware of views beta and gamma, with which it shares a derived object. The hosts on which

the view storage directories are located need not have network access to each other’s disk

storage.

If clearmake attempts a winkin that fails, it checks to see if any VOBs are locked. If it finds a

locked VOB, it waits until the VOB is unlocked and then retries the winkin.

For more information, see the winkin and view_scrubber reference pages.

DO Versions

You can check in a derived object as a version of an element, creating a DO version. Other versions

of such an element can also be, but need not be, derived objects. A DO version behaves like both

a version and a derived object:

➤ You can use its version-ID to reference it as both a VOB database object and a data file.

➤ You can apply a version label to it and reference it using that label.

➤ You can display its configuration record with catcr or compare the CR to another with

diffcr.

➤ A clearmake build can wink it in if the element is located at the same pathname where the

DO was originally built.

➤ You can wink it in with a winkin command.

➤ The describe command lists it as a derived object version . (The lsdo command does

not list it at all.)

For more information on DO versions, see Working with DO Versions on page 64.
26 Building Software: Rational ClearCase

2.4 Reuse of DO-IDs

The DO-ID for a shareable derived object is guaranteed to be unique within the VOB, for all

views. That is, if you delete a shareable DO, its numeric file name extension is not reused (unless

you reformat the VOB that contains it).

The DO-ID for a DO created by an express build (a nonshareable derived object) is unique only

at a certain point in time. If you delete a nonshareable DO, the ClearCase build tools can reuse

its numeric file name extension. (Because ClearCase tracks derived objects using their VOB

database identifiers, no build confusion occurs if a file name extension is reused.)

DO-IDs change when any of these events occur:

The configuration record reflects these DO-ID changes.

2.5 Derived Object Reference Counts

A DO’s reference count is the number of times the derived object appears in ClearCase dynamic

views throughout the network. ClearCase also tracks the identifiers for the views that reference

the DO. When a new derived object is created, clearmake sets its reference count to 1, indicating

that it is visible in one view. Thereafter, each winkin of the DO to an additional view increments

the reference count.

The lsdo –long command lists the reference count and referencing views for a DO. For example:

➤ The DO passes its first birthday. The time stamp changes to include the year the DO was

created:

util.o@@15-Jul.15:34.8896 (when first created)
util.o@@15-Jul-1998.8896 (after a year)

➤ You convert a nonshareable DO to a shareable DO. (See Converting Nonshareable DOs to
Shared DOs on page 69.)

➤ You process a VOB’s database with reformatvob. All DO-IDs receive new numeric

file-name extensions:

util.o@@15-Jul.15:34.8896 (before reformatvob)
util.o@@15-Jul.17:08.734 (after reformatvob)
2 - Derived Objects and Configuration Records 27

cleartool lsdo –long
01-Sep-99.18:56:45 Suzanne Lee (sgl.user@neon)

create derived object "file.txt@@01-Sep.18:56.2147483683"
size of derived object is: 10
last access: 01-Sep-99.18:56:46
references: 1 => neon:/home/sgl/views/sgl_test.vws

01-Sep-99.19:03:19 Suzanne Lee (sgl.user@neon)
create derived object "util@@01-Sep.19:03.81"
size of derived object is: 10
last access: 01-Sep-99.19:03:33
references: 2 (shared)
=> neon:/home/sgl/views/sgl_test.vws
=> neon:/home/sgl/views/point_of.vws

For a nonshareable DO, the reference count is always 1.

You can also create OS-level hard links to an existing shareable DO, each of which increments the

reference count. Such additional hard links are sometimes subject to winkin:

➤ If the additional hard link was created in the same build script as the original DO, a winkin

of the DO during a subsequent clearmake build causes a winkin of the additional hard link.

➤ Additional hard links that you create manually are not winked in during subsequent

builds.

NOTE: Symbolic links are not subject to winkin and clearmake regards symbolic links as being

identical if they point to the same object, whether the symbolic links are VOB links or

view-private links.

A reference count can also decrease. When a program running in any of the views that reference

a shared derived object overwrites or deletes that object, the link is broken and the reference

count is decremented. That is, the program deletes the view’s reference to the DO, but the DO

itself remains in VOB storage. This occurs most often when a compiler overwrites an old build

target. You can also remove the derived object with a standard rm command, or if the makefile

has a clean rule, by running clearmake clean.

A derived object’s reference count can become zero. For example, suppose you build program

hello and rebuild it a few minutes later. The second hello overwrites the first hello,

decrementing its reference count. Because the reference count probably was 1 (no other view has

winked it in), it now becomes 0. Similarly, the reference counts of old DOs, even of DOs that are

widely shared, eventually decrease to zero as development proceeds and new DOs replace the

old ones.

The lsdo command ignores such DOs by default, but you can use the –zero option to list them:
28 Building Software: Rational ClearCase

cleartool lsdo –zero –long hello.o
.
.

08-Mar-99.12:47:54 Allison K. Pak (akp.user@cobalt)
 create derived object "hello.o@@08-Mar.12:47.259"
 references: 0

...

A derived object that is listed with a references: 0 annotation does not currently appear in any

view. However, some or all of its information may still be available:

➤ If the DO was ever promoted to VOB storage, its data container is still in the VOB storage

pool (unless it has been scrubbed), and its CR is still in the VOB database. You can use catcr
and diffcr to work with the CR. You can get to its file system data by performing a

clearmake build in an appropriately configured view, or by using the winkin command.

➤ If the DO was never promoted, its CR may be gone forever. Until the scrubber runs and

deletes the data container, the catcr command prints the message Config record data no

longer available for DO-pname .
2 - Derived Objects and Configuration Records 29

30 Building Software: Rational ClearCase

33 Pointers on Using ClearCase Build
Tools

This chapter presents some pointers on making best use of clearmake.

3.1 Invoking clearmake

You can invoke clearmake from the command line or from the ClearCase File Browser

(xclearcase). The command-line interface is designed to be as similar as possible to other make
variants. Lowercase, single-letter command options have their familiar meanings. For example:

clearmake recognizes additional options (also one letter, but uppercase) that control its enhanced

functionality: configuration lookup, creation of configuration records and derived objects,

parallel building, and so on. For a complete description, see the clearmake reference page.

You can run clearmake as a background process or invoke it from a shell script. (In clearmake
output, some names are in bold, for clarity. On some architectures, running clearmake in the

background suppresses the bold, but no characters are lost.)

–n No-execute mode

–f Specify name of makefile

–u Unconditional rebuild
3 - Pointers on Using ClearCase Build Tools 31

3.2 A Simple clearmake Build Scenario

clearmake is designed to let developers in makefile-based build environments continue working

in their accustomed manner. The following simple build scenario demonstrates how little

adjustment is required to begin building with clearmake.

1. Set a view. Because working with ClearCase data requires a view context, it makes sense to

set a view before starting a build.

(Strictly speaking, this is not required: if your process has a working directory view context, but

not a set view context, clearmake sets the view to the working directory view by executing a

cleartool setview –exec clearmake command. If your process has a working directory view

context and a set view context, clearmake uses the working directory view.

2. Go to a development directory within any VOB.

3. Edit some source files. Typically, you need to edit some sources before performing a build;

accordingly, you check out some file elements and revise the checked-out versions.

4. Start a build. You can use your existing makefiles, but invoke clearmake instead of your

standard make program. For example:

(We recommend that you avoid specifying make-macro overrides on the command line. See

Specifying Build Options on page 35.)

clearmake builds targets (or avoids building them) in a manner similar to, but more

sophisticated than, other make variants.

Figure 7 illustrates some typical build scenarios in which derived objects are rebuilt, reused, or

winked in.

clearmake (build the default target)
clearmake cwd.o libproj.lib (build one or more particular targets)
clearmake –k monet CFLAGS=–g (use standard options and make-macro overrides)
32 Building Software: Rational ClearCase

Figure 7 clearmake Build Scenario

clearmake builds new derived objects for checked-out source files, reuses derived objects for

checked-in source files that have previously build the object, and winks in derived objects from

other views as appropriate for checked-in source files that have not previously built the object.

third.cfirst.c second.c

third.cfirst.c second.c

first.o second.o

third.cfirst.c second.c

third.cfirst.c

Source files in VOB

Build first.o and second.o

Check out first.c

Build first.o, second.o and third.o second.c

first.o second.o third.o

(Rebuilt) (Reused) (Winked in)

third.o

View alpha View beta
3 - Pointers on Using ClearCase Build Tools 33

Note that clearmake does not attempt to verify that you have actually edited the file; the

checkout makes a rebuild necessary. As you work, saving a file or invoking clearmake causes a

rebuild of the updated file’s dependents, in the standard make manner.

For source files that you have not checked out, clearmake may or may not build a new derived

object:

➤ It may reuse a derived object that appears in your view, produced by a previous build.

➤ It may wink in an existing derived object built in another view. (It’s even possible that a

winked-in DO was originally created in your view, shared, then deleted from your view —

for example, by a make clean command.)

➤ Changes to other aspects of your build environment may trigger a clearmake rebuild:

revision to a header file; change to the build script, use of a make-macro override; change to

an environment variable used in the build script.

3.3 Accommodating Build Avoidance

When you first begin to build software systems with ClearCase, the fact that clearmake uses a

different build-avoidance algorithm than other make variants may occasionally surprise you.

This section describes several such situations and presents simple techniques for handling them.

Increasing the Verbosity Level of a Build

If you don’t understand clearmake’s build-avoidance decisions, use the –v (somewhat verbose)

or –d (extremely verbose) option. Equivalently, set environment variable CCASE__VERBOSITY to 1
or 2, respectively. When clearmake rebuilds a target due to a “build script mismatch,” the -v and

-d options also return a summary of differences between the build scripts.

Handling Temporary Changes in the Build Procedure

Typically, you do not edit a target’s build script in the makefile very often. But you may often

change the build script by specifying overrides for make macros, either on the command line or in

the UNIX environment. For example, target hello.o is specified as follows in the makefile:
34 Building Software: Rational ClearCase

hello.o: hello.c hello.h
rm hello.o
cc –c $(CFLAGS) hello.c

When it executes this build script, clearmake enters the build script, after macro substitution,

into the config record. The command

% clearmake hello.o CFLAGS="–g –O1"

produces this configuration record entry:

Build script:

 cc –c –g –O1 hello.c

So does this command:

env CFLAGS="–g –O1" clearmake –e hello

The clearmake build-avoidance algorithm compares effective build scripts. If you then use the

command clearmake hello.o without specifying CFLAGS="–g –O1", clearmake rejects the

existing derived object, which was built with those flags. The same mismatch occurs if you create

a CFLAGS environment variable with a different value, and then invoke clearmake with the –e
option.

Specifying Build Options

To manage temporary overrides for make macros and environment variables, place macro

definitions in build options specification (BOS) files. clearmake provides several ways for using

a BOS file. For example, if your makefile is named project.mk, macro definitions are read from

project.mk.options. You can also keep a BOS file in your home directory, or specify one or more

BOS files with clearmake –A. For details, see Build Options Specification Files.

Using a BOS file to specify make macro overrides relieves you of having to remember which

options you specified for the last build. If you have not modified the BOS file recently, derived

objects in your view are not disqualified for reuse on the basis of build script discrepancies. Some

of the sections that follow describe other applications of BOS files.
3 - Pointers on Using ClearCase Build Tools 35

Handling Targets Built in Multiple Ways

Because clearmake compares build scripts, undesirable results may occur if your build

environment includes more than one way to build a particular target. For example, suppose that

the target test_prog_3 appears in two makefiles in two directories. The first is in its source

directory, util_src:

test_prog_3: ...
cc –o test_prog_3 ...

The second is in another directory, app_src:

../util_src/test_prog_3: ...
cd ../util_src ; cc –o test_prog_3

Derived objects built with these scripts may be equivalent, because they are built as the same file

name (test_prog_3) in the same VOB directory (util_src). But by default, a build in the app_src
directory never reuses or winks in a DO built in the util_src directory, because build-script

comparison fails.

You can suppress build-script comparison for this target by using a clearmake special build

target, .NO_CMP_SCRIPT in the makefile or in an associated BOS file:

.NO_CMP_SCRIPT: ../util_src/test_prog_3

To suspend build-script comparison once, you can use clearmake –O.

Using a Recursive Invocation of clearmake

You can eliminate the problem of different build scripts described in Handling Targets Built in
Multiple Ways by adding a recursive invocation of clearmake to the makefile in app_src:

Now, target test_prog_3 is built the same way in both directories. You can turn on build-script

comparison again, by removing the .NO_CMP_SCRIPT special target.

../util_src/test_prog_3: ...

cd ../util_src ; $(MAKE) test_prog_3 ($(MAKE) invokes clearmake
recursively)
36 Building Software: Rational ClearCase

Optimizing Winkin by Avoiding Pseudotargets

Like other make variants, clearmake always executes the build script for a pseudotarget, a target

that does not name a file system object built by the script. For example, in the section Using a
Recursive Invocation of clearmake, you may be tempted to use a pseudotarget in the app_src
directory’s makefile:

test_prog_3: ... (shortened from ../util_src/test_prog_3)
cd ../util_src ; $(MAKE) test_prog_3

A build of any higher-level target that has test_prog_3 as a build dependency always builds a

new test_prog_3, which in turn triggers a rebuild of the higher-level target. If the rebuild of

test_prog_3 was not necessary, the rebuild of the higher-level target may not have been

necessary, either. Such unnecessary rebuilds decrease the extent to which you can take advantage

of derived object sharing.

Accommodating the Build Tool’s Different Name

The fact that the ClearCase build utility has a unique name, clearmake, may conflict with

existing build procedures that implement recursive builds. Most make variants automatically

define the make macro $(MAKE) as the name of the build program, as it was typed on the

command line:

This definition enables recursive builds to use $(MAKE) to invoke the same build program at

each level. The section Optimizing Winkin by Avoiding Pseudotargets includes one such example;

here is another one:

SUBDIRS = lib util src

all:
for DIR in $(SUBDIRS) ; do (cd $$DIR ; $(MAKE) all) ; done

Executing this build script with clearmake invokes clearmake all recursively in each

subdirectory.

% make hello.o (sets MAKE to “make”)
% clearmake hello.o (sets MAKE to “clearmake”)
% my_make hello.o (sets MAKE to “my_make”)
3 - Pointers on Using ClearCase Build Tools 37

3.4 Declaring Source Dependencies in Makefiles

To implement build avoidance based on time stamps, standard make variants require you to

declare all the source file dependencies of each build target. For example, object module hello.o
depends on source files hello.c and hello.h in the same directory:

hello.o: hello.c hello.h
 rm -f hello.o
 cc -ccl /c hello.c

Typically, these source files depend on project-specific header files through #include directives,

perhaps nested within one another. The standard UNIX files do not change very often, but

programmers often lament that “it didn’t compile because someone changed the project’s header

files without telling me.”

To alleviate this problem, some organizations include every header file dependency in their

makefiles. They rely on utility programs (for example, makedepend) to read the source files and

determine the dependencies.

clearmake does not require that source-file dependencies be declared in makefiles (but see Source
Dependencies Declared Explicitly on page 38). The first time a derived object is built, its build script

is always executed; thus, the dependency declarations are irrelevant for determining whether the

target is out of date. After a derived object has been built, its configuration record provides a

complete list of source-file dependencies used in the previous build, including those on all

header files (nested and nonnested) read during the build.

NOTE: clearmake will rebuild a target if there have been changes to any directories listed as

source-file dependencies.

You can leave source-file dependency declarations in your existing makefiles, but you need not

update them as you revise the makefiles. And you need not place source-file dependencies in

new makefiles to be used with clearmake.

NOTE: Although source-file dependency declarations are not required, you may want to include

them in your makefiles, anyway. The principal reason for doing so is portability: you may need

to provide your sources to another team (or another company) that is not using ClearCase.

Source Dependencies Declared Explicitly

The ClearCase build auditing facility tracks only the MVFS objects used to build a target.

Sometimes, however, you may want to track other objects. For example:
38 Building Software: Rational ClearCase

➤ The version of a compiler that is not stored in a VOB

➤ The version of the operating system kernel, which is not referenced at all during the build

➤ The state of a flag-file, used to force rebuilds

You can force such objects to be recorded in the CR by declaring them as dependencies of the

makefile target:

hello.o: hello.c hello.h /usr/5bin/cc my.flag
 rm -f hello.o
 cc -c hello.c

This example illustrates dependency declarations for these kinds of objects:

➤ (hello.c, hello.h) Dependencies on MVFS objects are optional. These are recorded by

clearmake and MVFS anyway.

➤ /usr/5bin/cc — Dependencies on build tools are required to track the build tools that are not

stored in VOBs. These dependencies are listed as non-MVFS objects in the configuration

record.

➤ my.flag — Dependencies on view-private objects can implement a flag-file capability.

We suggest that you use view-private files as flag files, rather than using non-MVFS files

(such as /tmp/flag). In a parallel build, a view-private flag file is guaranteed to be the same

object on all hosts; there is no such guarantee for a non-MVFS file.

As an alternative to declaring your C compiler as a build dependency, you can place it (and other

tools) in a tools VOB. The versions of such tools are recorded, eliminating the need for explicit

dependency declarations. Additional issues in the auditing of build tools are discussed in the

section Explicit Dependencies on Searched-For Sources.

Explicit Dependencies on Searched-For Sources

There are situations in which the configuration lookup algorithm that clearmake uses qualifies

a derived object, even though rebuilding the target would produce a different result.

Configuration lookup requires that for each object listed in an existing CR, the current view must

select the same version of that object. However, in cases where you use search paths to find an

object, a target rebuild may use a different object than the one listed in the CR. Configuration

lookup does not take this possibility into account.

When files are accessed by explicit pathnames, configuration lookup qualifies derived objects

correctly. Configuration lookup may qualify a derived object incorrectly if files are accessed at

build time by a search through multiple directories, for example, when the –I option to a C or
3 - Pointers on Using ClearCase Build Tools 39

C++ compiler specifies a header file, or when the –L option to a linker specifies a library file. The

following build script uses a search to locate a library file, libprojutil.a:

hello:
 cc -o hello -L /usr/project/lib -L /usr/local/lib \
 main.o util.o -lprojutil

The command clearmake hello may qualify an existing derived object built with

/usr/local/lib/libprojutil.a, even though rebuilding the target would now use

/usr/project/lib/libprojutil.a instead.

clearmake addresses this problem in the same way as some standard make implementations:

➤ You must declare the searched-for source object as an explicit dependency in the makefile:

hello: libprojutil.a
...

➤ You must use the VPATH macro to specify the set of directories to be searched:

VPATH = /usr/project/lib:/usr/local/lib

Given this makefile, clearmake uses the VPATH (if any) when it performs configuration lookup

on libprojutil.a. If a candidate derived object was built with /usr/local/lib/projutil.a, but would

be built with /usr/project/lib/projutil.a in the current view, the candidate is rejected.

NOTE: The VPATH macro is not used for all source dependencies listed in the config record. It is

used only for explicitly declared dependencies of the target. Also, clearmake searches only in the

current view.

Build Tool Dependencies. You can use this mechanism to implement dependencies on build

tools. For example, you can track the version of the C compiler used in a build as follows:

msg.o: msg.c $(CC)
$(CC) -c msg.c

With this makefile, either your VPATH must include the directories on your search path (if the

$(CC) value is cc), or you must use a full pathname as the $(CC) value.

NOTE: If your C compiler is stored in a VOB and you invoke it from the VOB, ClearCase tracks

its version and you do not have to include it as a dependency.
40 Building Software: Rational ClearCase

3.5 Build-Order Dependencies

In addition to source dependencies, makefiles also contain build-order dependencies. For

example:

hello: hello.o libhello.a
 ...
libhello.a: hello_env.o hello_time.o
 ...

These dependencies are buildable objects, and are called subtargets. The executable hello must be

built after its subtargets, object module hello.o and library libhello.a, and the library must be

built after its subtargets, object modules hello_env.o and hello_time.o.

ClearCase does not detect build-order dependencies; you must include such dependencies in

makefiles used with clearmake, as you do with other make variants.

3.6 Problems with Forced Builds

clearmake has a –u option (unconditional), which forces rebuilds. Using this option reduces the

efficiency of derived object sharing, however. If you force clearmake to build a target in a

situation where it would have winked in an existing DO, you create a new DO with the same

configuration as an existing one. In such situations, a developer who expects a build to share a

particular existing DO may get another, identically configured DO instead. This may confuse the

team and waste disk space.

We suggest that you use a flag-file to force a rebuild, rather than using clearmake –u. (See Source
Dependencies Declared Explicitly on page 38.)

3.7 How clearmake Interprets Double-Colon Rules

Double-colon rules are a special kind of makefile construct that allows several independent rules

for one target, each with a possibly different build script. The semantics given to these rules by

other make programs (such as Gnu make, Sun make, and for clearmake when CRs are not being

generated) are that commands within each double-colon rule are executed if the target is older
3 - Pointers on Using ClearCase Build Tools 41

than any dependencies of that particular rule. The result can be that none, any, or all of the

double-colon rules are executed.

However, when clearmake creates CRs and associates them with the results of its builds, this

interpretation runs the risk of generating incomplete CRs, which do not contain all the versions

and build scripts used to build the targets. For this reason, clearmake interprets these rules in a

more conservative way.

When building a target specified by a number of double-colon rules, clearmake concatenates all

build scripts from all the double-colon rules for that target and runs them in a single audited

script.

To produce the correct results, any subtargets must already have been built, so clearmake builds

any out-of-date subtargets before it executes the concatenated build script.

As a result, you may observe these differences in behavior between clearmake and other make
programs concerning double-colon rules:

➤ clearmake runs more of the build scripts than other make programs.

➤ clearmake may run the build scripts in a different order than other make programs.

However, given the intended use and standard interpretation of double-colon rules, these

differences still produce correct builds and complete correct CRs.

3.8 Continuing to Work During a Build

As your build progresses, other developers continue to work on their files and may check in new

versions of elements that your build uses. If your build takes an hour to complete, you do not

want build scripts executed early in the build to use version 6 of a header file, and scripts

executed later to use version 7 or 8.

To prevent such inconsistencies, any version whose selection is based on a LATEST config spec

rule is locked out if it is checked in after the instant that clearmake was invoked. The moment

that the clearmake build session begins is the build reference time.

The same reference time is reported in each configuration record produced during the build

session, even if the session lasts hours (or days):
42 Building Software: Rational ClearCase

% cleartool catcr hello.o
Target hello.o built by drp.dvt
Host "fermi" running OSF1 V1.3 (alpha)
Reference Time 26-Feb-99.16:53:58, this audit started 26-Feb-99.16:54:10 ...

NOTE: The reference time is the build reference time, when the overall clearmake build session

began. The this audit started time is when the execution of the individual build script began.

When determining whether an object was created before or after the build reference time,

clearmake adjusts for clock skew, the inevitable small differences among the system clocks on

different hosts. For more on build sessions, see Build Sessions, Subsessions, and Hierarchical Builds
on page 45.

CAUTION: A build’s coordinated reference time applies to elements only, providing protection

from changes made after the build began. You are not protected from changes to view-private

objects and non-MVFS objects. For example, if you begin a build and then change a checked-out

file used in the build, a failure may result. Therefore, do not work on the same project in a view

where a build is in progress.

3.9 Using Config Spec Time Rules

NOTE: If you use a UCM view, your config spec is generated by ClearCase. Do not add time rules

to your config spec.

Using the reference time facility described in Continuing to Work During a Build, clearmake blocks

out potentially incompatible source-level changes that take place after your build begins. But

sometimes, the incompatible change has already taken place. ClearCase allows you to block out

recently created versions.

A typical ClearCase team-development strategy is for each team member to work in a separate

view, but to have all the views use the same config spec. In this way, the entire team works on the

same branch. As long as a source file remains checked out, its changes are isolated to a single

view; when a developer checks in a new version, the entire team sees the new version on the

dedicated branch.

This incremental integration strategy is often very effective. But suppose that another user’s

recently checked-in version causes your builds to start failing. Through an exchange of e-mail,

you trace the problem to header file project_base.h, checked in at 11:18 A.M. today. You, and

other team members, can reconfigure your views to roll back that one element to a safe version:
3 - Pointers on Using ClearCase Build Tools 43

element project_base.h .../onyx_port/LATEST –time 5-Mar.11:00

If many interdependent files have been revised, you can roll back the view for all checked-in

elements:

element * .../onyx_port/LATEST –time 5-Mar.11:00

For a complete description of time rules, see the config_spec reference page.

Inappropriate Use of Time Rules

Your view interprets time rules with respect to the create version event record written by the

checkin command. The checkin is read from the system clock on the VOB server host. If that

clock is out of sync with the clock on the view server host, your attempt to roll back the clock may

fail. Thus, don’t strive for extreme precision with time rules: select a time that is well before the

actual cutoff time (for example, a full hour before, or in the middle of the night).

Do not use time rules to freeze a view to the current time immediately before you start a build.

Allow clearmake’s reference time facility to perform this service. Here’s an inappropriate use

scenario:

1. You check in version 12 of util.c at 7:05 P.M. on your host. You do not know that clock skew

on the VOB host causes the time 7:23 P.M. to be entered in the create version event record.

2. To freeze your view, you change your config spec to include this rule:

element * /main/LATEST –time 19:05

3. You issue a clearmake command immediately (at 7:06 P.M.) to build a program that uses

util.c. When selecting a version of this element to use in the build, your view consults the

event history of util.c and rejects version 12, because the 7:23 P.M. time stamp is too late for

the –time configuration rule.
44 Building Software: Rational ClearCase

3.10 Build Sessions, Subsessions, and Hierarchical Builds

The following terms are used to describe the details of ClearCase build auditing:

➤ Invoking clearmake or clearaudit starts a build session. The time at which the build session

begins becomes the build reference time for the entire build session, as described on

Continuing to Work During a Build on page 42.

➤ During a build session, one or more target rebuilds typically take place.

➤ Each target rebuild involves the execution of one or more build scripts. (A double-colon

target can have multiple build scripts; see How clearmake Interprets Double-Colon Rules on

page 41.)

➤ During each target rebuild, clearmake or clearaudit conducts a build audit.

Subsessions

A build session can have any number of subsessions, all of which inherit the reference time of the

build session. A subsession corresponds to a nested build or recursive make, which is started

when a clearmake or clearaudit process is invoked in the process family of a higher-level

clearmake or clearaudit. For example:

➤ Including a clearmake or clearaudit command in a makefile build script executed by

clearmake or clearaudit

➤ Entering a clearmake or clearaudit command in an interactive process started by clearaudit

A subsession begins while a higher-level session is still conducting build audits. The subsession

conducts its own build audits, independent of the audits of the higher-level session; that is, the

audits are not nested or related in any way, other than that they share the same build reference

time.

Versions Created During a Build Session

Any version created during a build session and selected by a LATEST config spec rule is not

visible in that build session. For example, a build checks in a derived object it has created;

subsequent commands in the same build session do not select the checked-in version, unless it

is selected by a config spec rule that does not use the version label LATEST.
3 - Pointers on Using ClearCase Build Tools 45

An effect of this behavior is that you cannot check in and label a version during a single build

session. Instead, you must check in the version during one build session, and label the version

during another build session. Use the mklabel –config command to label versions associated

with a specific derived object.

Coordinating Reference Times of Several Builds

Different build sessions have different reference times. The best way to assign a series of builds

the same reference time is to structure them as a single, hierarchical build.

An alternative approach is to run all the builds within the same clearaudit session. For example,

you can write a shell script, multi_make, that includes several invocations of clearmake or

clearaudit (along with other commands). Running the script as follows ensures that all the builds

are subsessions that share the same reference time:

clearaudit –c multi_make

Objects Written at More Than One Level

Problems occur when the same file is written at two or more session levels (for example, a

top-level build session and a subsession): the build audit for the higher-level session does not

contain complete information about the file system operations that affected the file. For example:

clearaudit –c "clearmake shuffle > logfile"

The file logfile may be written twice:

➤ During the clearaudit build session, by the shell program invoked from clearaudit
➤ During the clearmake subsession, when the clearaudit build session is suspended

In this case, clearaudit issues this error message:

clearaudit: Error: Derived object modified; cannot be stored in VOB.
Interference from another process?

To work around this limitation, postprocess the derived object at the higher level with a cp
command:

clearaudit –c "clearmake shuffle > log.tmp; cp log.tmp logfile; rm log.tmp"
46 Building Software: Rational ClearCase

3.11 Build Auditing and Background Processes

The ClearCase build programs—clearmake, clearaudit, and abe—use the same procedure to

produce configuration records:

1. Send a request to the host’s multiversion file system (MVFS), to initiate build auditing.

2. Start one or more child processes (typically, shell processes), in which makefile build scripts

or other commands are executed.

3. Turn off MVFS build auditing.

4. If all the subprocesses have indicated success, and at least one MVFS file has been created,

compute and store one or more configuration records.

Any subprocesses of the child processes started in Step #2 inherit the same MVFS build audit.

(Recursive invocations of ClearCase build programs conduct their own, independent audits; see

Build Sessions, Subsessions, and Hierarchical Builds on page 45.)

A problem can occur if a build script (or other audited command) invokes a background

subprocess, and exits without waiting for it to complete. The build program has no knowledge

of the background process and may proceed to Step #3 and Step #4 before the background

process has finished its work. In such situations, ClearCase cannot guarantee what portion, if

any, of the actions of background commands will be included in the resulting CR. The contents

of the CR depend on system scheduling and timing behavior.

The ClearCase build programs audit background processes correctly only if both of the following

conditions are true:

➤ The build script does not complete until all background processes are known to have

finished.

➤ Each background process performs its first MVFS file access while it is still a descendant

process of the clearmake or clearaudit process. (The ClearCase kernel component

determines whether to audit a given process when that process first accesses the MVFS. If

the process’s ancestors include a process already being audited, the descendant process is

similarly marked for auditing.)

If either or both of these conditions are false, avoid using background processes in audited build

scripts.
3 - Pointers on Using ClearCase Build Tools 47

3.12 Working with Incremental Update Tools

The design of the build auditing capability makes it ideal for use with tools that build derived

objects from scratch. Because newly created objects have no history, ClearCase can learn

everything it needs to know at build time. But this reliance on build-time file-system-level

auditing can cause ClearCase to record incomplete information for objects that are updated

incrementally, which do have a history.

In ClearCase, incremental updating means that an object is updated partially during the builds

of multiple makefile targets, instead of generated completely by the build of one target. By

default, clearmake does not update an existing CR incrementally when it builds a target. Instead,

it does the following:

➤ Each time a build script incrementally updates an object’s file system data, clearmake
writes a completely new CR, which describes only the most recent update, not the entire

build history.

➤ The new CR does not match the desired build configuration for any of the other targets that

update the object incrementally.

This results in a situation that is both unstable and incorrect: all incremental-update targets are

rebuilt each time that clearmake is invoked; when the build is finished, the DO has the correct

file system data, but its CR may not describe the DO’s configuration accurately.

clearmake provides a special makefile target .INCREMENTAL_TARGET, which can be used to

guarantee correct CR information for incremental updates. The following sections give examples

of how to use .INCREMENTAL_TARGET.

Example: Building an Archive

A common incremental-update scenario is the building of an archive by ar(1). A traditional make
program treats an archive as a compound object; it can examine the time stamps of the individual

components (object modules) in the archive; and it can update the archive by replacing one or

more individual object modules. Here is a simple makefile in which a special syntax enables

multiple targets to update a single archive, libvg.a, incrementally:

libvg.a:: libvg.a(base.o)
libvg.a:: libvg.a(in.o)
libvg.a:: libvg.a(out.o)
48 Building Software: Rational ClearCase

If you edit one of the library’s sources (for example, out.c), a traditional make program uses the

special syntax and a .c.a built-in rule to update the library as follows:

1. It looks inside the archive libvg.a, and determines that it includes an out.o that is older than

its source file.

2. It compiles a new out.o from out.c.

3. It uses ar to incrementally update libvg.a, replacing the old instance of object module out.o
with the newly built instance.

clearmake does not implement this algorithm, and includes no support for treating an archive

as a compound object. ClearCase build-avoidance is based solely on metadata (CRs), not on any

analysis of the file-system data. clearmake interprets the above makefile as follows:

1. It considers all the libvg.a(...) dependencies to be multiple instances of the same

double-colon build target.

2. Accordingly, whenever one of those double-colon targets requires rebuilding, clearmake
rebuilds them all, using the standard .c.a built-in rule. The effect is to rebuild the entire

archive libvg.a from scratch.

Thus, clearmake accepts the standard incremental-update syntax, but interprets it in a way that

produces a nonincremental build procedure.

Makefile Restructuring for Incremental Archive Targets

The makefile in the previous example can be restructured to allow incremental updates to an

archive:

.INCREMENTAL_TARGET: libvg.a
libvg.a: base.o in.o out.o

ar rv libvg.a $?

base.o:
cc -c base.c

in.o:
cc -c in.c

out.o:
cc -c out.c
3 - Pointers on Using ClearCase Build Tools 49

Object modules built by this makefile are standard, shareable derived objects; typically, as library

sources stabilize, most builds of target libvg.a reuse or wink in most of the object modules.

The .INCREMENTAL_TARGET directive tells clearmake to merge CRs incrementally for this

target; that is, to merge the dependencies listed in the previous CR with those of the latest build.

In this way, no information is lost from the CRs. Note that .INCREMENTAL_TARGET accepts

patterns on its list of targets, as well as file names, so you can direct clearmake to merge all

archive targets incrementally by including the directive .INCREMENTAL_TARGET: %.a in the

makefile.

During a rebuild, the $? macro expands to the list of dependencies that do not match the current

configuration record for the target. $? is useful in conjunction with ar r to replace, in the archive

library, only those objects that have changed.

Avoid the following alternate restructuring; it causes a complete rebuild of the archive each time

any object module is updated:

base.o: base.c
cc -c base.c
ar rv libvg.a base.o

.

. and so on

NOTE: When you use .INCREMENTAL_TARGET with an archive library, the full set of declared

dependencies must be the same in all makefiles that update that library. Do not attempt to build

up libraries incrementally from two different makefiles. For example:

The rules are executed in multiple steps, and clearmake doesn’t combine them to verify that the

target is up to date with respect to all of its dependencies. Using the construction given above

can result in missing required rebuilds (with either make or clearmake).

A Note on the Use of ar Keys

Do not use the u key with ar; it is not reliable within a ClearCase environment.

../lib.a: base.o (makefile 1)
ar rv ../lib.a base.o

../lib.a: in.o out.o (makefile 2)
ar rv ../lib.a in.o out.o
50 Building Software: Rational ClearCase

As mentioned above, the r key may be used to direct ar to replace one or more object modules in

an archive library without replacing the entire library. The u key directs ar to replace only those

object modules with modification dates more recent than the archive library.

This creates problems within ClearCase. When determining whether a .o file needs to be

rearchived, ar only looks at whether its time stamp is newer than that of the .a file. This check is

not sufficient to determine whether a file inside a ClearCase VOB is out of date. For example,

imagine a scenario in which a build winks in a .o file whose time stamp is older than the time

stamp of the .a file. Because the file is different from the one used the last time you built the

archive, you want the file to be rearchived. However, ar sees that the time stamp is older and does

not rearchive the .o file.

Example: Incremental Linking

If your makefile is structured properly, configuration records are not likely to lose information

during incremental links.

Incremental linkers typically work by determining which object files have changed since the last

link, and relinking those objects only. Because the linker may read only some of the objects each

time it links, a CR can, in theory, lose information as repeated links are made. However, in

practice, because all dependencies of the link are listed in the build script, the build script does

not change from one link invocation to the next. And, because you typically list the objects or

predefined dependencies of the link, those dependencies are included in the CR.

Additional Incremental-Update Situations

You may encounter incremental updating in other situations, as well. For example, C++

compilers that support parameterized types (templates) often update type map files

incrementally as different targets are built. ClearCase includes special makefile rules that store

per-target type map files. For more information, see Chapter 7, Using ClearCase to Build C++
Programs.

Ada compilers often update certain common files in Ada libraries incrementally, as different

compilation units are built. There are no current clearmake workarounds to implement

per-target CRs for Ada libraries. To produce a CR for an Ada library, you can rebuild the library

from its sources in a single clearaudit session.
3 - Pointers on Using ClearCase Build Tools 51

3.13 Adding a Version String or Time Stamp to an Executable

This section describes simple techniques for incorporating a version string and/or time stamp

into a C-language compiled executable. Including a version string or time stamp allows anyone

(for example, a customer) to determine the exact version of a program by entering a shell

command.

The techniques described below support use of the what command or the –Ver option. For

example:

% what monet
monet R2.0 Baselevel 1
Thu Feb 11 17:33:23 EST 1996

% monet –Ver
monet R2.0 Baselevel 1 (Thu Feb 11 17:33:23 EST 1996)

After the particular version of the program is determined, you can use ClearCase commands to

find a local copy, examine its config record, and if appropriate, reconstruct the source

configuration with which it was built. (Presumably, the local copy is a derived object that has

been checked in as a version of an element.)

You can identify the appropriate derived object by attaching a ClearCase attribute with the

version string to the checked-in executable, or you can rely on the time stamp and your ability to

run the what command on the checked-in executable to find it.

Creating a what String

The what program searches for a null-terminated string that starts with a special four-character

sequence:

@(#)

To include this string in a C-language executable, define a global character-string variable. For

example, these source statements produce the two-line what listing above:

char *version_string = "@(#)monet R2.0 Baselevel 1";
char *version_time = "@(#)Thu Feb 11 17:33:23 EST 1996;

As an alternative, you can generate the time stamp dynamically when the monet program is

linked, using this procedure:
52 Building Software: Rational ClearCase

1. Create a new source file that contains the statements that define the what strings. Instead of

hard-coding a date string, use a cpp(1) macro in the source file. This example uses a source

file named version_info.h, which contains a macro named DATE:

char *version_string = "@(#)monet R2.0 Baselevel 1";
char *version_time = DATE;

2. Use shell command substitution to incorporate the current time dynamically into the value

for the DATE macro:

SHELL = /bin/sh
OTHER_OBJS = main.o cmd_line.o (and so on)

monet: version_info.h $(OTHER_OBJS)
cc -o monet -DDATE="\"@(#)‘date‘\"" $(OTHER_OBJS)

A rebuild of monet is also triggered if the version_string variable is edited manually in

version_info.h.

The version_string can be generated dynamically, too (for example, with environment

variables). But it is more likely that the project manager edits this string’s value before major

builds.

NOTE: If you use clearmake to build monet, you need not declare version_info.h as an explicit

dependency.

Implementing a –Ver Option

You need not depend on the what command to extract version information from your

executable. Instead, you can have the program itself output the information stored in the

version_string and version_time variables. Revise the source module that does command-line

processing to support a what version option (for example, –Ver):
3 - Pointers on Using ClearCase Build Tools 53

#include <stdio.h>

main(argc,argv)
 int argc;
 char **argv;
{
/*
 * implement -Ver option
 */
 if (argc > 1 && strcmp(argv[1],"-Ver") == 0) {
 extern char *version_string;
 extern char *version_time;
 /*
 * Print version info, skipping the "@(#)" characters
 */
 printf ("%s (%s)\n",
 &version_string[4], &version_time[4]);
 exit(0);
 }
}

54 Building Software: Rational ClearCase

44 Working with Derived Objects and
Configuration Records

This chapter describes the operations you can perform on derived objects and configuration

records. For more information and examples, see the reference pages for the commands.

The information in this chapter applies only to dynamic views.

4.1 Setting Correct Permissions for Derived Objects

If you and other members of your team want to share derived objects (DOs), make sure that your

views are configured to create shareable DOs and that the DOs are created with a mode that

grants both read and write access to team members. To accomplish this, use either of the

following alternatives:

➤ Set your umask value to 2 in your shell startup file.

➤ Set the environment variable CCASE_BLD_UMASK to 2 and leave a more restrictive umask
value in your .login file or its equivalent (the value 22 is commonly used, which denies

write access to group members). When clearmake runs a build script, it performs the

following steps:

a. Saves the current umask value.

b. Sets the umask value to the value of CCASE_BLD_UMASK.

c. Creates a shell (if necessary) to run the build script.
4 - Working with Derived Objects and Configuration Records 55

d. Restores the original umask value when the build script (or shell) completes.

You can set CCASE_BLD_UMASK as a make macro, instead of as an environment variable.

NOTE: If you want to use CCASE_BLD_UMASK, do not set your umask value in your shell

startup file. If you set the umask value in your startup file, the umask value is reset to its

original value in Step #c when the startup file is read. Setting CCASE_BLD_UMASK in your

startup file has no effect.

Other users cannot overwrite and destroy a DO that you are still using, even if you use a

CCASE_BLD_UMASK value that grants write access to group members. If your DO has been

winked in to another view, and the corresponding makefile target is rebuilt in that view,

clearmake first breaks the link to your DO, and then creates a file in that view for the build script

to overwrite.

Permissions on DOs affect the extent to which they are shareable:

➤ When you perform a build, the ClearCase build tool winks in a derived object to your view

only if you have read permission on the DO.

➤ The ClearCase build tool can wink in DOs for which you do not have write permission. But

permission denied errors may occur during a subsequent build, when a compiler (or

other build script command) attempts to overwrite such a DO. To work around this

problem, you can rewrite your makefile to remove the target before rebuilding it. You can

also set a policy for how users must set their permissions.

For information on fixing the permissions of DO versions, see the protect reference page.

4.2 Listing and Describing Derived Objects

The following sections describe how to use the lsdo, describe, ls, and lsprivate commands to list

derived objects.

Listing Derived Objects Created at a Certain Pathname

Use the lsdo command to list derived objects created at a specific pathname. For information on

the kinds of DOs included in the listing, see the lsdo reference page.
56 Building Software: Rational ClearCase

➤ To list all DOs created at the pathname adm.h:

cleartool lsdo adm.h
01-Jul.13:49 "adm.h@@01-Jul.13:49.1286781"
30-Jun.20:03 "adm.h@@30-Jun.20:03.1278990"
30-Jun.18:14 "adm.h@@30-Jun.18:14.1277470"
29-Jun.19:11 "adm.h@@29-Jun.19:11.1253509"
29-Jun.18:13 "adm.h@@29-Jun.18:13.1252790"
29-Jun.16:09 "adm.h@@29-Jun.16:09.1249897"

➤ To list all DOs created by you at the pathname adm.h:

cleartool lsdo –me adm.h
30-Jun.18:14 "adm.h@@30-Jun.18:14.1277470"

Listing a Derived Object’s Kind

To display a derived object’s kind, use the cleartool commands ls –l, lsprivate –l –do, or

describe –fmt "%[DO_kind]p". The kind can be one of the following values:

➤ List, in long form, a particular DO.

cleartool ls –l util
derived object (non-shareable) util@@01-Sep.10:54.2147483681

➤ To list all DOs created in the current view in the /vobs/dev VOB, including the DO kind:

cleartool lsprivate –long –invob /vobs/dev –do
derived object (unshared) /vobs/dev/file2.txt@@02-Jul.13:51.124
derived object (unshared) /vobs/dev/file2sub.txt@@02-Jul.13:51.123

➤ To list the name and kind of all DOs created in the current view:

nonshareable The DO was created during an express build and cannot be winked

in by other views.

unshared The DO was created during a regular build. Its data container is

located in view storage, not in the VOB.

promoted The DO’s data container has been promoted to the VOB by a winkin
or view_scrubber –p command. The DO is referenced by only one

view.

shared The DO’s data container has been promoted to the VOB by a

ClearCase build tool or a manual winkin or view_scrubber –p
command.
4 - Working with Derived Objects and Configuration Records 57

cleartool describe –fmt "%n\t%[DO_kind]p\n" `cleartool lsprivate –do`
/vobs/dev/file2.txt@@02-Jul.13:51.124 shared
/vobs/dev/file2sub.txt@@02-Jul.13:51.123 shared
/vobs/dev/dir1/foo.o@@01-Jul.14:23.186 unshared
/vobs/dev/api/bin/adm.exe@@04-Jul.04:01.776 unshared
...

Displaying a DO’s OID

A derived object’s OID is the permanent identifier recorded in the VOB database for the DO. It

does not change over the life of the DO, unlike the DO-ID (see Reuse of DO-IDs on page 27). To

display the OID, use the command describe –fmt "%On". For example:

cleartool describe –fmt "%On\n" foo.o
b7afc83e.2f2311d3.a382.00:01:80:7b:09:69

Displaying a Description of a DO Version

The describe command displays descriptions of DO versions, as it does descriptions of regular

versions. You can use the –fmt option to extract parts of the description. For example, the

following command prints the name, predecessor version, and element type of a DO version:

cleartool describe –fmt "%n\t%[version_predecessor]p\t%[type]p\n" file1.o
file1.o@@/main/2 /main/1 text_file

For more information on the –fmt option, see the fmt_ccase reference page.

4.3 Identifying the Views That Reference a Derived Object

The VOB stores information about which views reference a derived object. To display this

information, use the lsdo command:
58 Building Software: Rational ClearCase

cleartool lsdo –l hello.o
10-Mar-99.15:25:52 Allison K. Pak (akp.user@copper)

create derived object "hello.o@@10-Mar.15:25.213"
size of derived object is: 450
last access: 15-Mar-99.14:22:17
references: 2 (shared)
=> copper:/home/akp/tut/old.vws
=> copper:/home/akp/tut/fix.vws

Caching Unavailable Views

When clearmake shops for a derived object to wink in to a build, it may find DOs from a view

that is unavailable (because the view server host is down, the albd_server is not running on the

server host, and so on). Attempting to fetch the DO’s configuration record from an unavailable

view causes a long time-out, and the build may reference multiple DOs from the same view.

clearmake and other cleartool commands that access configuration records and DOs (lsdo,

describe, catcr, diffcr) maintain a cache of tags of inaccessible views. For each view-tag, the

command records the time of the first unsuccessful contact. Before trying to access a view, the

command checks the cache. If the view’s tag is not listed in the cache, the command tries to

contact the view. If the view’s tag is listed in the cache, the command compares the time elapsed

since the last attempt with the time-out period specified by the CCASE_DNVW_RETRY environment

variable. If the elapsed time is greater than the time-out period, the command removes the

view-tag from the cache and tries to contact the view again.

NOTE: The cache is not persistent across clearmake sessions. Each recursive or individual

invocation of clearmake attempts to contact a view whose tag may have been cached in a

previous invocation.

The default time-out period is 60 minutes. To specify a different time-out period, set

CCASE_DNVW_RETRY to another integer value (representing minutes). To disable the cache, set

CCASE_DNVW_RETRY to 0.

4.4 Specifying Views That Can Wink In Derived Objects

You can use the CCASE_WINKIN_VIEWS environment variable to specify a list of views that can

winkin derived objects. If this variable is set in the environment or in the makefile, clearmake
4 - Working with Derived Objects and Configuration Records 59

winks in only derived objects that were built in the specified views. If no derived objects are

available, clearmake rebuilds in the current view.

4.5 Specifying a Derived Object in Commands

In general, you use standard pathnames to access DOs when you’re working in a view that

references them. To standard software (for example, linkers and debuggers), the standard

pathname of a derived object (util.o) references the DO.

This is another example of ClearCase transparency: a standard pathname accesses one of many

different variants of a file system object. Note this distinction, however:

➤ A version of an element appears in a dynamic view because it is selected by a configuration

specification rule.

➤ A particular derived object appears in a dynamic view as the result of a build or a winkin.

To access a DO in another dynamic view, use a view-extended pathname:

NOTE: You cannot use view-extended pathnames in makefiles.

To specify a certain DO in a ClearCase command, use the DO-ID. For example, you can use a

DO-ID in the catcr command to view the contents of a specific DO’s config record:

cleartool catcr foo.o@@29-Jun.14:40.88

NOTE: You cannot use a DO-ID in standard commands.

Because DO-IDs can change, avoid using them in files or scripts that operate on a DO. Instead,

use a standard pathname or the derived object’s object identifier (OID), which never changes. To

determine a DO’s object identifier, use cleartool describe –fmt "%On\n". For example:

cleartool describe –fmt "%On\n" foo.o@@29-Jun.14:40.88
2c5fc68a.2e5311d3.a382.00:01:80:7b:09:69

Also, a derived object gets a permanent identifier when it is checked in as a version of an element.

See Working with DO Versions on page 64.

/view/drp/vobs/proj/src/msg.o (the DO in view drp)
/view/R2_integ/vobs/proj/src/msg.o (the DO in view R2_integ)
60 Building Software: Rational ClearCase

4.6 Winking In a DO Manually

You can manually wink in any DO to your view, using the winkin command. For example:

cleartool lsdo hello
08-Mar.12:48 akp "hello@@08-Mar.12:48.265"
07-Mar.11:40 george "hello@@07-Mar.11:40.217"

cleartool winkin hello@@07-Mar.11:40.217
Winked in derived object "hello"

% hello
Greetings, susan!
Your home directory is /net/neptune/home/susan.
It is now Tue Mar 8 12:58:30 1999.

You can wink in a DO that doesn’t match your build configuration for any of the following

reasons: to run it, to perform a byte-by-byte comparison with another DO, or to perform any

other operation that requires access to the DO’s file system data.

The winkin command can also wink in the set of DOs in a hierarchy of CRs. You can use this

recursive winkin to seed a new view with a set of derived objects. For example:

cleartool winkin -recurse foo@@20-Jul.14:32.146
Winked in derived object "/vobs/smg_test/file2.txt"
Winked in derived object "/vobs/smg_test/file2sub.txt"
Promoting unshared derived object "/vobs/smg_test/foo".
Winked in derived object "/vobs/smg_test/foo"

You can use the winkin command to convert a nonshareable DO to a shared DO. For more

information, see Converting Nonshareable DOs to Shared DOs on page 69.

4.7 Preventing Winkin

The following sections describe how to prevent winkin to or from your view while using the

ClearCase build tools. (You can prevent winkins altogether by building in a snapshot view or by

not using the ClearCase build tools.)
4 - Working with Derived Objects and Configuration Records 61

Preventing Winkin to Your View

To direct clearmake to limit reuse to DOs created in the current view, use clearmake –V. For more

information, see the clearmake reference page.

Preventing Winkin to Other Views

To prevent any derived objects you create from being winked in to other views, use one of the

following techniques:

➤ Use express builds. See Using Express Builds to Prevent Winkin to Other Views.

➤ Use the –T or –F options to create view-private files with no configuration records.

clearmake does not perform configuration lookup, but this does not matter if you are not

changing other files.

➤ Use special targets that prevent winkin. For example, use .NO_WINK_IN with clearmake.

For more information, see Special Targets on page 85.

Using Express Builds to Prevent Winkin to Other Views

During an express build, Rational ClearCase creates DOs that are nonshareable and cannot be

used by builds in other views. These nonshareable DOs have configuration records, but the

ClearCase build tools do not write information into the VOB for these DOs. Therefore, the DOs

are invisible to builds in other views.

NOTE: During an express build, the ClearCase build tools wink in DOs from other views. For

information on avoiding winkins from other views, see Preventing Winkin to Your View on

page 62.

Use express builds when DOs created by the build are not appropriate for use by other views. As

a general rule:

➤ Use express builds for development builds that use relatively unstable, checked-out

versions.

➤ Use regular builds for release or nightly builds that use stable, checked-in versions. DOs

created by these builds are more likely to be winked in by other views.
62 Building Software: Rational ClearCase

Enabling Express Builds

When you invoke a ClearCase build tool, the kind of build that occurs depends on how your

view is configured. To use express builds, configure an existing dynamic view with the

nonshareable DOs property or create a new dynamic view with the nonshareable DOs property.

Then, run your ClearCase build tool (clearmake or clearaudit) in the view.

The following sections describe how to configure your view to use express builds.

Configuring an Existing View for Express Builds

Use the command chview –nshareable_dos view-tag. For more information, see the chview
reference page.

Future builds in the view will create nonshareable derived objects. However, existing DOs in the

view are shareable; they are not converted to nonshareable. These existing DOs can still be

winked in by other views.

Creating a New View That Uses Express Builds

To create a new view, enter the mkview command and specify the –nshareable_dos option. For

more information, see the mkview reference page.

NOTE: The ClearCase administrator can set a site-wide default for the DO property. If a site-wide

default exists and you do not specify the DO property when you create the view, ClearCase uses

the site-wide default. For more information, see the setsite reference page.

Preventing Winkin to or from Other Architectures

By default, clearmake winks in derived objects built on different architectures. For example, a

build on a Sun host may wink in a DO built on a Windows NT host. If you want to prevent this

behavior, use one of the following techniques:

➤ Differentiate the build script for different architectures:

➣ Add the architecture name to your build script so that clearmake differentiates among

the build scripts. For example, include echo $CPU.

➣ Store the architecture name in a macro and pass it to clearmake on the command line.

➣ Use architecture-specific subdirectories to store DOs.
4 - Working with Derived Objects and Configuration Records 63

➤ Make your tools a build dependency by storing them in a VOB. Also, store your system

header files in a VOB.

4.8 Converting Derived Objects to View-Private Files

Using a standard command or program to modify a derived object in any way converts it from

a DO to a view-private file. For example, use ls –long to list a derived object:

% cleartool ls –long msg.o
derived object (shared) msg.o@@10-Mar.15:33.333

Modify the DO with a standard command:

% touch msg.o

The ls –long command now lists the file as a view-private object:

% cleartool ls –long msg.o
view private object msg.o

4.9 Working with DO Versions

The following sections describe how to create and manipulate DO versions.

Creating DO Versions

You can convert DOs to elements or check them in as versions of existing elements. The

element-creation and version-creation processes are the same for shareable and nonshareable

DOs, with this exception: when you check in a nonshareable DO, it is converted to a shared DO

before being checked in.

For more information, see the mkelem and checkin reference pages.
64 Building Software: Rational ClearCase

Checking In DOs During a Build

You can write a build script that creates a derived object, and then checks it in or converts it to an

element. However, the ClearCase build tool does not create a config record until the build script

has completed (all commands after the target-name: have executed). Therefore, if the same build

script that created the DO checks it in or converts it to an element, the resulting version is not a

DO version.

For example, the version created by the following build script is not a DO version:

buildit : buildit.c
cleartool co -unres -nc $@
rm -fr $@
cc -o $@ $*.c
cleartool ci -nc buildit

You can work around this problem by building and checking in a derived object in two steps. For

example, the makefile contains one build script that creates the DO, and another build script that

checks it in, as shown here:

buildit : buildit.c
cleartool co -unres -nc $@
rm -fr $@
cc -o $@ $*.c

stageit : buildit
cleartool ci -nc buildit

The command clearmake stageit performs the following steps:

1. Brings the target buildit up to date. This creates a DO named buildit and an associated

configuration record.

2. Brings the target stageit up to date. This step checks in the buildit derived object as a DO

version.

Accessing DO Versions

When you check out a DO version, it is winked in to your dynamic view. You can use a standard

pathname to access the DO’s file system data. However, VOB-database access is handled in the

following ways:
4 - Working with Derived Objects and Configuration Records 65

➤ A standard pathname to the DO references the version in the VOB database from which the

checkout was made:

➤ To access the checked-out placeholder version, you must use an extended pathname:

% cleartool mklabel -replace EXPER hello@@/main/CHECKEDOUT
Moved label "EXPER" on "hello" from version "/main/3" to
"/main/CHECKEDOUT".

If you process a checked-out DO version as described in Converting Derived Objects to View-Private
Files on page 64, ClearCase reverts to its usual handling of checked-out versions. In this case, a

standard pathname references the placeholder version in the VOB database.

Displaying Configuration Records for DO Versions

The catcr command displays the configuration record for a DO version. When you use catcr
–recurse to display the CRs for a DO and all its subtargets, it does not display the CRs for DO

versions unless you use the –ci option.

catcr allows precise control over report contents and format. It includes input and output filters

and supports a variety of report styles. Input filters, such as –select, control which DOs are

visited. All visited DOs can potentially appear in the final listing. Output filters, such as

–view_only, control which DOs actually appear in the final listing. Often, this is a subset of all

visited DOs.

You can tailor the report in several ways:

➤ Generate a separate report for each derived object on the command line (default), or a

single, composite report for all derived objects on the command line (–union).

➤ Specify which derived objects to consider when compiling report output. The –recurse,

–flat, –union, –ci, and –select options control which subtargets are visited. They generate

recursive or flat-recursive reports of subtargets, visit checked-in DOs, and allow you to visit

DOs with a particular name only.

% cleartool checkout -nc hello
Checked out "hello" from version "/main/3".

(wink in derived object
hello)

% cleartool mklabel EXPER hello
Created label "EXPER" on "hello" version "/main/3".

(use standard pathname to
access version from which
checkout was made)
66 Building Software: Rational ClearCase

➤ Select the kinds of items that appear in the report. The –element_only, –view_only, –type,

–name, and –critical_only options exclude certain items from the report.

➤ Display the CR in makefile format (–makefile), rather than in a section-oriented format.

➤ Choose a normal, long, or short report style. Expanding the listing with –long adds

comments and supplementary information; restricting the listing with –short lists file

system objects only. You can also list simple pathnames rather than version-extended

pathnames (–nxname), and relative pathnames rather than full pathnames (–wd).

The –check option determines whether the CR contains any unusual entries. For example, it

determines whether the CR contains multiple versions of the same element, or multiple

references to the same element with different names.

By default, catcr suppresses a CR entirely if the specified filters remove all objects (useful for

searching). With the –zero option, the listing includes the headers of such CRs.

The following examples show how to display configuration records for DO versions.

➤ To display the configuration record for a single DO version:

cleartool catcr foo
Target foo built by smg.user
Host "radar" running SunOS 5.5.1 (sun4m)
Reference Time 20-Jul-99.14:32:32, this audit started 20-Jul-99.14:32:32
View was radar:/home/smg/views/smg_test.vws
Initial working directory was /vobs/smg_test

MVFS objects:

/vobs/smg_test/file1.txt@@/main/2 <30-Jun-99.15:35:12>
/vobs/smg_test/file2.txt@@30-Jun.15:33.115
/vobs/smg_test/foo@@/main/3

Build Script:

 cat file1.txt > foo
 cat file2.txt >> foo

➤ To display the configuration record for a derived object, including the CRs of all subtargets

except DO versions:
4 - Working with Derived Objects and Configuration Records 67

cleartool catcr –recurse foo

Target foo built by smg.user
...
Target file2.txt built by smg.user
...
Target file2sub.txt built by smg.user
...

➤ To display the configuration record for a derived object, including the CRs of all subtargets:

cleartool catcr –recurse –ci foo

Target foo built by smg.user
...
Target file1.txt built by smg.user
...
Target file1sub.txt built by smg.user
...
Target file2.txt built by smg.user
...
Target file2sub.txt built by smg.user
...

DOs in Unavailable Views

catcr maintains a cache of tags of inaccessible views. For each view-tag, the command records the

time of the first unsuccessful contact. Before trying to access a view, the command checks the

cache. If the view’s tag is not listed in the cache, the command tries to contact the view. If the

view’s tag is listed in the cache, the command compares the time elapsed since the last attempt

with the time-out period specified by the CCASE_DNVW_RETRY environment variable. If the

elapsed time is greater than the time-out period, the command removes the view-tag from the

cache and tries to contact the view again.

The default time-out period is 60 minutes. To specify a different time-out period, set

CCASE_DNVW_RETRY to another integer value (representing minutes). To disable the cache, set

CCASE_DNVW_RETRY to 0.

For more information, see the catcr reference page.
68 Building Software: Rational ClearCase

Releasing DOs

A project team can use DO versions to make its product (for example, a library) available to other

teams. Typically, the team establishes a release area in a separate VOB. For example:

➤ A library is built by its project team in one location—perhaps /vobs/monet/lib/libmonet.a.

➤ The team periodically releases the library by creating a new version of a publicly accessible

element—perhaps /vobs/publib/libmonet.a.

You can generalize the idea of maintaining a development release area to maintaining a product

release area. For example, a Release Engineering group maintains one or more release tree VOBs.

The directory structure of the trees mirrors the hierarchy of files to be created on the release

medium. (Because a release tree involves directory elements, it is easy to change its structure

from release to release.) A release tree can be used to organize Release 2.4.3 as follows:

1. When an executable or other file is ready to be released, a release engineer checks it in as a

version of an element in the release tree.

2. An appropriate version label (for example, REL2.4.3) is attached to that version, either

manually by the engineer or automatically with a trigger.

3. When all files to be shipped have been labeled in this way, a release engineer configures a

view to select only versions with that version label. As seen through this view, the release

tree contains exactly the set of files to be released.

4. To cut a release tape, the engineer issues a command to copy the appropriately configured

release tree.

4.10 Converting Nonshareable DOs to Shared DOs

NOTE: You cannot convert a shared or unshared DO to a nonshareable DO.

To convert a nonshareable DO to a shared DO, use the winkin command. winkin advertises the

DO by making it shareable and writing information into the VOB and then promotes it (makes

it shared). The command also advertises the DO’s sub-DOs and siblings, even if you did not

specify the –siblings option. This process changes the DO-ID for each derived object.

The view_scrubber –p command performs the same operation. See the winkin and

view_scrubber reference pages.
4 - Working with Derived Objects and Configuration Records 69

Automatic Conversion of Nonshareable DOs to Shareable DOs

Because you can change a view’s DO property and shareable DOs cannot have nonshareable

sub-DOs or siblings, situations can occur in which clearmake must convert nonshareable DOs

into shareable DOs.

For example, you set your view’s DO property to nonshareable DOs, and then perform a build,

creating nonshareable DOs. You then set your view’s DO property to shareable DOs and perform

another build. The build tool determines that it can reuse some of the nonshareable DOs created

in the first build to create shareable DOs in the second. It converts the nonshareable DOs to

shareable DOs and reuses them.

4.11 Creating Links to Derived Objects

You cannot make a VOB hard link to a derived object. You can make one or more view-private

hard links to a derived object, using the UNIX ln command, with these restrictions:

➤ The derived object must be visible in the dynamic view where the view-private hard link is

to be created; that is, it must appear in a standard UNIX ls listing. (You can use the winkin
command to satisfy this requirement.)

➤ The pathname of the hard link must be within the same VOB as the original derived object.

All hard links to a derived object, including the name under which it was originally created,

appear with the same DO-ID in a ClearCase ls listing; if there are multiple names for a derived

object in the same directory, all are listed. For example:

% ln hello hw

% cleartool ls

...
hello@@19-May.19:15.232
hw@@19-May.19:15.232
...

In a catcr or describe command, you can reference a derived object using any of its hard links;

all the references are equivalent. But an lsdo command must reference a derived object by its

original name, not by any of its subsequently created hard links. Likewise, a derived object can

be winked in only at its original pathname.
70 Building Software: Rational ClearCase

SPECIAL CASE: If a hard link is created by the same build script as the derived object itself, the hard

link becomes an additional name for the DO. lsdo lists the hard link, and clearmake can wink in

using the hard link’s pathname.

Each additional hard link increments a derived object’s reference count. An lsdo –l listing

includes the reference counts and the dynamic views in which the references exist. The (2) in

this example shows that view old.vws has two references to hello:

% cleartool lsdo -long hello
08-Dec-99.12:06:19 Chuck Jackson (test user) (jackson.dvt@oxygen)
 create derived object "hello@@08-Dec.12:06.234"
 references: 2 => oxygen:/usr/vobstore/tut/old.vws (2)

4.12 Displaying VOB Disk Space Usage for Derived Objects

The dospace command reports VOB disk space usage for shared derived objects. For more

information, see the dospace reference page and the Administrator’s Guide for Rational ClearCase.

4.13 Deleting Derived Objects

The rmdo command removes the data container and the VOB database object for a derived

object. See the rmdo reference page for more information.

Shareable derived objects and their data containers can be deleted independently. Deleting a

nonshareable derived object deletes the DO.

Removing Data Containers for Derived Objects

The standard rm(1) command causes a shareable derived object to disappear from the dynamic

view. The effect on physical data storage is as follows:

➤ If the DO’s data container is in the view’s private storage area, rm deletes that data

container.

➤ If the DO’s data container is in a VOB storage pool, the data container is not affected.
4 - Working with Derived Objects and Configuration Records 71

In both cases, the derived object in the VOB database is not deleted. The only change to the

derived object is that its reference count is decremented.

When a build overwrites a nonshareable or unshared DO, the MVFS removes the old data

container from the dynamic view’s private storage area, and creates a new one there. It also

creates a new CR. At the operating system level, the effect is that an existing file is overwritten.

Scrubbing Derived Objects and Data Containers

A reference count of zero means that the derived object has been deleted or overwritten in every

view that ever used it. This situation calls for scrubbing: automatic deletion of DO-related

information from the VOB. Scrubbing can remove the derived object from the VOB database, its

data container from a VOB storage pool (if the DO had ever been shared), and in some cases its

associated CR, as well.

The scrubber utility removes derived objects from a VOB database and data containers from

VOB storage pools. The view_scrubber utility removes data containers from a dynamic view’s

private storage area. For more on scrubbing, see the Administrator’s Guide for Rational ClearCase.

Degenerate Derived Objects

A derived object is complete if its VOB database object, data container, and configuration record

(CR) are accessible. Because these entities exist independently, a derived object can become

incomplete, or degenerate, if one entity is missing.

Data Container Deleted

When an unshared DO is removed with rm or by a target rebuild, its VOB database object

continues to exist in the VOB database (with a zero reference count), but the data container no

longer exists. Such DOs are usually ignored by lsdo, but can be listed with the –zero option. The

scrubber utility deletes zero-referenced DOs.

The checkvob command can find and fix missing container problems.

DO Deleted from VOB Database

When an unshared DO is removed from its VOB database with rmdo, the data container

continues to be visible:
72 Building Software: Rational ClearCase

% cleartool rmdo Vhelp.log (in general, avoid ‘rmdo’!)
Removed derived object "Vhelp.log@@14-Sep.72783".

% cleartool ls Vhelp.log
Vhelp.log [no config record]

CR Unavailable

A newly created CR is stored in the dynamic view where its associated DOs were built. If that

view becomes unavailable (for example, it is inadvertently destroyed or its host is temporarily

down), the DO continues to exist in the VOB database, but operations that must access the CR

fail:

cleartool: Error: Unable to find view ’mars:/viewstore/pink.vws’
from albd: error detected by ClearCase subsystem
cleartool: Error: See albd_log on host mars
cleartool: Error: Unable to contact View - error detected by ClearCase
subsystem

4.14 Displaying Contents of Configuration Records

The catcr command displays the contents of a configuration record. See the catcr reference page

for more information.

4.15 Comparing Configuration Records

Because config records provide complete records of how DOs are built, you can use them to

determine how two builds differ. For example, you expected the build to reuse or wink in a DO

that it rebuilt instead. You can compare the CRs for the two DOs to find out what aspect of the

build environment was different.

To compare two existing CRs, use the diffcr command. For more information, see the diffcr
reference page.
4 - Working with Derived Objects and Configuration Records 73

4.16 Attaching Labels or Attributes to Versions in a CR

You can attach a label or an attribute to the versions in the CR hierarchy of a derived object.

For example, to attach the SMG_BUILD_5_99 label to the versions in the CR hierarchy of file.o:

cleartool mklabel –c "may 99 build" –config file.o SMG_BUILD_5_99
Created label "SMG_BUILD_5_99" on "/vobs/smg_test/" version
"/main/CHECKEDOUT".
Created label "SMG_BUILD_5_99" on "/vobs/smg_test/acc.c" version "/main/2".
Created label "SMG_BUILD_5_99" on "/vobs/smg_test/file.c" version "/main/1".

For more information, see the description of the –config option in the mkattr and mklabel
reference pages.

4.17 Configuring a View to Select Versions Used to Build a DO

To select the versions in the CR hierarchy of a derived object, use the –config version selector in

your view’s config spec. For example, the following config spec selects the versions in the CR

hierarchy for hello.o:

element * CHECKEDOUT
element * –config /vobs/dev/lib/hello.o
element * /main/v3.8/LATEST

For more information, see the config_spec reference page.

4.18 Including a Makefile Version in a Configuration Record

To record a makefile version in a CR, use one of the following methods:

➤ Declare it as an explicit dependency in the makefile. To do this, you can use the

$(MAKEFILE) variable. You must explicitly list any included makefiles you want recorded.

The drawback to this method is that it causes targets that depend on the makefile to be

rebuilt if there is any change to the makefile.
74 Building Software: Rational ClearCase

➤ Make it an implicit dependency by referring to it in a build script, and use the special target

.DEPENDENCY_IGNORED_FOR_REUSE to ignore it in subsequent rebuild decisions.

You must explicitly list any included makefiles you want recorded.

For example:

.DEPENDENCY_IGNORED_FOR_REUSE: $(MAKEFILE)
targ: dep1 dep2

cat $(MAKEFILE) > /dev/null
touch targ

The drawback to this method is that the makefile dependency is ignored for reuse, but it is

not ignored for winkin.

➤ Use the .MAKEFILES_IN_CONFIG_REC special target. See Special Targets on page 85.
4 - Working with Derived Objects and Configuration Records 75

76 Building Software: Rational ClearCase

55 clearmake Makefiles and BOS Files

This chapter describes makefiles processed by the ClearCase build program clearmake. This is a

discussion of differences and ClearCase extensions rather than a complete description of

makefile syntax. This chapter also describes build option specification files (BOS files), which

contain temporary macros and ClearCase special targets.

5.1 Makefile Overview

A makefile contains a sequence of entries, each of which specifies a build target, some

dependencies, and the build scripts of commands to be executed. A makefile can also contain make
macro definitions, target-dependent macro definitions, and build directives (special targets.)

➤ Target/dependencies line. The first line of an entry is a white-space-separated, nonnull list

of targets, followed by a colon (:) or a double colon (::), and a (possibly empty) list of

dependencies. Both targets and dependencies may contain ClearCase pathname patterns.

(See the wildcards_ccase reference page.)

The list of dependencies may not need to include source objects, such as header files, because

clearmake detects these dependencies. However, the list must include build-order

dependencies, for example, object modules and libraries that must be built before

executables. (See Build-Order Dependencies on page 41.)

➤ Build script. Text following a semicolon (;) on the same line, and all subsequent lines that

begin with a <TAB> character, constitute a build script: a set of shell commands to be

executed. A shell command can be continued onto the next text line with a \<NL> sequence.

Any line beginning with a number sign (#) is a comment.
5 - clearmake Makefiles and BOS Files 77

A build script ends at the first nonempty line that does not begin with a <TAB> or number

sign (#); this begins a new target/dependencies line or a make macro definition.

Build scripts must use standard pathnames only. Do not include view-extended or

version-extended pathnames in a build script.

Executing a build script updates the target, and is called a target rebuild. The shell commands

in a build script are executed one at a time, each in its own instances of the subshell.

Note that clearmake always completely eliminates a \<NL> sequence, even in its

compatibility modes. Some other make programs sometimes preserve such a sequence—for

example, in a sed(1) insert command:

target: depdcy

sed -e ’/xxx=0/i\

yyy=xxx;’ depdcy > target

➤ Make macro. A make macro is an assignment of a character-string value to a simple name.

By convention, all letters in the name are uppercase (for example, CFLAGS).

➤ Target-dependent macro definitions. A target-dependent macro definition takes the form

target-list := macro_name = string

You can use macros in makefiles or in BOS files. For more information, see Target-Dependent
Macro Definitions on page 91.

➤ Special targets. A line that begins with a dot (.) is a special target, which acts as a directive

to clearmake.

➤ Special characters in target names. You can use special characters in target names by

immediately preceding each special character with a backslash (\).

5.2 Build Options Specification Files

A build options specification (BOS) file is a text file containing macro definitions and/or

ClearCase special targets. We recommend that you place temporary macros (such as

CFLAGS=–g and others not to be included in a makefile permanently) in a BOS file, rather than

specifying them on the clearmake command line.
78 Building Software: Rational ClearCase

By default, clearmake reads BOS files in this order:

1. The default BOS files

a. The file.clearmake.options in your home directory (as indicated in the password

database), which is the place for macros to be used every time you execute clearmake.

b. One or more local BOS files, each of which corresponds to one of the makefiles specified

with a –f option, or read by clearmake. Each BOS file has a name in the form

makefile-name.options. For example:

2. BOS files specified in the CCASE_OPTS_SPECS environment variable.

3. BOS files specified on the command line with –A.

If you specify –N, clearmake does not read default BOS files.

clearmake displays the names of the BOS files it reads if you specify the –v or –d option, or if

$CCASE_VERBOSITY>= 1.

For information on the contents of BOS files, see Setting Up the Client Host on page 151.

When clearmake shops for a derived object to wink in to a build, it may find DOs from a view

that is unavailable (because the view server host is down, the albd_server is not running on the

server host, and so on). Attempting to fetch the DO’s configuration record from an unavailable

view causes a long time-out, and the build may reference multiple DOs from the same view.

clearmake and other cleartool commands that access configuration records and DOs (lsdo,

describe, catcr, diffcr) maintain a cache of tags of inaccessible views. For each view-tag, the

command records the time of the first unsuccessful contact. Before trying to access a view, the

command checks the cache. If the view’s tag is not listed in the cache, the command tries to

contact the view. If the view’s tag is listed in the cache, the command compares the time elapsed

since the last attempt with the time-out period specified by the CCASE_DNVW_RETRY environment

variable. If the elapsed time is greater than the time-out period, the command removes the

view-tag from the cache and tries to contact the view again.

NOTE: The cache is not persistent across clearmake sessions. Each recursive or individual

invocation of clearmake attempts to contact a view whose tag may have been cached in a

previous invocation.

makefile.options

Makefile.options

project.mk.options
5 - clearmake Makefiles and BOS Files 79

The default time-out period is 60 minutes. To specify a different time-out period, set

CCASE_DNVW_RETRY to another integer value (representing minutes). To disable the cache, set

CCASE_DNVW_RETRY to 0.

5.3 Format of Makefiles

The following sections describe the special considerations for using makefiles with clearmake.

NOTE: For information about environment variables that affect clearmake, see the env_ccase
reference page. You can also use the -d or -v option to the clearmake command to view a list of

environment variables that clearmake reads during the build.

Restrictions

clearmake does not support the use of standard input as a makefile.

Libraries

If a target or dependency name contains parentheses, it is assumed to be an archive (library)

created by ar(1). For example:

lib.a : lib.a(mod1.o) lib.a(mod2.o)

The string within parentheses refers to a member (object module) within the library. Use of

function names within parentheses is not supported. Thus, lib.a(mod1.o) refers to an archive that

contains object module mod1.o. The expression lib.a(mod1.o mod2.o) is not valid.

Inference rules for archive libraries have this form:

.sfx.a
where sfx is the file-name extension (suffix) from which the archive member is to be

made.

The way in which clearmake handles incremental archive construction differs from other make
variants. For more on this topic, see Working with Incremental Update Tools on page 48.
80 Building Software: Rational ClearCase

NOTE: The u key for ar is not reliable within a ClearCase environment. Do not use it.

Command Echoing and Error Handling

You can control the echoing of commands and the handling of errors that occur during command

execution on a line-by-line basis, or on a global basis.

You can prefix any command with one or two characters, as follows:

The –k option provides for partial recovery from errors. If an error occurs, execution of the

current target (that is, the set of commands for the current target) stops, but execution continues

on other targets that do not depend on that target.

Built-In Rules

File-name extensions (suffixes) and their associated rules in the makefile override any identical

file-name extensions in the built-in rules. clearmake reads built-in rules from the file

ccase-home-dir/etc/builtin.mk when you run in standard compatibility mode. In other

compatibility modes, other files are read.

Include Files

If a line in a makefile starts with the string include or sinclude followed by white space (at least

one <SPACE> or <TAB> character), the rest of the line is assumed to be a file name. (This name can

contain macros.) The contents of the file are placed at the current location in the makefile.

– Causes clearmake to ignore any errors during execution of the command. By

default, an error causes clearmake to terminate.

The command-line option –i suppresses termination-on-error for all

command lines.

@ Suppresses display of the command line. By default, clearmake displays each

command line just before executing it.

The command-line option –s suppresses display of all command lines. The –n
option displays commands, but does not execute them.

–@ @– These two prefixes combine the effect of – and @.
5 - clearmake Makefiles and BOS Files 81

For include, a fatal error occurs if the file is not readable. For sinclude, a nonreadable file is

silently ignored.

Macros

The following sections describe the order of precedence of macros in a clearmake build, and the

different types of macros.

Order of Precedence of Make Macros and Environment Variables

By default, the order of precedence of macros and environment variables is as follows:

1. Target-dependent macro definitions

2. Macros specified on the clearmake command line

3. Make macros set in a BOS file

4. Make macro definitions in a makefile

5. Environment variables

For example, target-dependent macro definitions override all other macro definitions, and

macros specified on the clearmake command line override those set in a BOS file.

If you use the –e option to clearmake, environment variables override macro definitions in the

makefile.

All BOS file macros (except those overridden on the command line) are placed in the build

script’s environment. If a build script recursively invokes clearmake:

➤ The higher-level BOS file setting (now transformed into an EV) is overridden by a make

macro set in the lower-level makefile. However, if the recursive invocation uses clearmake’s

–e option, the BOS file setting prevails.

➤ If another BOS file (associated with another makefile) is read at the lower level, its make

macros override those from the higher-level BOS file.

See the env_ccase reference page for a list of all environment variables.
82 Building Software: Rational ClearCase

Make Macros

A macro definition takes this form:

macro_name = string

Macros can appear in the makefile, on the command line, or in a build options specification file.

(See Build Options Specification Files on page 78.)

Macro definitions require no quotes or delimiters, except for the equal sign (=), which separates

the macro name from the value. Leading and trailing white space characters are stripped. Lines

can be continued using a \<NL> sequence; this sequence and all surrounding white space is

effectively converted to a single <SPACE> character. macro_name cannot include white space, but

string can; it includes all characters up to an unescaped <NL> character.

clearmake performs macro substitution whenever it encounters either of the following in the

makefile:

$(macro_name)
$(macro_name:subst1=subst2)

It substitutes string for the macro invocation. In the latter form, clearmake performs an

additional substitution within string: all occurrences of subst1 at the end of a word within string
are replaced by subst2. If subst1 is empty, subst2 is appended to each word in the value of

macro_name. If subst2 is empty, subst1 is removed from each word in the value of macro_name.

For example:

% cat Makefile
C_SOURCES = one.c two.c three.c four.c
test:

echo "OBJECT FILES are: $(C_SOURCES:.c=.o)"
echo "EXECUTABLES are: $(C_SOURCES:.c=)"

% clearmake test
OBJECT FILES are: one.o two.o three.o four.o
EXECUTABLES are: one two three four

Internal Macros

clearmake maintains these macros internally. They are useful in rules for building targets.

$* (Defined only for inference rules) The file name part of the inferred

dependency, with the file-name extension deleted.
5 - clearmake Makefiles and BOS Files 83

VPATH Macro

The VPATH macro specifies a search path for targets and dependencies. clearmake searches

directories in VPATH when it fails to find a target or dependency in the current working directory.

clearmake searches only in the current view. The value of VPATH can be one directory pathname,

or a colon-separated list of directory pathnames. (In Gnu compatibility mode, you can also use

spaces as separators.)

Configuration lookup is VPATH-sensitive when qualifying makefile dependencies (explicit

dependencies in the makefile). Thus, if a newer version of a dependent file appears in a directory

on the search path before the pathname in the CR (the version used in the previous build),

clearmake rejects the previous build and rebuilds the target with the new file.

$@ The full target name of the current target.

$< (Defined only for inference rules) The file name of the implicit dependency.

$? (Defined only when explicit rules from the makefile are evaluated) The list of

dependencies that are out of date with respect to the target. When

configuration lookup is enabled (default), it expands to the list of all

dependencies, unless that behavior is modified with the

.INCREMENTAL_TARGET special target. In that case, $? expands to the list

of all dependencies different from the previously recorded versions.

When a dependency is an archive library member of the form lib(file.o) ,

the name of the member, file.o, appears in the list.

$% (Defined only when the target is an archive library member) For a target of

the form lib(file.o) , $@ evaluates to lib and $% evaluates to the library

member, file.o.

MAKE The name of the make processor (that is, clearmake). This macro is useful for

recursive invocation of clearmake.

MAKEFILE During makefile parsing, this macro expands to the pathname of the current

makefile. After makefile parsing is complete, it expands to the pathname of

the last makefile that was parsed. This holds only for top-level makefiles, not

for included makefiles or for built-in rules; in these cases, it echoes the name

of the including makefile.

Use this macro as an explicit dependency to include the version of the

makefile in the CR produced by a target rebuild. For example:

supersort: main.o sort.o cmd.o $(MAKEFILE)
cc -o supersort ...

For more information, see Including a Makefile Version in a Configuration Record
on page 74.
84 Building Software: Rational ClearCase

The VPATH setting may affect the expansion of internal macros, such as $<.

Special Targets

Like other build tools, clearmake interprets certain target names as declarations. Some of these

special targets accept lists of patterns as their dependents, as noted in the description of the

target. Pattern lists may contain the pattern character, %. When evaluating whether a name

matches a pattern, the tail of the prefix of the name (subtracting directory names as appropriate)

must match the part of the pattern before the %; the file-name extension of the name must match

the part of the pattern after the %. For example:

The following targets accept lists of patterns:

➤ .DEPENDENCY_IGNORED_FOR_REUSE
➤ .INCREMENTAL_REPOSITORY_SIBLING
➤ .INCREMENTAL_TARGET
➤ .NO_CMP_NON_MF_DEPS
➤ .NO_CMP_SCRIPT
➤ .NO_CONFIG_REC
➤ .NO_DO_FOR_SIBLING
➤ .NO_WINK_IN
➤ .SIBLING_IGNORED_FOR_REUSE

Special Targets for Use in Makefiles

.DEFAULT :
If a file must be built, but there are no explicit commands or relevant built-in rules to

build it, the commands associated with this target are used (if it exists).

.IGNORE :
Same effect as the –i option.

Name Matches Does not match

/dir/subdir/x.o %.o
x.o
subdir/%.o
subdir/x.o

/dir/subdir/otherdir/x.o
5 - clearmake Makefiles and BOS Files 85

.PRECIOUS : tgt ...
The specified targets are not removed when a quit character (typically, <CTRL-\>) or an

interrupt character (typically, <CTRL-C>) is typed.

.SILENT :
Same effect as the –s option.

Special Targets for Use in Makefiles or BOS Files

You can use the following special targets either in the makefile itself or in a build options

specification file. See Build Options Specification Files on page 78.

.DEPENDENCY_IGNORED_FOR_REUSE: file ...

The dependencies you specify are ignored when clearmake determines whether a target

object in a VOB is up to date and can be reused. By default, clearmake considers that a

target cannot be reused if its dependencies have been modified or deleted since it was

built. This target applies only to reuse, not to winkin. Also, this target applies only to

detected dependencies, which are not declared explicitly in the makefile.

You can specify the list of files with a tail-matching pattern; for example,

Templates.DB/%.module.

Unlike the files listed in most special targets, the files on this list refer to the names of

dependencies and not the names of targets. As such, the special target may apply to the

dependencies of many targets at once. This special target is most useful when

identifying a class of dependencies found in a particular toolset for which common

behavior is desired across all targets that have that dependency.

.INCREMENTAL_REPOSITORY_SIBLING: file ...

The sibling files listed are incremental repository files created as siblings of a primary

target, may contain incomplete configuration information, and prevent clearmake from

winking in the primary target. This special target is useful for situations where a toolset

creates an incremental sibling object, and you want more control over how that object is

used.

You can specify the list of files with a tail-matching pattern; for example, %.pdb.

Unlike the files listed in most special targets, the files on this list refer to the names of

sibling objects and not the names of targets. As such, the special target may apply to the

siblings of many targets at once. This special target is most useful when identifying a

class of siblings found in a particular toolset for which common behavior is desired

across all targets that have that sibling.
86 Building Software: Rational ClearCase

.INCREMENTAL_TARGET: tgt ...
Performs incremental configuration record merging for the listed targets; in other words,

combines dependency information from instances of this target generated previously

with the current build of this target. This special target is most useful when building

library archives, because typically only some of the objects going into a library are read

each time the library is updated.

You can specify the list of files with a tail-matching pattern; for example, %.a.

For information on restructuring a makefile to build incremental archive files, see

Working with Incremental Update Tools on page 48.

NOTE: .INCREMENTAL_TARGET applies only to makefile targets built incrementally

using a single make rule. Do not use it for the following kinds of files:

The general guideline is that if you’re not building a library with ar in a single makefile

rule, and you’re not building an executable using an incremental linker, you should not

use .INCREMENTAL_TARGET.

.JAVA_TGTS: file ...
This special target is used to handle sub-classes generated by Java compilers.

In the makefile, any file name that matches the pattern will allow a $ to be escaped by a

another $. For example, to specify a $foo.class:

You can specify the list of files with a tail-matching pattern; for example, %.class

.java.class:

javac $<

a$$foo.class: a.class

Note that $$ mapping to a single $ is default behavior in Gnu make compatibility mode.

For more information, see the makefile_gnu reference page.

.MAKEFILES_IN_CONFIG_REC: file ...
Use this special target to record the versions of makefiles in the configuration records of

derived objects.

➤ Files built incrementally that are not makefile targets. For example, sibling objects

like log files or template repositories.

➤ Files built incrementally from several different build scripts.
5 - clearmake Makefiles and BOS Files 87

This target takes an optional dependency list which may be a pattern. When used

without a dependency list, this target causes all makefiles read by a build session to be

recorded in the configuration record of all derived objects built during that build session.

To conserve disk space, you may want to supply a dependency list to this target so that,

for example, only DOs built for top-level targets have the makefiles recorded in their

configuration records.

.MAKEFILES_AFFECT_REUSE:
By default, makefiles recorded by using the .MAKEFILES_IN_CONFIG_REC special

target do not affect DO reuse. You can use this target to enable recorded makefiles to

affect DO reusability. (If you want to have some recorded makefiles affect reusability, but

not all, you can also use the .DEPENDENCY_IGNORED_FOR_REUSE special target in

conjunction with this target.)

NOTE: If a makefile is declared an explicit dependency of a target, then it always affects

DO reuse for that target, whether .MAKEFILES_AFFECT_REUSE was used or not.

Makefiles recorded in a configuration record are labeled by mklabel –config. Makefiles

that were recorded in a configuration record but that were not recorded by using

.MAKEFILES_AFFECT_REUSE are ignored by catcr –critical_only and diffcr
–critical_only.

.NO_CMP_NON_MF_DEPS: tgt ...
The specified targets are built as if the –M option were specified; if a dependency is not

declared in the makefile, it is not used in configuration lookup.

You can specify the list of files with a tail-matching pattern; for example, %.o.

.NO_CMP_SCRIPT : tgt ...
The specified targets are built as if the –O option were specified; build scripts are not

compared during configuration lookup. This is useful when different makefiles (and,

hence, different build scripts) are regularly used to build the same target.

You can specify the list of files with a tail-matching pattern; for example, %.o.

.NO_CONFIG_REC : tgt ...
The specified targets are built as if the –F option were specified; modification time is used

for build avoidance, and no CRs or derived objects are created.

You can specify the list of files with a tail-matching pattern; for example, %.o.
88 Building Software: Rational ClearCase

.NO_DO_FOR_SIBLING : file ...

Disables the creation of a derived object for any file listed if that file is created as a sibling

derived object (an object created by the same build rule that created the target). These

sibling derived objects are left as view-private files.

You can specify the list of files with a tail-matching pattern; for example,

ptrepository/_%.

Unlike the files listed in most special targets, the files on this list refer to the names of

sibling objects and not the names of targets. As such, the special target may apply to the

siblings of many targets at once. This special target is most useful when identifying a

class of siblings found in a particular toolset for which common behavior is desired

across all targets that have that sibling.

.NO_WINK_IN : tgt ...
The specified targets are built as if the –V option were specified; configuration lookup is

restricted to the current view.

You can specify the list of files with a tail-matching pattern; for example, %.o.

.NOTPARALLEL : tgt ...
Without any tgt arguments, disables parallel building for the current makefile.

clearmake builds the entire makefile serially, one target at a time. With a set of tgt
arguments, prevents clearmake from building any of the targets in the set in parallel

with each other. However, targets in a set can be built in parallel with targets in a

different set or with any other targets. For example:

.NOTPARALLEL:%.a

.NOTPARALLEL:acc1 acc2

clearmake does not build any .a file in parallel with any other .a file, and acc1 is not built

in parallel with acc2. However, clearmake may build .a files in parallel with acc1 or acc2.

.NOTPARALLEL does not affect lower-level builds in a recursive make, unless you

specify it in the makefiles for those builds or include it in a BOS file.

You can specify the list of files with a tail-matching pattern; for example, %.a.

See also Chapter 9, Setting Up a Parallel Build.

.SIBLING_IGNORED_FOR_REUSE: file ...

The files are ignored when clearmake determines whether a target object in a VOB is up

to date and can be reused. This is the default behavior, but this special target can be
5 - clearmake Makefiles and BOS Files 89

useful in conjunction with the .SIBLINGS_AFFECT_REUSE special target or –R
command-line option. This target applies only to reuse, not to winkin.

You can specify the list of files with a tail-matching pattern; for example,

Templates.DB/%.module.

Unlike the files listed in most special targets, the files on this list refer to the names of

sibling objects and not the names of targets. As such, the special target may apply to the

siblings of many targets at once. This directive is most useful when identifying a class of

siblings found in a particular toolset for which common behavior is desired across all

targets that have that sibling.

.SIBLINGS_AFFECT_REUSE:
Build as if the –R command line option were specified; examine sibling derived objects

when determining whether a target object in a VOB can be reused (is up to date). By

default, when determining whether a target is up to date, clearmake ignores

modifications to objects created by the same build rule that created the target (sibling

derived objects). This directive tells clearmake to consider a target out of date if its

siblings have been modified or deleted.

5.4 Sharing Makefiles Between UNIX and Windows

clearmake is available on both UNIX and Windows NT. In principle, you can write portable

makefiles, but in practice, the obstacles are substantial. The variations in tool and argument

names between systems makes writing portable build scripts particularly challenging. If you

choose to pursue portable makefiles, use the following general procedures to produce usable

results.

➤ Start on UNIX; avoid most compatibility modes. Windows NT clearmake supports Gnu

compatibility mode but does not support others (for example, Sun compatibility mode).

Instead, it supports basic make syntax. To write or tailor transportable makefiles, begin

makefile development on UNIX, without compatibility modes other than Gnu in effect.

Gnu generates errors and warnings for problematic syntax. When things work cleanly on

UNIX, move your makefiles to Windows NT for testing.

➤ Use a makefile-generating utility, such as imake, to generate makefiles. Use imake or

some other utility to generate the makefiles you will need, including clearmake makefiles

for Windows NT.
90 Building Software: Rational ClearCase

5.5 BOS File Entries

The following sections describe the entries you can put in BOS files.

Standard Macro Definitions

A standard macro definition has the same form as a make macro defined in a makefile:

macro_name = string

For example:

CDEBUGFLAGS = -g

Target-Dependent Macro Definitions

A target-dependent macro definition takes this form:

target-pattern-list := macro_name = string

Any standard macro definition can follow the := operator; the definition takes effect only when

targets matching patterns in target-pattern-list and their dependencies are processed. Patterns in

the target-pattern-list must be separated by white space. For example:

foo.o bar.o := CDEBUGFLAGS=-g

Two or more higher-level targets can have a common dependency. If the targets have different

target-dependent macro definitions, the dependency is built using the macros for the first

higher-level target clearmake considered building (whether or not clearmake actually built it).

Shell Command Macro Definitions

A shell command macro definition replaces a macro name with the output of a shell command:

macro_name :sh = string
5 - clearmake Makefiles and BOS Files 91

This defines the value of macro_name to be the output of string, any shell command. In command

output, <NL> characters are replaced by <SPACE> characters. For example:

BUILD_DATE :sh = date

Special Targets

You can use some ClearCase special targets in a build options spec. See Special Targets for Use in
Makefiles or BOS Files on page 86.

Include Directives

To include one BOS file in another, use the include or sinclude (silent include) directive. For

example:

include /usr/local/lib/ux.options

sinclude $(OPTS_DIR)/pm_build.options

Comments

A BOS file can contain comment lines, which begin with a number sign (#).

5.6 Conflict Resolution

Conflicts can occur in specifications of make macros and environment variables. For example,

the same make macro might be specified both in a makefile and on the command line; or the

same name may be specified both as a make macro and as an environment variable.

clearmake resolves such conflicts similarly to other make variants; it uses the following priority

order, from highest to lowest:

1. Target-specific macros specified in a BOS file
92 Building Software: Rational ClearCase

2. Target-specific macros specified in a makefile

3. Make macros specified on the command line

4. Make macros specified in a BOS file

5. Make macros specified in a makefile

6. Environment variables

7. Built-in macros

Using the –e option gives environment variables higher priority than make macros specified in

a makefile.

Conflict Resolution Details. The following discussion treats this topic more precisely but less

concisely.

clearmake starts by converting all EVs in its environment to make macros. (SHELL is an

exception.) These EVs are also placed in the environment of the shell process in which a build

script executes. Then, it adds in the make macros declared in the makefile. If this produces name

conflicts, they are resolved as follows:

➤ If clearmake was not invoked with the –e option, the macro value overwrites the EV value

in the environment.

➤ If clearmake was invoked with the –e option, the EV value becomes the value of the make

macro.

Finally, clearmake adds make macros specified on the command line or in a BOS file; these

settings are also added to the environment. These assignments always override any others that

conflict. (A command-line assignment overrides a BOS setting of the same macro.)

5.7 SHELL Environment Variable

clearmake does not use the SHELL environment variable to select the shell program in which to

execute build scripts. It uses a UNIX Bourne shell (/bin/sh) , unless you specify another program

with a SHELL macro. You can specify SHELL on the command line, in the makefile, or in a build

options spec; the value of SHELL must be a full pathname.
5 - clearmake Makefiles and BOS Files 93

NOTE: If clearmake determines that it can execute the build script directly, it does not use the shell

program even if you specify one explicitly. To force clearmake to always use the shell program,

set the environment variable CCASE_SHELL_REQUIRED.

5.8 CCASE_BRANCH0_REUSE Environment Variable

When clearmake evaluates a derived object for usability in the view, it compares versions of files

recorded in the derived object’s configuration record to versions of those same files that are in

the current view. Generally, any version mismatch prevents clearmake from reusing the DO.

However, if the DO used version main/123 and the view sees version main/123/branch/0,

clearmake considers this to be a match. You can disable this default behavior by setting the

environment variable CCASE_BRANCH0_REUSE in the shell before running clearmake.
94 Building Software: Rational ClearCase

66 Using clearmake Compatibility
Modes

clearmake is designed for compatibility with existing make programs, which minimizes the

changes you need to make to your makefiles. There are many variants of make, and each

provides different sets of extended features. clearmake does not support all features of all

variants, and we do not guarantee absolute compatibility.

If your makefiles use only the common extensions, they will probably work with clearmake
without changes. If you must use features that clearmake does not support, consider using

another make program in a clearaudit shell. This alternative provides build auditing

(configuration records), but does not provide build avoidance (winkin).

NOTE: When building with configuration records, clearmake handles double-colon rules

differently from other make programs. For details, see How clearmake Interprets Double-Colon
Rules on page 41.

To specify a compatibility mode, take one of the following actions:

➤ Use the environment variable CCASE_MAKE_COMPAT in a build options specification file or

in your environment. For more information, see Chapter 5, clearmake Makefiles and BOS Files.

➤ Use the –C option with clearmake. For more information, see the clearmake reference page.

You can use the following compatibility modes:

sgismake IRIX smake

sgipmake IRIX pmake

sun SunOS make

aix IBM AIX make

gnu Free Software Foundation Gnu make
6 - Using clearmake Compatibility Modes 95

For information about specific clearmake compatibility modes, see the makefile_aix,

makefile_pmake, makefile_smake, makefile_sun, makefile_gnu and makefile_ccase reference

pages.

std Standard clearmake with no compatibility mode enabled. (Use this option to

nullify a setting of the environment variable CCASE_MAKE_COMPAT.)
96 Building Software: Rational ClearCase

77 Using ClearCase to Build C++
Programs

This chapter describes how to use clearmake effectively with C++ programs built with various

compilers. If you use clearmake to build C++ programs, read the section Working with Templates
and the appropriate section for the compiler you use.

Compiler Section

C++ compilers based on the

Cfront translator from AT&T

Working with Cfront-Based C++ Compilers on page 100

SPARCompiler C++ Version 4.x Working with SPARCompiler C++ on page 117

SGI Delta/C++ compiler Working with the SGI Delta/C++ Compiler on page 130

IBM AIX XLC compiler Working with the IBM AIX XLC C++ Compiler on page 133

HP aC++ compiler Working with the HP aC++ Compiler on page 139
7 - Using ClearCase to Build C++ Programs 97

7.1 Working with Templates

Many C++ compilers allow you to work with templates. A function template is a pattern for a set

of functions. Similarly, a class template is a pattern for a set of classes. For example, a template for

stack classes describes the form of data and functions in terms of an unspecified element type. To

create a stack class, you supply a parameter, the actual type of data in the stack. Using this

mechanism, you can create classes for stacks of strings or stacks of integers. These stack classes

may contain different types of items, but they have the same default behaviors.

At compile or link time, the C++ compiler generates code for each template class. The code

generation process is called template instantiation. In some cases, the process of template

instantiation can conflict with clearmake building. These are possible symptoms of the conflict:

➤ clearmake performs unnecessary rebuilds.

➤ clearmake rebuilds an object that it could have winked in.

➤ The C++ compiler does not recompile a template source that changed, resulting in a link

error or a run-time error.

➤ When clearmake winks in incremental repository files, information is lost.

➤ The output of cleartool commands that display configuration records (for example, catcr or

diffcr) is confusing.

The exact nature of the symptoms depends on the compiler you use. For many compilers, these

problems do not arise. For other compilers, you can correct these problems by modifying your

makefile or the program source.

Explicit Instantiation

If your compiler supports it, we recommend that you use the ANSI C++ explicit instantiation

syntax as defined in the ISO Standard for the C++ Programming Language. This method requires

you to request instantiation explicitly in the source code. For more information on using explicit

instantiation, refer to your C++ compiler documentation.

The Explicit Instantiation method requires more effort to use; however, it allows you to control

the placement of instantiated template code into object modules. In addition, as part of the ANSI

C++ standard, it may be the most portable solution. Using explicit instantiation does not conflict

with clearmake build avoidance.
98 Building Software: Rational ClearCase

Alternative to Using the Procedures in This Chapter

The Cfront compilers discussed in the next section, as well as some other platform-specific

compilers, use repositories of files to manage template instantiation. We recommend that you

maintain repository directories and files in a VOB. The procedures in this chapter assume that

you do so.

For compilers that use repositories to instantiate templates, an alternative to following the

procedures in this chapter is to keep the repository outside the MVFS. However, be aware of the

shortcomings of this solution:

➤ Changes to template source code are not detected unless your makefile includes explicit

dependencies on the template source code.

➤ Repositories stored outside the MVFS are not available for winkin, so you must handle

sharing between views manually. This process is prone to error.

➤ Files that use the repository may be winked in without associated template information.

The missing information may cause links to fail.

➤ For files stored outside the MVFS, clearmake must rely on time stamp information for build

avoidance and may not rebuild files that need to be rebuilt.

➤ No configuration records are maintained for files stored outside the MVFS.

Precompiled Header Files

Some compilers support options to generate precompiled header files. A precompiled header file

is created as a sibling of one compilation and is referenced by later compilations. This may cause

clearmake to track extra dependencies that can interfere with winkin. The resulting conflicts are

similar to those caused by template instantiation. Check your compiler documentation to see

whether your compiler supports such options.
7 - Using ClearCase to Build C++ Programs 99

7.2 Working with Cfront-Based C++ Compilers

This section incorporates work contributed by ClearCase user Steve Vinoski of The Hewlett-Packard
Company. Permission to use this work has been granted to Rational Software Corporation.

This section describes how to use clearmake to build C++ programs when you use a C++

compiler that is based on the Cfront translator from AT&T. If you use one of the following

compilers, read this section:

➤ CenterLine C++ (with ObjectCenter)

➤ HP C++

➤ SGI OCC

➤ Sun SPARCompiler C++ 2.x (with Sun SPARCworks 3.x)

Cfront Template Instantiation: Interaction with clearmake

A compiler based on Cfront instantiates templates at link time. During the first step of the link

phase, the compiler generates the template code the program needs. It later combines object files

to create an executable.

The compiler manages template code in a repository, by default a subdirectory of the build

directory. In the repository, the compiler maintains a database of information to refer to during

template instantiation and a cache of instantiated template source and object files. By default, the

name of the repository directory is ptrepository.

By maintaining a repository, the compiler can reuse template code that earlier builds have

generated. The compiler can ensure that cached template code is current with its source.

If you use clearmake to build C++ programs that contain template code, and you are building in

an MVFS directory, we recommend that you use one of the procedures in this chapter to avoid

any incorrect behavior that may result. For example:

➤ clearmake rebuilds source files that use templates, regardless of whether the source

changed. The result is a target that is never up to date.

➤ If you revert to an older version of a source file, clearmake invokes the linker to relink the

program. However, when the linker invokes the compiler to reinstantiate template code, the

compiler may fail to recompile templates that depend on the source file. The result can be a

link error.
100 Building Software: Rational ClearCase

➤ clearmake rebuilds the executable rather than winking it in from another view.

➤ The configuration record for the final program contains confusing information about the

dependency structure of the program. This problem becomes evident when you execute

cleartool commands such as catcr and diffcr which display configuration records.

These behaviors occur because the compiler manipulates files in the repository in a way that

conflicts with clearmake’s build avoidance and configuration records. The result is that when a

program uses templates, clearmake often associates incorrect configuration information with the

program file and the files in the repository.

The following sections describe these issues in more detail. For information about how to resolve

the incorrect behaviors, see Models for Working with Cfront-Based Compilers on page 103.

Link-Time Cfront Template Instantiation

This section describes how compilers that use link-time template instantiation (Cfront compilers)

work.

During compilation, when the C++ compiler encounters the use of a template, it creates a type
map file (usually named defmap). It records in the type map file each C++ type that it encounters

and the name of the file in which the type is declared.

When the compiler links object modules into an executable, it performs a prelink step, in which

it examines each object module to locate unresolved template symbols. To resolve these symbols,

the template instantiation system does the following:

1. Uses the information in the type map to create source files. The source files contain the

template declarations, template definitions, and type declarations with which to instantiate

the templates.

2. Compiles these source files in a special mode.

3. Removes from its list the template symbols that the resulting object modules resolve.

4. Adds to its list any unresolved symbols of templates to be instantiated, as found by the

resulting object modules.

5. Repeats Step #1 through Step #4 until all template symbols are resolved.

6. Calls the real link editor, ld, to produce the executable.
7 - Using ClearCase to Build C++ Programs 101

The description above shows that the C++ compiler does the following:

➤ Maintains a repository of data between executions; it saves information about C++ types in

the defmap file during each compilation.

➤ Generates source code that is compiled into template instantiation object files.

➤ Performs simple link processing by searching object modules for unresolved template

symbols, and by attempting to resolve them.

➤ Performs build avoidance by detecting dependencies between template objects generated

during an earlier link and both the template sources (header and definition files) and the

sources that use the templates. It then reinstantiates the objects only when necessary.

The compiler performs build avoidance to minimize the costs of template instantiation. If the

compiler reinstantiates the necessary templates whenever a program is linked, the use of many

templates in a program requires very long link times. To minimize the overhead for subsequent

builds, the compiler stores the type map and the template object modules in a directory (usually

named ptrepository), so that they can be reused if possible. The compiler determines whether a

template object module can be reused by analyzing the dependencies of the source files used to

create it. If any of the sources have been updated since the template object module was created,

the compiler must rebuild the object module.

This build-avoidance scheme is equivalent to the standard make scheme and simpler than the

ClearCase scheme: it does not guarantee correct configurations that can be shared by multiple

users in a parallel development environment.

How Link-Time Instantiation Interferes with clearmake

This section describes how typical C++ compilers that use repository-based template

instantiation at link time can interfere with the incremental updating of ClearCase derived

objects.

Whenever the C++ compiler encounters a template in a source file (for example, foo.cc), it

updates the defmap file. When the defmap file is created within an MVFS directory, Rational

ClearCase detects the updating activity. When clearmake invokes the compiler, the defmap file

becomes a derived object (DO), a sibling of the object file (.o file). Associated with both DOs is a

configuration record (CR). The CR describes the build script that was executed and the object

versions (for example, of foo.cc, foo.h, and so on) that were accessed.

If the compilation of another source file causes the defmap file to be updated again, a new DO

and CR are created for the defmap file, thereby overwriting the previous defmap DO. Therefore,
102 Building Software: Rational ClearCase

whenever the defmap file is updated, the derived objects for all targets that modified it

previously are no longer candidates for winkin.

The C++ compiler updates the defmap file incrementally; that is, it does not destroy the data

written there during the earlier compilation of foo.cc. However, ClearCase has no knowledge of

the semantics of the update. It assumes that the defmap file was completely regenerated, and

that its current configuration depends only on the most recent target rebuild that updated it. If

another view’s configuration matches that of the most recent target rebuild in the first view,

clearmake can wink in the defmap file to the second view inappropriately.

Models for Working with Cfront-Based Compilers

To help clearmake and the C++ compiler work together effectively, we recommend that you

design your makefile according to one of the models described in this chapter. The model you

choose depends on your needs:

➤ The Simple model is the easiest to use. It works best for developers who work

independently of others. It is not as effective for team projects in which sharing builds is

important.

➤ The Multiple Repositories model is fairly easy to use and solves the problems of sharing

builds in a team project. Its disadvantage is that compilations are slower.

➤ The Forced Instantiation model places a heavy burden on you, but it is the only model that

allows you to build archives and shared libraries that contain template code.

CAUTION: If you use parallel builds to build applications in C++ that use templates, you must use

the Multiple Repository Model. This avoids the problem of multiple processes trying to access

the same template database simultaneously, thereby causing conflicts and build failure.

The remainder of this section describes each model in more detail.

The Simple Model

The Simple model solves some of the conflicts between ClearCase and Cfront-based C++

compilers. It allows you to build programs naturally. However, it does not allow you to rely on

clearmake to wink in the results of previous builds.
7 - Using ClearCase to Build C++ Programs 103

Insert the following line into your makefile, at any point in the file that does not break a rule or

definition that spans multiple lines:

include ccase-home-dir/config/clearmake/cfront_simple.mk

NOTE: Substitute your ClearCase installation directory for ccase-home-dir (default is /usr/atria).

How the Simple Model Works

The cfront_simple.mk makefile contains the following clearmake directives:

.SIBLINGS_AFFECT_REUSE:

.INCREMENTAL_REPOSITORY_SIBLING: ptrepository/defmap

.NO_DO_FOR_SIBLING: ptrepository/_lock \
ptrepository/_instfile ptrepository/defmap.old

.SIBLING_IGNORED_FOR_REUSE: ptrepository/defmap

.DEPENDENCY_IGNORED_FOR_REUSE: ptrepository/defmap.old

The .INCREMENTAL_REPOSITORY_SIBLING directive in cfront_simple.mk prevents

clearmake from winking in object files that contain template references. This is important

because winking in an object file that contains template references can cause the instantiation

step to fail.

The .NO_DO_FOR_SIBLING directive tells clearmake to treat temporary files created by the

cfront compiler as noncritical. You can accomplish the same purpose (with less overhead) by

removing these noncritical files in the build scripts that perform C++ compilations. For example,

you can define a suffix rule as follows:

.C.o:
$(C++C) $(C++FLAGS) -c $<
rm -f ptrepository/_lock ptrepository/_instfile \

ptrepository/defmap.old

Removing these noncritical files in the build script also reduces confusing catcr and diffcr
output.

If you also build your program with other make programs, the directives in cfront_simple.mk
are ignored (because other make programs do not recognize these directives).

For more information about the directives in the cfront_simple.mk makefile, see Special Targets
on page 85.
104 Building Software: Rational ClearCase

Sample Scenario Using the Simple Model

The Simple model prevents clearmake from winking in an object file that contains template

references to avoid an inappropriate winkin. To take advantage of the results of a previous build

(for example, a nightly build), perform manual winkin by using the cleartool winkin command.

The –recurse option of the winkin command may be used to wink in a hierarchy of files that

produced a build.

For example, a build in view nightly produces executable hello in VOB directory /vobs/test. To

wink in the hierarchy of DOs for the version of hello from that build:

1. Set your config spec to match that of nightly. This selects the correct version of hello. (An

alternative is to specify a VOB-extended pathname for the derived object in Step #2.)

2. Type the following command:

cleartool winkin –recurse /view/nightly/vobs/test/hello

Because the winkin –recurse command winks in a hierarchy of DOs without regard to the

makefile or config spec selections in the current view, it is a good idea to issue a clearmake
command immediately after issuing the winkin –recurse command to ensure that all DOs are

up to date. Invoking clearmake also ensures that files you have checked out are rebuilt.

See the winkin reference page for more information.

Limitations of the Simple Model

The following points describe limitations of the Simple model and some workarounds.

➤ The compiler may reuse out-of-date template code that ought to have been reinstantiated.

This can happen if you change a reserved checkout to unreserved or change your

configuration specification in such a way that you revert to a version of a template source file

that is older than the version that the compiler used in a previous build. When clearmake
detects the change, it recompiles the target. The compiler, however, relies on a time-stamp

comparison to check cached template code against its source. As a result, it may

inappropriately reuse code that is in the repository. (Note that regular make does not detect

the change at all and does not issue a rebuild.)

To work around the problem, you must force the compiler to reinstantiate templates, for

example, by removing .o files from the repository directory.
7 - Using ClearCase to Build C++ Programs 105

➤ In certain cases, clearmake does not wink in object files and executables.

The .INCREMENTAL_REPOSITORY_SIBLING directive in cfront_simple.mk prevents

clearmake from winking in object files and executables that contain template code. If you

want to wink in such files produced by a previous build, you must do so manually, as

described in Sample Scenario Using the Simple Model on page 105.

➤ In certain cases, clearmake does not detect changes to template implementation source files.

The .DEPENDENCY_IGNORED_FOR_REUSE directive in cfront_simple.mk avoids

unnecessary rebuilding by ignoring detected dependencies on certain objects. Thus, its

behavior more closely resembles that of make. The disadvantage of ignoring these

dependencies is that after performing repeated builds, clearmake may not detect that a

change to a template implementation source file necessitates a rebuild. To force the rebuild,

you must delete the instantiation object file from the repository.

➤ cfront_simple.mk expects the name of the repository to be ptrepository. If you use the –ptr
compiler option to change the name of the repository, you must edit cfront_simple.mk to

reflect the change. Alternatively, edit a copy of the file and specify the copy in the include

line in your makefile.

NOTE: If you use –ptr to change the name of the directory containing the template repository

but do not change the name of the repository, you do not have to edit cfront_simple.mk. The

patterns in cfront_simple.mk match ptrepository in any directory.

➤ When you use the Simple model, the cleartool commands diffcr and catcr may produce

unexpected output for programs that contain template code.

The configuration record for the final program contains confusing information about the

dependency structure of the program. This problem becomes evident when you execute

cleartool commands such as catcr and diffcr that display configuration records.

The Multiple Repositories Model

The Multiple Repositories model requires you to insert lines into your makefile and to follow

certain naming conventions in the build rules. clearmake then invokes a set of scripts that

perform extra repository management to avoid conflicts with clearmake build avoidance. The

scripts maintain a separate repository for each object file or executable that contains template

code.
106 Building Software: Rational ClearCase

We recommend that you use this model if you depend on sharing builds within a development

team, or if the problems that the Simple model does not solve are unacceptable. The Multiple

Repositories model is more difficult to use than the Simple model and requires more

development time to use.

The following sections describe how to perform these tasks:

1. Ensure that your makefile uses a recognized C++ compiler macro.

2. Insert special build rules in your makefile.

3. Verify that the special build rules take effect.

Using a Recognized Compiler Macro

Ensure that your makefile uses one of the following macro invocations to represent the C++

compiler in every place that the compiler is called:

➤ $(C++C)
➤ $(C++)
➤ $(CXX)
➤ $(CCXX)
➤ $(CCC)

Note that $(CC) is not in this list because it usually designates a C compiler, rather than a C++

compiler.

The macro invocation must appear in every build rule for C++ objects. For example:

.C.o:
$(C++) $(C++FLAGS) -c $<

The macro invocation must also appear wherever you execute the C++ linker. For example:

myprog: $(MYOBJS)
$(C++) $(C++FLAGS) -o myprog $(MYOBJS)
7 - Using ClearCase to Build C++ Programs 107

Inserting Special Build Rules in Your Makefile

Edit your makefile as follows:

1. Insert the following line:

$(CCASE_CXX_INC_LNK)

You must insert this line in a specific place:

➣ If a C++ compiler macro is defined in your makefile, you must insert this line

immediately after the line that contains the compiler macro definition, because the

special build rule redefines the C++ compiler macro. However, if you are using this

makefile only with clearmake, you can remove the line containing the compiler macro

definition.

➣ Otherwise, insert the new line at the top of your makefile.

With the incremental rules in effect, clearmake can manage the template instantiation

process efficiently. In most cases, these macros work well. In some cases, you may want to

use the alternate (CM-safe) multiple repository model. Read Using an Alternate (CM-safe)
Multiple Repository Model on page 109 to determine whether you need to use alternate rules.

NOTE: The CCASE_CXX_INC_LNK macro expands to an include directive:

include ccase-home-dir/config/clearmake/inc_cxx.mk

The macro is provided so that your makefile can be used transparently with other make
programs. If that is not important to you, you can use the include directive instead to enable

the special build rules.

2. Decide whether to define the pathname to the C++ compiler, as follows:

a. If the name of the compiler is CC and it does not require preceding pathname

components, do nothing.

b. Otherwise, insert a line in the format

REAL_C++=your-CC-program

where your-CC-program is the name of the compiler as it appears in the definition of the

C++ compiler macro.
108 Building Software: Rational ClearCase

If you use Purify with this model, insert the path to Purify before the path to the C++

compiler. For example:

REAL_C++=’purify CC’

Note that you must use single quotes.

Similarly, if you use PureLink with this model, insert the path to PureLink before the

path to the C++ linker, for example:

ATRIA_C++LINK=${CCASE_MAKE_CONFIG_DIR}/atria_cxxl \
$@ cfront timestamp_cache ’purelink $(REAL_C++)’

If you are using the CM-safe model discussed in the next section, substitute CM-safe for

timestamp-cache:

ATRIA_C++LINK=${CCASE_MAKE_CONFIG_DIR}/atria_cxxl \
$@ cfront CM-safe ’purelink $(REAL_C++)’

Using an Alternate (CM-safe) Multiple Repository Model

In most cases, the incremental build rules, described in the previous section, work well.

However, if unused template code accumulates in the repository, the build rules may prevent

winkin.

To use the CM-safe build rules, substitute the following line of code for the link-time template

instantiation build rule:

$(CCASE_CXX_SAFE_LNK)

With the CM-safe rules in effect, clearmake forces the C++ compiler to instantiate all templates

every time it links the program. The result is that there are no superfluous dependencies to

prevent clearmake from winking in object files. The disadvantage of using CM-safe build rules

is that for every link, extra time is spent on template instantiation.

NOTE: The CCASE_CXX_SAFE_LNK macro expands to an include directive:

include ccase-home-dir/config/clearmake/cmsafe_cxx.mk

The macro is provided so that your makefile can be used transparently with other make
programs. If that is not important to you, you can use the include directive instead to enable the

special build rules.
7 - Using ClearCase to Build C++ Programs 109

Example Makefile Using the Multiple Repository Model

Consider the following makefile:

MYOBJS=main.o std.o istring.o site.o point.o

.SUFFIXES: .C .o

.C.o:
$(C++) $(C++FLAGS) -c $<

C++=/net/elm/tools/bin/CC
C++FLAGS=-g

myprog: $(MYOBJS)
$(C++) $(C++FLAGS) -o myprog $(MYOBJS)

After you make the modifications described in Inserting Special Build Rules in Your Makefile on

page 108, the makefile looks like this:

MYOBJS=main.o std.o istring.o site.o point.o

.SUFFIXES: .C .o

.C.o:
$(C++) $(C++FLAGS) -c $<

C++=/net/elm/tools/bin/CC (this line can be removed if the makefile is being used only with clearmake)
C++FLAGS=-g
$(CCASE_CXX_INC_LNK)
REAL_C++=/net/elm/tools/bin/CC

myprog: $(MYOBJS)
$(C++) $(C++FLAGS) -o myprog $(MYOBJS)

Testing the Makefile

To test your modifications:

1. Verify that your makefile is still valid for any make programs other than clearmake that you

use to build your program. Your modifications must not affect how other make programs

build your program.
110 Building Software: Rational ClearCase

2. When you build your program with clearmake, check whether there is a difference in the

commands that clearmake executes:

➣ If your build rules instantiate the template at link time, whenever clearmake executes a

C++ translation, it echoes a command line that begins with the following text:

ccase-home-dir/config/clearmake/atria_cxx cfront timestamp-cache

➣ If you used CM-safe build rules, whenever clearmake executes a C++ translation, it

echoes a command line that begins with the following text:

ccase-home-dir/config/clearmake/atria_cxx cfront cm-safe

If the result of either of these tests is not what you expect, examine your makefile to verify that

you modified it correctly.

How the Multiple Repositories Model Works

When clearmake executes the build rule, the C++ macro expands to code that includes the file

ccase-home-dir/config/clearmake/inc_cxx.mk. If you use the CM-safe rules, clearmake includes

the cmsafe_cxx.mk file instead. These files add special build rules for the Cfront compilers.

Because the macros are ordinarily undefined, other make programs expand the macro lines to

empty text, which is ignored.

The inc_cxx.mk and cmsafe_cxx.mk files provide a wrapper around the compiler and linker. The

wrapper runs the atria_cxx script whenever the compiler or linker is invoked. The script

performs actions that work with the compiler’s template instantiation method and also runs

other scripts. To cause the atria_cxx script to echo the command lines it executes, invoke

clearmake with the –v or –d command line option, or set the CCASE_VERBOSITY environment

variable as described on the env_ccase reference page.

By default, the C++ compiler creates only one directory, ptrepository, for the template

instantiation repository. The effect of modifying the build rules is as follows:

➤ The compiler creates an xxx.ptrep directory for each C++ target, regardless of whether the

target is an object file or a linked executable. Maintaining separate repositories is an

important part of the Multiple Repositories solution to the conflict between clearmake and

Cfront template instantiation.

➤ clearmake runs the atria_make_ptrep script to combine the repositories before the link.
7 - Using ClearCase to Build C++ Programs 111

➤ The incremental macro calls the atria_make_ts_cache script to create a time-stamp cache. It

uses this cache to determine when rebuilds are necessary.

The CM-safe rules do not use a time-stamp cache because they always delete and re-create

the entire repository.

As a result of these actions, the new build rules facilitate better sharing (winkin) by avoiding

incremental updates to repository files. The CM-safe rules also prevent the use of existing

template information, which may create superfluous dependencies.

Limitations of the Multiple Repositories Model

The Multiple Repositories model has the following limitations:

➤ You cannot use the –ptr compiler option.

To maintain separate template repositories, the build script inserts a –ptr option in each C++

command line. Because the build rules assume control over the repository directories, you

cannot use the –ptr option to specify another repository directory.

➤ An error during instantiation invalidates all template code.

The compilers discussed in this section instantiate templates at link time. If an error occurs

during template instantiation, it is probably a compilation error in a template source file.

When such an error occurs, the link fails and clearmake aborts the build.

When the build is interrupted in this way, the clearmake scripts do not record configuration

information for the template code in the repository. On the next build, the scripts note the

absence of configuration information and cause the C++ compiler to reinstantiate all the

template code required by the program. This limitation can slow the development process.

➤ In certain cases, clearmake does not wink in repository files.

The template repository for the final executable accumulates files as the build progresses.

The Cfront compiler and linker do not delete files from the repository. As a result, a

repository may contain template code that is no longer used by the program. Normally, the

contents of repositories can be shared (winked in) among views if the program and its

dependencies match across the views. However, the presence of unused template code in a

repository can interfere with sharing. To remove unused template code accumulated in a

repository, delete the entire repository directory and rebuild.
112 Building Software: Rational ClearCase

➤ Multiple repositories can hold duplicates of instantiation objects.

Because a separate template repository is maintained for each object file and executable, the

compiler is prevented from reusing template code that was instantiated during the

compilation of another module, even if the instantiations are identical. Thus, multiple

repositories can consume more disk space than a single repository. For an example of how to

eliminate duplicate instantiation objects from an archive library, see Step #3 on page 116.

The Forced Instantiation Model

Compilers that are based on Cfront instantiate templates only during the link step of a program

build. These compilers determine which templates to instantiate by examining external

references in the object files to be linked; the programmer does not have direct control over which

templates to instantiate. In situations where you need to control template instantiation, use the

Forced Instantiation model.

The basic strategy of the Forced Instantiation model is to prevent the linker from instantiating

templates automatically. To do so, you instantiate all templates that are needed by an executable

or by an archive library, and then name them explicitly for inclusion in that executable at link

time.

The Forced Instantiation model places the burden of managing template instantiation on you.

However, it is the appropriate model to use in situations that require control over instantiation.

When you use this model exactly as presented here, no conflict arises between the C++ compiler

and clearmake building.

Use the Forced Instantiation model in the following situations:

➤ If you are developing code for multiple platforms, some compilers may not provide an

automatic instantiation mechanism and therefore require a model similar to this one for

instantiating templates. Using a common method of instantiation across multiple platforms

may be easiest for you.

➤ If you build an archive or shared library containing instantiated template code, you must

force the compiler to instantiate the code you need and extract the resulting object files from

the repository.
7 - Using ClearCase to Build C++ Programs 113

To use this model:

➤ Maintain a set of “dummy” source files.

➤ Set up your makefile to build a dummy executable and build template code into the final

executable or library.

Maintaining Dummy Source Files

The Forced Instantiation model requires you to maintain a set of dummy source files. Each

dummy source file is a C++ source file that contains references to a set of template classes or

functions. For each template class that you want to instantiate, add one variable declaration to

the file. For each template function, add a call to that function.

Your project’s needs determine how to distribute the references among the dummy files. You

may want to have one dummy file that contains all references, or you may want to group the

references to reflect how the sources in your program are divided into libraries and executables.

For example, if Array<char> and List<String> are template classes your program requires, you

can produce the following dummy file:

// dummy source file for forcing template instantiation.

#include "array.h" // declares class template Array
#include "list.h" // declares class template List
#include "string.h" // declares class String

Array<char> dummy0; // assumes void constructor
List<String> dummy1; // assumes void constructor

Additional instructions for working with dummy source files:

➤ Include in the dummy source file the header files that contain requisite definitions.

➤ Define variables, as needed, to provide as arguments to constructors.

➤ If the template class you need to instantiate has no public constructors, you may substitute

a line for the variable declaration of the form

((Class *)0)-> MemberFunction ();

where Class is the name of the class and MemberFunction is a public member function of that

class.
114 Building Software: Rational ClearCase

➤ If the template class has no public member functions, it must declare a friend class or friend

function to be usable. In this case, write a dummy version of a friend function (or a member

function of a friend class) in the file and put the variable declaration into the dummy friend

function. Because this code is not linked into your program, you do not need to worry

about multiple symbol definitions.

Setting Up the Makefile

To set up your makefile:

1. Assign separate repositories to each object file and executable.

Assign each object file and executable its own repository by specifying the –ptr compiler

option on every C++ compiler command line. Add the following to the options you pass to

the C++ compiler:

-ptr$@.ptrep

For example, if $(C++FLAGS) is expanded on every C++ compiler command line, add the

option to the macro definition.

C++FLAGS=-ptr$@.ptrep ...other compiler options...

2. Instantiate the templates by building the dummy executables.

The following example shows a make rule that compiles the dummy.C source file into the

dummy.out executable, producing the dummy.out.ptrep repository. The –pta compiler

option is required. This option directs the compiler to instantiate all template functions in a

class rather than instantiating only the template functions that are referenced.

dummy.out: dummy.C main.o std.o
rm -rf $@.ptrep
$(C++) $(C++FLAGS) -pta $@ dummy.C main.o std.o

This make rule deletes the existing repository before rebuilding. The rule prevents reuse of

existing template code, but ensures clean configuration information for the newly

instantiated template code. It is important that you follow this model in your makefile,

especially to ensure that the objects you build can be shared (winked in) by other views.

The example rule in this section depends on the additional object files, main.o and std.o.

Add other objects to your makefile rule as necessary to link the program. In this section’s

example, assume that main.C contains an empty main() function, and std.C contains other

definitions required to link the program.
7 - Using ClearCase to Build C++ Programs 115

3. Build the final executable or library.

a. Make the final executable or library target depend on the dummy executables.

b. In the build rules for the final target, invoke the atria_list_obj utility to collect all the

names of the template object files produced by the compilations of the dummy sources.

c. Insert the names of the object files collected in Step #b onto the compiler or ar command

line.

For example, suppose the target is the archive lib.a. The dummy source files dummy0.C,

dummy1.C, and dummy2.C contain template references required by lib.a. Suppose also that

$(OBJECTS) expands to a list of the other objects required by lib.a.

In the following example, the utility program, atria_list_obj takes one or more repository

directories as command line arguments and prints a list of the .o files that it finds in those

directories or any of their subdirectories. This example uses atria_list_obj to collect the

names of template object files and to put them on the ar command line.

lib.a: $(OBJECTS) dummy0.out dummy1.out dummy2.out
rm -f $@
ar qcv $@ $(OBJECTS) \
`atria_list_obj dummy0.out.ptrep \

dummy1.out.ptrep dummy2.out.ptrep‘

For more information, examine the code for the utility program in

ccase-home-dir/config/clearmake/atria_list_obj.

How the Forced Instantiation Model Works

By default, the C++ compiler creates only one directory, ptrepository, for the template

instantiation repository. When you modify the build rules, the compiler creates an xxx.ptrep
directory for each C++ target, regardless of whether the target is an object file or a linked

executable. Maintaining separate repositories is an important part of the Forced Instantiation

solution to the conflict between Rational ClearCase and Cfront template instantiation.

When you specify the –pta option to the linker, the linker forces the instantiation of all template

objects when it builds the dummy output executable. The template instantiation objects, which

behave like a dictionary, are then available for placement on a command line to build a library

or final executable. The atria_list_obj utility aids this process.

As a result of these actions, the new build rules facilitate better sharing (winkin) by avoiding

incremental updates to repository files.
116 Building Software: Rational ClearCase

Limitations of the Forced Instantiation Model

➤ The dummy source files must be kept in sync with the actual uses of templates in the

production library or executables.

➤ You must use the –ptr compiler option as described in Step #1 on page 115. You cannot use a

single repository.

➤ Multiple repositories can hold duplicates of instantiation objects.

Because a separate template repository is maintained for each object file and executable, the

compiler is prevented from reusing template code that was instantiated during the

compilation of another module, even if the instantiations are identical. Thus, multiple

repositories can consume more disk space than a single repository does. For an example of

how to eliminate duplicate instantiation objects from an archive library, see Step #3 on

page 116.

7.3 Working with SPARCompiler C++

This section describes how to use clearmake to build C++ programs using SPARCompiler C++

Version 4.x. This compiler is bundled with SPARCworks Version 3.0 or later. If you use this

compiler, read this section. If you use an earlier version of SPARCompiler C++, see Working with
Cfront-Based C++ Compilers on page 100.

NOTE: The clearmake models outlined here are accurate as of the time that this document was

written, but may become obsolete or incomplete as new versions of the compiler are released.

SPARCompiler Template Instantiation: Interaction with clearmake

When the SPARCompiler C++ compiles a source module into an object module, it instantiates all

the template code to which the module refers. The compiler places the generated template code

into a repository directory, Templates.DB. By default, the repository is a subdirectory of the

build directory. At link time, the compiler links instantiated template code from the repository

into the final executable as needed to resolve references in the program. The instantiated

template code remains in the repository, so that the compiler can reuse template code generated

by earlier builds. The compiler employs its own scheme to check that cached template code is up

to date with its source.
7 - Using ClearCase to Build C++ Programs 117

If you use clearmake to build C++ programs that contain template code, and you are building in

an MVFS directory, we recommend that you use one of the procedures in this section to avoid

any incorrect behavior that may result. For example:

➤ clearmake rebuilds components of the program, regardless of whether the source changed.

The result is a target that is never up to date.

➤ If you revert to an older version of a source file, clearmake invokes the compiler to

recompile the source files that depend on the template. However, the C++ compiler may fail

to reinstantiate the template code.

➤ clearmake rebuilds program components rather than winking them in from another view.

➤ The configuration record for the program components contains confusing information

about the dependency structure of the program. This problem becomes evident when you

execute cleartool commands such as catcr and diffcr, which display configuration records.

These behaviors occur because the compiler manipulates the files in the repository directory in

a way that conflicts with clearmake’s build avoidance and configuration records. When a

program uses templates, clearmake often associates incorrect configuration information with the

program file and the files in the repository.

Setting Up the Repository

By default, the repository directory, Templates.DB, is a subdirectory of the compiler’s working

directory. (Although you can specify the –ptr compiler option to change the repository directory,

we recommend that you use the default directory because the makefile models in this section

assume that you are using the default directory.) For each repository directory in your build

system, follow these steps to set up the repository:

1. Ensure that the Templates.DB subdirectory is a ClearCase directory element (under version

control).

2. Ensure that the file Templates.DB/Template.opt exists and is a ClearCase element. If it does

not exist, create an empty file and convert it to an element.

The SPARCompiler input file Template.opt tracks template specialization, that is, a

specialized implementation of a template class member or of a template function. You must

always keep the Template.opt file under version control, even if you do not use template

specializations, to help you avoid conflicts with the clearmake build avoidance mechanism.
118 Building Software: Rational ClearCase

NOTE: If you are using version 4.1 or later of the SPARCompiler, it is not necessary to make

Template.opt a ClearCase element. However, we recommend that you do so if you are

adding content to this file.

Cleaning the Repository

To force a complete rebuild or to reclaim disk space, you may want to clean the repository. A

common practice is to add a clean target to your makefile to delete the entire Templates.DB
repository. However, because we recommend that you maintain Templates.DB as a versioned

directory, you may not delete the entire directory. To remove the derived objects from the

repository while leaving the versioned files, remove only the files that match the following

wildcard patterns:

Templates.DB/*.o
Templates.DB/*.state
Templates.DB/*.system
Templates.DB/*.module
Templates.DB/Module.DB/*.module

Models for Working with SPARCompiler C++

To help clearmake and the SPARCompiler C++ compiler work together effectively, we

recommend that you design your makefile according to one of the models described in this

section. The model you choose depends on your needs:

➤ The Simple model is easy to use. It works best for developers who work independently of

others. It is not as effective for team projects in which sharing of builds is important.

➤ The Multiple Repositories model is fairly easy to use and solves the problems of sharing

builds in a team project. Its disadvantage is that compilations are slower.

There is no Forced Instantiation model for this compiler, because this compiler does not provide

a way to disable automatic template instantiations.

The remainder of this section describes each model.
7 - Using ClearCase to Build C++ Programs 119

The Simple Model

The Simple model solves some of the conflicts between ClearCase and SPARCompiler C++

compilers. It allows you to build programs naturally.

Insert the following line into your makefile, at any point in the file that does not break a rule or

definition that spans multiple lines.

include ccase-home-dir/config/clearmake/sunpro_4_0_simple.mk

How the Simple Model Works

The sunpro_4_0_simple.mk makefile contains the following clearmake directives.

.SIBLINGS_AFFECT_REUSE:

.SIBLING_IGNORED_FOR_REUSE: Templates.DB/%.system \
Templates.DB/%.state Templates.DB/%.module

.DEPENDENCY_IGNORED_FOR_REUSE: Templates.DB/Dependency.state \
Templates.DB/%.module Templates.DB/Module.DB/%.module

If you also build your program with other make programs, the directives in

sunpro_4_0_simple.mk are ignored (because other make programs do not recognize these

directives).

For more information about each of these directives, see Special Targets on page 85.

Sample Scenario Using the Simple Model

To avoid an inappropriate winkin, the Simple model prevents clearmake from winking in an

object file that contains template references. To take advantage of the results of a previous build

(for example, a nightly build), perform manual winkin by using the cleartool winkin command.

The –recurse option of the winkin command may be used to wink in a hierarchy of files that

produced a build.

For example, a build in view nightly produces executable hello in VOB directory /vobs/test. To

wink in the hierarchy of DOs for the version of hello from that build:

1. Set your config spec to match that of nightly. This selects the correct version of hello. (An

alternative is to specify a VOB-extended pathname for the derived object in Step #2.)
120 Building Software: Rational ClearCase

2. Type the following command:

cleartool winkin –recurse /view/nightly/vobs/test/hello

Because the winkin –recurse command winks in a hierarchy of DOs without regard to the

makefile or config spec selections in the current view, it is a good idea to issue a clearmake
command immediately after issuing the winkin –recurse command to ensure that all DOs are

up to date. Invoking clearmake also ensures that files you have checked out are rebuilt.

See the winkin reference page for more information.

Limitations of the Simple Model

These are the limitations of the Simple model and the workarounds for each:

➤ The compiler may reuse template code that ought to have been reinstantiated.

This can happen if you change a reserved checkout to unreserved or change your

configuration specification in such a way that you revert to a version of a template source file

that is older than the version that the compiler used in a previous build. When clearmake
detects the change, it recompiles the program template. The compiler, however, relies on a

file time-stamp comparison to check cached template code against its source. As a result, it

may inappropriately reuse code that is in the repository.

To work around the problem, you must force the compiler to reinstantiate templates, for

example, by removing the .o files from the repository directory.

➤ In certain cases, clearmake does not detect changes to template implementation source files.

The .DEPENDENCY_IGNORED_FOR_REUSE directive in sunpro_4_0_simple.mk avoids

unnecessary rebuilding by ignoring detected dependencies on certain objects. Thus, its

behavior more closely resembles that of make. The disadvantage of ignoring these

dependencies is that after performing repeated builds, clearmake may not detect that a

change to a template implementation source file necessitates a rebuild. To force the rebuild,

you must delete the instantiation object file from the repository.

➤ sunpro_4_0_simple.mk expects the name of the repository to be Templates.DB. If you use

the –ptr compiler option to change the name of the repository, you must edit

sunpro_4_0_simple.mk to reflect the change. Alternatively, edit a copy of the file and

specify the copy in the include line in your makefile.

NOTE: If you use –ptr to change the name of the directory containing the template repository

but do not change the name of the repository, you do not have to edit
7 - Using ClearCase to Build C++ Programs 121

sunpro_4_0_simple.mk. (The patterns in sunpro_4_0_simple.mk match Templates.DB in

any directory.)

➤ The configuration record for the program components contains confusing information

about the dependency structure of the program.

The cleartool commands catcr and diffcr often produce unexpected output for programs

that contain template code.

Building Archives That Contain Template Code

If you use SPARCompiler C++ compiler with the Simple model, building an archive that contains

instantiated template code is relatively easy. The next few sections describe how to perform the

following steps to set up the makefile:

1. Identify a set of source files that refers to all the template code you require.

2. Compile the source files that you identified in Step #1.

3. Make the archive target depend on the compilation of the source files.

4. Pass the names of the object files in the repository to the archiver.

Managing Template References

The following points describe how to manage template references, depending on which symbols

you want to define in your archive:

➤ You want to define in the archive every template symbol referenced by the files in your

archive.

You may use the default repository Templates.DB.

➤ There are template symbols referenced by the files in the archive that you do not want to be

defined in the archive.

You must specify separate repositories for the templates to be archived and for the templates

that are not to be archived, and build your sources accordingly. You may use the –ptr
compiler option to direct the compiler to look for a repository in a directory other than the

current working directory.
122 Building Software: Rational ClearCase

➤ There are template symbols you want to define in your archive but they are not referenced

in any of the object files in the archive.

You must force the compiler to instantiate the templates you need. Create one or more

dummy source files that refer to the missing symbols.

Building the Archive

In the following example, the target is the archive, lib.a, and $(OBJECTS) expands to a list of

objects required by lib.a.

The source file template_refs.C refers to additional template code that you want to include in the

archive. The template code to be archived resides in the default repository, ./Templates.DB.

In the following example, the utility program, atria_list_obj, takes one or more repository

directories as command line arguments and prints a list of the .o files that it finds in those

directories or any of their subdirectories. The example uses atria_list_obj to collect the names of

template object files and to put them on the ar command line.

lib.a: $(OBJECTS) template_refs.o
rm -f $@
ar qcv $@ $(OBJECTS) \

`atria_list_obj Templates.DB`

For more information, you may examine the code for the utility program in

ccase-home-dir/config/clearmake/atria_list_obj.

The Multiple Repositories Model

The Multiple Repositories model requires you to insert lines into your makefile and to follow

certain naming conventions in the build rules. clearmake then invokes a set of scripts that

perform extra repository management to avoid conflicts with clearmake build avoidance. The

scripts maintain a separate repository for each object file or executable that contains template

code.

This model provides the benefit of winking in the results of previous builds. However, it

prevents the compiler from reusing template code cached previously, so compiling takes longer.

If you build archives containing template code, you may find the Multiple Repositories model

too complicated.
7 - Using ClearCase to Build C++ Programs 123

The following sections describe how to perform these tasks:

1. Ensure that your makefile uses a recognized C++ compiler macro.

2. Insert special build rules in your makefile.

3. Verify that the special build rules take effect.

Using a Recognized Compiler Macro

Ensure that your makefile uses one of the following macro invocations to represent the C++

compiler in every place that the compiler is called:

➤ $(C++C)
➤ $(C++)
➤ $(CXX)
➤ $(CCXX)
➤ $(CCC)

Note that $(CC) is not in this list because it usually designates a C compiler, rather than a C++

compiler.

The macro invocation must appear in build rules for C++ objects. For example:

.C.o:
 $(C++) $(C++FLAGS) -c $<

The macro invocation must also appear wherever you execute the C++ linker. For example:

myprog: $(MYOBJS)
 $(C++) $(C++FLAGS) -o myprog $(MYOBJS)

Inserting Special Build Rules in Your Makefile

Edit your makefile as follows:

1. Insert the following line:

$(CCASE_CXX_COMP)

➣ If a C++ compiler macro is defined in your makefile, you must insert this line

immediately after the line that contains the compiler macro definition, because the

special build rule redefines the C++ compiler macro. However, if you are using this
124 Building Software: Rational ClearCase

makefile only with clearmake, you can remove the line containing the compiler macro

definition.

➣ Otherwise, insert the new line at the top of your makefile.

With these rules in effect, clearmake can manage the template instantiation process

efficiently.

NOTE: The CCASE_CXX_COMP macro expands to an include directive:

include ccase-home-dir/config/clearmake/comp_cxx.mk

The macro is provided so that your makefile can be used transparently with other make
programs. If that is not important to you, you can use the include directive instead to enable

the special build rules.

2. Decide whether to define the pathname to your C++ compiler, as follows:

a. If the name of your compiler is CC and does not require preceding pathname

components, do nothing.

b. Otherwise, insert a line in the format

REAL_C++=your-CC-program

where your-CC-program is the name of the compiler as it appears in the definition of the

C++ compiler macro.

If you use Purify with this model, insert the path to Purify before the path to the C++

compiler. For example:

REAL_C++=’purify CC’

Similarly, if you use PureLink with this model, insert the path to PureLink before the

path to the C++ linker. For example:

ATRIA_C++LINK=${CCASE_MAKE_CONFIG_DIR}/atria_cxxl \
$@ SunCC SunCC4.0 ’purelink $(REAL_C++)’
7 - Using ClearCase to Build C++ Programs 125

Example Makefile Using the Multiple Repositories Model

Consider the following makefile:

MYOBJS=main.o std.o istring.o site.o point.o

.SUFFIXES: .C .o

.C.o:
 $(C++) $(C++FLAGS) -c $<

C++=/opt/SUNWspro/bin/CC
C++FLAGS=-g

myprog: $(MYOBJS)
 $(C++) $(C++FLAGS) -o myprog $(MYOBJS)

After you make the modifications described in Inserting Special Build Rules in Your Makefile on

page 124, the makefile looks like this:

MYOBJS=main.o std.o istring.o site.o point.o

.SUFFIXES: .C .o

.C.o:
 $(C++) $(C++FLAGS) -c $<

C++=/opt/SUNWspro/bin/CC (this line can be removed if makefile is only being used with clearmake)
C++FLAGS=-g
$(CCASE_CXX_COMP)
REAL_C++=/opt/SUNWspro/bin/CC

myprog: $(MYOBJS)
 $(C++) $(C++FLAGS) -o myprog $(MYOBJS)

Testing the Makefile

To test your modifications:

1. Verify that your makefile is still valid for any make programs other than clearmake that you

use. Your modifications must not affect the way make programs other than clearmake build

your program.
126 Building Software: Rational ClearCase

2. When you build your program with clearmake, check whether there is a difference in the

commands that clearmake executes. Whenever clearmake executes a C++ translation, it

echoes a command line that begins with the following text:

ccase-home-dir/config/clearmake/atria_cxx SunCC SunCC4.0

If the result of either of these test steps is not what you expect, examine your makefile to verify

that you modified it correctly.

How the Multiple Repositories Model Works

When clearmake executes the build rule, the C++ macro expands to code that includes the file

ccase-home-dir/config/comp_cxx.mk. This file adds the special build rules suited to the Sun 4.x

compilers. Because the macro is ordinarily undefined, other make programs expand the macro

lines to empty text, which is ignored.

The comp_cxx.mk file provides a wrapper around the compiler and linker. The wrapper runs the

atria_cxx script whenever the compiler or linker is invoked. The script performs actions that

work with the compiler’s template instantiation method, and also runs other scripts. To cause the

atria_cxx script to echo the command lines it executes, invoke clearmake with the –v or –d
command line option, or set the CCASE_VERBOSITY environment variable as described in the

env_ccase reference page.

By default, the C++ compiler creates only one directory, Templates.DB, for the template

instantiation repository. When you modify the build rules, the compiler creates an xxx.ptrep
directory for each C++ target, regardless of whether the target is an object file or a linked

executable. The link process uses multiple –ptr options to search the repositories. The new build

rules eliminate unnecessary rebuilds by preventing multiple targets from writing to the same

file. Therefore, maintaining separate repositories is an important part of the solution to the

conflict between clearmake building and Sun compiler template instantiation.

Limitations of the Multiple Repositories Model

These are the limitations of using the macro described in this section:

➤ You cannot use the –ptr compiler option.

To maintain separate template repositories, the build script inserts a –ptr option onto each

C++ command line. Because the build rules assume control over the repository directories,

you cannot use the –ptr option to specify another repository directory.
7 - Using ClearCase to Build C++ Programs 127

➤ The compiler does not reuse template code.

The build script for invocations of this compiler re-creates the template repository for the

target object on every build. The rebuilds prevent the compiler from reusing template code

that was instantiated during a previous build of the same module. They also prevent the

compiler from sharing template code between modules. Therefore, compiling some files will

take longer when you use clearmake.

In addition, multiple repositories may consume more disk space than a single repository

does. For an example of how to eliminate duplicate instantiation objects from an archive

library or executable, see Multiple Repositories Example on page 129.

Building Archives That Contain Template Code

This section describes how to use the Multiple Repositories model to build an archive or shared

library that contains instantiated template code. Use the Multiple Repositories model for this

purpose only when necessary. We suggest that where possible, you use the Simple model to

build archives or shared libraries that contain instantiated template code.

To build a library that contains instantiated template code, you must pass to ar or to the linker

the names of all repository files containing the code you want to include in the library or

executable. In the Multiple Repositories model, the files you need may reside in different

repositories. Also, duplicate files may exist among repositories.

The makefile rules that build the library must specify all directories that contain template code.

The rules must also eliminate duplicate code among the repositories.

To modify makefile rules to build a library:

1. Identify the source files that refer to all the template code you require.

➣ Usually, you want to include in the library all template code referenced by the library

source code. The set of source files that refers to all the template code you require (the

reference set) is the set of library source files.

➣ To exclude code, identify the source files that refer to it and remove them from the

reference set.

➣ To include in the archive template symbols that are not referenced by any of the source

files in the reference set, you must force the compiler to instantiate these templates.

Create one or more dummy source files that refer to the missing symbols. Add the

dummy sources to the set of sources to compile.
128 Building Software: Rational ClearCase

The source files that you have identified will fall into the following categories:

➣ Library source files that are members of the reference set

➣ Library source files that are not members of the reference set

➣ Dummy reference source files

The second and third categories are usually empty.

2. Build the library.

a. Make the archive target depend on the compilation of the source file list.

b. Collect the instantiated template code into a single directory.

c. Pass the names of the object files in the directory to ar or to the linker.

The makefile rule that builds your library must depend on the compilation of all library

sources and all dummy reference sources. When the rule invokes the linker or archiver, it

must pass the names of all these files:

➣ Library object files

➣ Template object files derived from library source files that are members of the reference

set

➣ Template object files derived from dummy reference source files

Multiple Repositories Example

In the following example:

➤ The target is an archive, lib.a.

➤ $(OBJECTS) expands to a list of objects required by lib.a.

➤ $(OBJECTS_EXCL_TMPL) expands to a list of objects required by lib.a but containing

references to templates you want to exclude from the library.

➤ $(DUMMYOBJ) expands to a list of objects built from dummy reference source files.

The repositories are named basename.o.ptrep, where basename.o is the name of a compiled C++

object module. The makefile rule creates a temporary repository called lib.a.ptrep to collect the

template object files before archiving them.
7 - Using ClearCase to Build C++ Programs 129

The utility program, atria_list_obj, takes one or more repository directories as command line

arguments and prints a list of the .o files that it finds in these directories or any of their

subdirectories. The example uses this program to collect the names of template object files and

to put them on the ar command line.

lib.a: $(OBJECTS) $(OBJECTS_EXCL_TMPL) $(DUMMYOBJ)
rm -r -f $@ $@.ptrep
mkdir $@.ptrep
for i in $(OBJECTS) $(DUMMYOBJ) ; do \

cp /dev/null ‘atria_list_obj $$i.ptrep‘ $@.ptrep ; \
done
ar qcv $@ $(OBJECTS) $(OBJECTS_EXCL_TMPL) \

‘atria_list_obj $@.ptrep‘
ranlib lib.a
rm -r $@.ptrep

This build script copies all the required template code into a single directory, and then archives

all the code in the directory. The extra copy step eliminates duplicate template code from the

archive.

For more information, examine the code for the utility program in

ccase-home-dir/config/clearmake/atria_list_obj.

7.4 Working with the SGI Delta/C++ Compiler

This section describes how to use clearmake effectively to build C++ programs using the SGI

Delta/C++ compiler. This compiler is available with SGI C++ Version 4.0 and later.

You may be using a version of the compiler that is earlier than Version 4.0. Both the Delta/C++

compiler and the earlier compiler, which is based on the Cfront translator from AT&T, are

packaged with SGI C++ Version 4.0 and later.

You are using the earlier compiler if one of the following is true:

➤ You are using a version of SGI C++ that is earlier than Version 4.0.

➤ You are using Version 4.0 of SGI C++, and you run the OCC executable to invoke the

compiler.

➤ You are using Version 4.0 of SGI C++, and you specify the –use_cfront command-line

option to the compiler.
130 Building Software: Rational ClearCase

If you are using the earlier compiler, read Working with Cfront-Based C++ Compilers on page 100

instead of this section.

SGI Delta/C++ Compiler Template Instantiation: Interaction with clearmake

The Delta/C++ compiler offers several methods for building template code; the method you

choose depends on your needs. The following sections describe these methods.

Automatic Instantiation

By default, the SGI Delta/C++ compiler instantiates templates automatically to build template

code. During a prelink step, the compiler determines what template code the program requires

and compiles the necessary code into some of the object files that make up the program. The

compiler tracks how the program uses template code. It records this information in the ii_files
subdirectory of the build directory.

If you use the Automatic Instantiation method, clearmake sometimes executes unnecessary

rebuilds of program components. When the prelinker compiles template code into an existing

object file, the dependency information that clearmake previously recorded for that object file is

no longer up to date. The next time that clearmake is invoked, it will rebuild the object file. After

this rebuild, the dependency information for the object file is again correct. At this point,

clearmake no longer rebuilds that object file unnecessarily.

The Automatic Instantiation method is the easiest to use because it requires no programmer

intervention. It is suitable for most applications. Aside from the unnecessary rebuilds described

above, this method does not conflict with ClearCase configuration management.

Compile-Time Demand Instantiation

The Compile-Time Demand Instantiation method instantiates templates at compile time, rather

than during a prelink step. To use this method, specify the –ptused and –no_prelink compiler

options to the Delta/C++ compiler.

These options cause the compiler to compile all the template code that the source module refers

to into the object module. If multiple source modules refer to the same template class or function,

copies of the compiled template code appear in multiple object modules. When the program is

linked, the linker removes duplicate template code originating from multiple object modules.

The Compile-Time Demand Instantiation method is easy to use, requiring only that you specify

extra compiler options. It is suitable for most applications, especially for building archives and
7 - Using ClearCase to Build C++ Programs 131

shared libraries. Also, this method does not conflict with ClearCase configuration management.

The disadvantage is that the compiler uses extra time and disk space to perform redundant

template instantiation.

Explicit Instantiation

The Explicit Instantiation method is an alternative form of compile-time instantiation. The

Delta/C++ compiler allows you to add directives to the source code to specify which template

classes to instantiate.

When it compiles a source module, the compiler instantiates all the template classes specified by

the directives in the source. The compiler instantiates each template classes completely; that is, it

instantiates every member function and static data member of the class.

To use the Explicit Instantiation method:

1. For each template class to instantiate, add one #pragma instantiate directive to the source

code. For example, if the program requires the Array<String> class, add the following

directive:

#pragma instantiate Array<String>

2. In each source file that contains a #pragma instantiate directive, include the header files that

contain definitions of the templates and classes used in the directives.

3. [Optional] Disable automatic instantiation by specifying the –ptnone and –no_prelink
compiler options. Automatic instantiation does not interfere with explicit instantiation, but

you can disable it, if you prefer.

The Explicit Instantiation method requires more effort to use. However, it allows you to control

the placement of instantiated template code into object modules. This control is useful in some

situations, especially when building archives of instantiated template code. Using explicit

instantiation does not conflict with clearmake build avoidance.
132 Building Software: Rational ClearCase

7.5 Working with the IBM AIX XLC C++ Compiler

This section describes how to use clearmake effectively to build C++ programs using the IBM

AIX XLC compiler.

XLC Compiler Template Instantiation: Interaction with clearmake

The XLC compiler instantiates a template when it encounters a #pragma directive in the source

code. You can insert these directives into the source code manually, or you can direct the compiler

to generate auxiliary source code that contains the necessary directives.

The XLC compiler’s automatic template instantiation works as follows:

1. As the XLC compiler compiles a source module into an object module, it notes the templates

that the module refers to.

2. When the compiler finishes the translation, it generates auxiliary source modules in a

repository directory. By default, the repository directory is tempinc.

3. At link time, the compiler compiles the auxiliary sources and links the resulting object

modules into the final executable. The template source and object modules remain in the

repository, so that the compiler can reuse template code generated by earlier builds. The

compiler verifies that cached template object modules are up to date with their sources.

If you use clearmake to build C++ programs that contain template code and are building in an

MVFS directory, we recommend that you follow one of the procedures in this section to avoid

any incorrect behavior that may result. For example:

➤ clearmake executes unnecessary recompiles of program components.

➤ clearmake fails to wink in available derived objects.

➤ After a template source file changes, clearmake does not rebuild.

➤ clearmake rebuilds the executable, but the compiler fails to reinstantiate template code for

which the source has changed.

➤ The output of cleartool commands such as catcr and diffcr that display configuration

records is confusing.
7 - Using ClearCase to Build C++ Programs 133

This behavior occurs because the compiler manipulates files in the repository in a way that

conflicts with clearmake build avoidance and configuration records. When a program uses

templates, ClearCase often associates incorrect configuration information with the program file

and the files in the repository.

Models for Working With IBM XLC

To help clearmake and the XLC C++ compiler work together effectively, we recommend that you

set up your makefile and program sources according to one of the models described in this

section. The model you choose depends on your needs:

➤ The Simple model is easy to use and solves some of the problems mentioned earlier. It is the

only model that makes use of automatic template instantiation to build template code

efficiently. It works best for developers who work independently of others. It is not as

effective for team projects in which sharing builds is important.

➤ The Compile-Time Demand Instantiation model requires work to set up, but it is easy to use

and avoids all the clearmake problems mentioned earlier. It also simplifies sharing builds in

a team project. The penalty of using this model is that compile time can increase.

➤ The Explicit Instantiation model is difficult to use, because it requires you to track template

references. This model avoids all the clearmake problems mentioned earlier, and simplifies

sharing builds in a group project. It is also the best model to use for building archives and

shared libraries that contain template code.

The remainder of this section describes each model in more detail.

The Simple Model

The Simple model relies on the automatic template instantiation of the XLC compiler. This model

requires you to insert one line into your makefile.

The Simple model does not solve all the problems that result from conflicts between XLC

automatic template instantiation and clearmake, but it allows you to make minimal changes to

the project and to take advantage of the efficiency of automatic template instantiation.

Configuration problems can result from version changes in the template sources. The Simple

model is not appropriate for building libraries.
134 Building Software: Rational ClearCase

Modifying the Source Files

The XLC automatic template instantiation scheme requires that for every .h template header file,

there is a corresponding .c source file with the same name that contains the implementation of

the template. The .c extension is unusual in C++ source file names; you may want to set up your

project source files so that each .c file refers to a corresponding source file with a more standard

extension, such as .cxx or .C. You can set up a reference .c file in two ways:

➤ Create a new element with the .c extension that includes the corresponding file of the

standard extension.

➤ Create a link with the .c extension that points to the corresponding file of the standard

extension. For instructions on how to create a link in an MVFS directory, see the cleartool ln
reference page.

NOTE: Do not set up template header files to include the corresponding source file. Doing so

disables automatic template instantiation and defeats the Simple model.

Designing Your Makefile

To design your makefile:

1. Insert the following line into your makefile, at any point in the file that does not break a rule

or definition that spans multiple lines.

.DEPENDENCY_IGNORED_FOR_REUSE: tempinc/%.C

This directive instructs clearmake not to rebuild program components that depend on a

compiler-generated source file in the repository when that file changes or is deleted. Such

rebuilds are unnecessary. This directive works if the leaf name of the repository directory is

tempinc.

2. If you use the –qtempinc=tempinc compiler option to rename a repository directory, add to

your makefile another directive of the form

.DEPENDENCY_IGNORED_FOR_REUSE:my_repository/%.C

where my_repository is the leaf name of the repository.

Limitations of the Simple Model

Some problems remain when you use the Simple model. The following list describes the

problems and how to work around them.
7 - Using ClearCase to Build C++ Programs 135

➤ After you modify a template source file, clearmake sometimes fails to relink the executable.

To work around this problem, delete the executable before you build with a new version of

a template source file in your program.

➤ When you revert to a version of a template source or header file that is older than the

version the compiler used in a previous build, the compiler may reuse object modules in the

repository that it should have recompiled. This can happen after you change a template

checked out source or header file from reserved to unreserved or after you modify your

configuration specification. clearmake detects the change and issues a recompile. However,

because the compiler relies on a file time-stamp comparison to check cached template code

against its source, it incorrectly reuses the code already in the repository.

To work around the problem, remove all .o files from the repository when you revert to an

older version of a template source or header file.

➤ clearmake rebuilds program components rather than winking in available builds from

another view. This problem makes the Simple model more difficult to use for team projects

in which sharing builds is important.

To manually wink in files produced by another build, use the cleartool winkin command.

Use the –recurse option of the winkin command to wink in a hierarchy of files that produced

a build. For more information, see the winkin reference page.

➤ The configuration record for the final program contains confusing information about the

dependency structure of the program. This problem becomes evident when you execute

cleartool commands such as catcr and diffcr, which display configuration records.

The Compile-Time Demand Instantiation Model

The Compile-Time Demand Instantiation model does not use the XLC compiler’s automatic

template instantiation. Instead, it forces the compiler to instantiate all the template code used by

a given module. At link time, there may be multiple definitions of template symbols, but the

linker drops the duplicate symbols.

To use this model, you may have to edit some source files. The advantage of using this model is

that avoiding automatic template instantiation solves the conflicts between the compiler and

clearmake. The disadvantage is that compiling duplicate template code takes extra time and disk

space.
136 Building Software: Rational ClearCase

Modifying the Source Files

The Compile-Time Demand Instantiation model requires that every template header file include

its corresponding source file. Therefore, if you use this model, you must edit template header

files if they do not include their corresponding source file.

We recommend that you use conditional compilation directives as shown in the following

pattern.

// Header file my_templ.h

//

#ifndef _my_templ_h__ // header file exclusion -- use any
// unique name

#define _my_templ_h__

... Place template declarations here ...

#ifdef TEMPLATE_CODE_IN_HEADERS

#include “my_templ.cxx” // source file name suffix may vary

#endif

#endif // _my_templ_h

Designing Your Makefile

If you set up your header files as recommended in the previous section, you must also define the

macro that enables source file inclusion on the compiler command line. For the sample above,

enable source file inclusion by specifying the compiler option

–DTEMPLATE_CODE_IN_HEADERS. The conditional directive allows you to build under a

different model or on other platforms without changing the source code.

To disable automatic template instantiation, specify the –qnotempinc compiler option.

Duplicate Symbol Warnings from the Linker

When you set up template header files to include their source files, the implementation of each

template is available to the compiler at compile time. The compiler instantiates the template
7 - Using ClearCase to Build C++ Programs 137

immediately and puts the compiled template code into the object module. The result is that every

object module that refers to a certain template function or data contains the code for that

template function or data. This leads to multiple definitions of template symbols at link time. The

AIX linker drops the duplicate symbols without generating an error. As the linker drops each

duplicate symbol, it issues a Duplicate symbol warning. You can ignore these warnings. To

suppress them, specify the compiler option –LOOK_IT_UP in the final link step of the program.

The Explicit Instantiation Model

The Explicit Instantiation model is useful whenever it is necessary to assume full control over the

placement of instantiated template code. For example, if you are building an archive or creating

a shared library containing template code, you probably want to use this model. To use the

Explicit Instantiation model, you must disable automatic template instantiation and on-demand

compile-time instantiation, and explicitly identify the templates that your program needs to

instantiate.

The Explicit Instantiation model requires that you keep track of the set of templates the program

requires and maintain source directives to instantiate the templates. This maintenance burden is

worthwhile only when you are required to specify the module in which instantiated template

code appears, for example, when building code for an archive or shared library. Otherwise, the

Compile-Time Demand Instantiation model is more suitable.

Modifying the Source Files

For each template class or function that your program requires, add exactly one #pragma define
directive to the source code. For example, if your program requires the class

Array<String>

then add this #pragma define directive:

#pragma define(Array<String>)

In each source file that contains a #pragma define directive, include the source files that contain

the implementations of the templates used. For example, if the source for the Array template is

contained in the file array.cxx, add the following #include directive to the file that contains the

#pragma directive:

#include “array.cxx”
138 Building Software: Rational ClearCase

Do not set up header files to include corresponding source files. If you do, duplicate template

instantiation may result (see The Compile-Time Demand Instantiation Model on page 136).

Remove function definitions from source files that contain #pragma define directives.

Designing Your Makefile

In your makefile, disable automatic template instantiation by specifying the –qnotempinc
compiler option.

7.6 Working with the HP aC++ Compiler

This section describes how to use clearmake to build C++ programs using the HP aC++ compiler

(aCC).

If you are using the earlier HP Cfront-based compiler (CC), read Working with Cfront-Based C++
Compilers on page 100 instead of this section.

The HP aC++ compiler offers several methods of building template code; the method you choose

depends on your needs. The following sections describe these methods.

Automatic Instantiation

By default, the HP aC++ compiler instantiates templates automatically to build template code.

During a prelink step, the compiler determines what template code the program requires and

compiles the necessary code into some of the object files that make up the program. The compiler

tracks how the program uses template code. There is no repository; instead, the compiler records

this information in .o and .I files in the build directory.

If you use the Automatic Instantiation method, clearmake sometimes rebuilds program

components unnecessarily. When the prelinker compiles template code into an existing object

file, the dependency information that clearmake previously recorded for that object file is no

longer up to date. The next time clearmake is invoked, it rebuilds the object file; the dependency

information for the object is again correct. At this point, clearmake no longer rebuilds that object

file unnecessarily.
7 - Using ClearCase to Build C++ Programs 139

The Automatic Instantiation method is the easiest method to use because it requires no

programmer intervention. It is suitable for most applications. However, it does cause occasional

unnecessary rebuilds.

Command-Line Option Instantiation

The HP aC++ compiler provides various command line options for specifying what templates to

instantiate for a given translation unit. For example, the +inst_all option requests instantiation

of all templates and the +inst_used option requests instantiation of templates that are used. With

these options, the compiler compiles all template code into the object module. If multiple source

modules refer to the same template class or function, copies of the compiled template code

appear in multiple object modules.

The command-line instantiation methods are easy to use; they require only that you specify extra

compiler options. These methods are suitable for most applications and do not conflict with

clearmake build avoidance. The disadvantage of using these methods indiscriminately is that

the compiler requires extra time and disk space to perform redundant template instantiation.

Indiscriminate use may also result in duplicate symbols.

Note that a special command-line option, +inst_close, is provided for building archives and

shared libraries. With this option, the compiler uses the automatic instantiation method.

Explicit Instantiation

The HP aC++ compiler supports the ANSI C++ explicit instantiation syntax as defined in the ISO

Standard for the C++ Programming Language. This explicit instantiation method requires you to

request instantiation explicitly in the source code. For more information about using explicit

instantiation, see the HP aC++ compiler documentation.

The Explicit Instantiation method requires more effort to use; however, it allows you to control

the placement of instantiated template code into object modules. In addition, as part of the ANSI

C++ standard, it may be the most portable solution. Using explicit instantiation does not conflict

with clearmake build avoidance.
140 Building Software: Rational ClearCase

88 Using ClearCase Build Tools with
Java

The building behavior of Java tools causes various problems for clearmake. This chapter

presents these problems and some possible solutions.

8.1 ClearCase Build Problems with Java

Java source is kept in files with extension .java, where the file name must be constructed from

the name of the class it defines. For example, a class ocean referenced by other Java source files

must be in a file named ocean.java. Compiling ocean.java with the Java compiler creates a file

called ocean.class. Subsequent compilations may read the .class files generated previously.

When the Java compiler encounters a reference to a class defined in another file, it rebuilds that

class file if it is out of date or does not exist. This behavior puts extra information in the

configuration record:

➤ Extra .class files as siblings of the target .class file

➤ Extra dependencies on .java sources from building the siblings

This information can cause unnecessary rebuilding, prevent winkins, and create confusing catcr
output. The major Java development toolkits exhibit this behavior.
8 - Using ClearCase Build Tools with Java 141

Java Toolkits

The standard Java toolkit is the Java Development Kit from Sun, which includes the javac
compiler and is available for many platforms.

The remainder of this chapter uses javac from Sun as the example.

Scope of the Problems

The build problems relate to conflicts between the dependency analyses of clearmake and javac.

Because the Java compiler does some dependency analysis, some developers may not require

make tools. Environments such as Visual J++ do not require that you use makefiles, nor do they

generate and use makefiles themselves as Visual C++ does.

The need for make tools is reduced further because the Java language minimizes the need to

recompile a dependent class file when the depended-on file changes. Java keeps interface and

implementation in the same file, so changes to the implementation part of the file do not strictly

require recompilation. This behavior differs from C and C++ applications, in which interface is

separated from implementation by splitting the source into header (.h) and implementation (.c)

files. Some developers may prefer to control when to rebuild Java sources. However, none of the

current tool environments is based on such a language-sensitive recompilation; like make, javac
uses time stamps to determine when to rebuild.

8.2 Benefits of Using make Tools with javac

Although javac handles dependency analysis well, using javac by itself misses rebuilds that a

make tool does not. There are additional benefits of using clearmake beyond those of using a

non-ClearCase make tool, especially given the building behavior of javac.

Using javac Inside a Makefile

make detects modifications of indirect dependencies that javac does not. If a.java depends on

b.java and b.java depends on c.java, when you change c.java, the command javac a.java does

not rebuild c.class. Therefore, if you are using javac directly, you must recompile each file as you

change it.
142 Building Software: Rational ClearCase

In addition, many Java applications have some components that are compiled natively or are

written in another language. For at least those parts of their applications, developers need

makefile-based building.

Using javac with clearmake Instead of make

clearmake is better at determining when a rebuild is required than the Java tools, with or without

make. For example, clearmake detects the following rebuild cases, but javac does not:

➤ Selection of an older version of a .java file. Because the rebuild decision is based on an

older/newer comparison, javac does not detect that a rebuild is necessary.

NOTE: Clock skew between hosts can cause similar time stamp problems outside ClearCase.

➤ Change of the javac command line. If the command-line options used to build a .class file

have changed since the last build, clearmake rebuilds the .class file. For example, if you add

the –g switch to direct the compiler to rebuild with debugging information, you must

invoke the compiler on all your .java files to ensure that they are rebuilt to contain the

debugging information.

➤ Manual winkin of a .class file that is out of sync with, but newer than, the corresponding

.java source selected by the view. Because the rebuild decision is based on an older/newer

comparison, javac does not detect that a rebuild is necessary.

8.3 Unnecessary Rebuilds and Prevention of Winkin

javac’s build behavior causes clearmake to perform extra rebuilds and prevent winkins:

➤ Because a .class file is sometimes built as a sibling of another .class file, the build script for

the sibling differs from what it would be if the .java file were compiled directly. clearmake
rebuilds unnecessarily in this case because the build scripts do not match. Mutually

dependent .java files are an extreme case of this behavior, because the build of one can

change the build script of the other.

➤ Similarly, because the set of dependencies does not remain consistent from one build to the

next, clearmake rebuilds because versions do not match.

➤ If a sibling derived object is overwritten, winkins are prevented.
8 - Using ClearCase Build Tools with Java 143

8.4 Building Java Applications Successfully

The following alternatives allow you to successfully build Java applications with clearmake:

➤ Write the makefile correctly

➤ Allow clearmake to rebuild

➤ Configure clearmake makefiles to behave like make

The following sections describe each option in detail.

Writing Correct Makefiles

A correctly written makefile results in a correct set of configuration records, which gives you the

full power of ClearCase configuration records and winkin without unnecessary rebuilding and

without missing rebuilds. You can restructure a makefile to avoid javac’s automatic building

behavior by enforcing that files on which other files depend are built before their dependents.

NOTE: clearmake detects implicit dependencies but cannot determine build order dependencies.

If you want files to build in a certain order, you must declare that order in the makefile by adding

additional dependencies.

You must take extra care when handling mutually dependent files, because there is not

necessarily a correct order for building them. One possibility is to always generate all mutually

dependent files as one unit, that is, in one configuration record. You can write the build script for

a set of mutually dependent files to delete all class files that correspond to those files before

building any of them. This ensures that they are not overwritten individually and makes them

available as a unit for winkin.

The advantage of writing your makefile correctly is that it does not cause extra compilations or

rebuilds. No special makefile directives are required, the configuration records have no unusual

properties, and winkins will work fully. The disadvantage is that the makefile must always be

synchronized with the structure and dependencies of the application.

The following sections are makefile examples for applications with particular dependency

characteristics.

No Mutually Dependent Files

In this application, classes x, y, and z have a hierarchical dependency graph:
144 Building Software: Rational ClearCase

The makefile for such a dependency structure is very simple:

.SUFFIXES: .java .class

.java.class:
javac $<

x.class: y.class
y.class: z.class

Mutually Dependent Files

This application consists of classes top, a, b, c, and d, which have a more complex dependency

structure:

The makefile for this dependency structure is somewhat longer, but correct:

x y z

top

a

b c d
8 - Using ClearCase Build Tools with Java 145

top.class: a.class b.class
javac top.java

a.class: b.class

b.class:
rm -f a.class b.class
javac a.java b.java

b.class: c.class

c.class: d.class

d.class:
rm -f c.class d.class
javac c.java d.java

Allowing Rebuilds

If you continue to invoke clearmake until it determines that all files are up to date, the other

ClearCase features work correctly. The configuration records record all class files as implicit

dependencies rather than siblings, which allows winkin to work.

However, the number of rebuilds can become very large if the makefile is written incorrectly. It

is possible to map out a correct set of dependencies as described in Writing Correct Makefiles on

page 144; it is also possible to request (however inadvertently) that clearmake build the files in

exactly the reverse, and most inefficient, order.

In addition, clearmake’s default behavior is to ignore modifications to siblings for the purposes

of rebuilding. For winkin to work correctly, you must reenable that behavior by using a

command-line option or special makefile directive.

Another drawback to this method is that the builds of mutually dependent source files do not fit

well, because the files are never up to date. The makefile for these must be written carefully, as

described in Writing Correct Makefiles on page 144.
146 Building Software: Rational ClearCase

Configuring Makefiles to Behave Like make

By using special targets, you can configure your clearmake makefile so that clearmake behaves

as make does with regard to Java builds. The following targets eliminate the extra rebuilding

described in Allowing Rebuilds on page 146:

.NO_CMP_SCRIPT disables build script checking. However, relevant build-script changes are

ignored. In addition, .NO_CMP_SCRIPT has no effect during winkin, so even when it is in use,

winkins are prevented because of build script differences. Therefore, you must use manual

winkins (see the winkin reference page) or forego them entirely.

.DEPENDENCY_IGNORED_FOR_REUSE disables the version checking of implicit

dependencies when clearmake is looking for DOs to reuse. This can cause desired rebuilds to be

missed, however. One benefit of using clearmake is automatic dependency detection (for

example, of .h files in a C build), so it is not desirable to give this up.

To improve the missed implicit dependency checking caused by

.DEPENDENCY_IGNORED_FOR_REUSE, you can add the missing dependencies as explicit

dependencies in the makefile. However, this is a manual process, and you still lose build script

checking and winkin. The remaining benefit of using clearmake is configuration records (though

the catcr output for them may be confusing).

.NOCMP_SCRIPT: %.class (omake only)

.NO_CMP_SCRIPT: %.class (clearmake only)

.DEPENDENCY_IGNORED_FOR_REUSE: %.class
8 - Using ClearCase Build Tools with Java 147

148 Building Software: Rational ClearCase

99 Setting Up a Parallel Build

This chapter describes the process of setting up and running builds that use several hosts in the

local area network. It describes the control mechanisms for the client and server.

9.1 Overview of Parallel Building

Rational ClearCase can perform builds in which multiple processes execute in parallel the build

scripts associated with makefile targets. The processes executing the build scripts can run on a

single host or across a collection of machines around the local area network (parallel distributed

build). By using more concurrent processes, parallel builds can reduce the overall build time

significantly. Instead of one process running one build script at a time, you can have multiple

processors working in parallel. For large software systems, this performance improvement can

make a critical difference. For example, you can use parallel builds to enable a build of your

entire software system to run overnight and finish before developers and testers arrive for work

in the morning.

You start a parallel build the same way as a single-host build: by entering a clearmake command.

A command-line option or environment variable setting causes the build to run in parallel mode.

A parallel build is controlled by specifications on all the hosts involved. The host on which you

enter the clearmake command is the build client or build controller. On this host, you specify a limit

to the number of build scripts to be executed concurrently. You can also specify a build hosts file,

which lists the server hosts to be used for building.

Each build server host used in a parallel build can have an access-control file, named

bldserver.control. To use the host as a build server, a build client must meet the access-control

requirements.
9 - Setting Up a Parallel Build 149

When building in parallel, clearmake starts one or more audited build executor (abe) processes.

An abe is a server process invoked by clearmake to control and audit execution of a build script

during a parallel build. The first time it dispatches a build script to a host, clearmake starts an

abe process there. Subsequent build scripts dispatched to the same host may be executed by the

same abe process or by a different one.

An abe process starts by setting the same view as the calling clearmake. It executes a build script

dispatched to it in much the same way as clearmake—each command in a separate shell process.

All make macros are expanded by the build script calling clearmake, but environment variables

are expanded by the shell process in which a build command runs. This environment combines

the abe startup environment and the entire environment of the calling clearmake. Where there

are conflicts (for example, SHELL and PATH), the abe setting prevails. To this environment other

macros are added:

➤ Special make macros, such as MAKEFLAGS, MAKEARGS, and (in the compatibility

modes sgismake, sun, and gnu) MFLAGS. These are needed in case the build script

invokes clearmake recursively.

➤ Macros assigned in a build options spec or on the clearmake command line. These settings

are always placed in the build script’s environment; they override, if necessary, settings in

the environment of the calling clearmake or settings in the abe startup environment.

The stdout and stderr output produced by build scripts is sent back to clearmake, which stores

it in a temporary file. When the build script terminates, clearmake prints its accumulated

terminal output.

abe returns the exit status of the build script to the calling clearmake, which indicates whether

the build succeeded or failed. If the build succeeded, abe creates derived objects and

configuration records.

NOTE: The abe program is started by clearmake when needed; it should never be run manually.

Each abe process sets to the same view and working directory as the clearmake process; then

each process executes build scripts dispatched to it from the controlling clearmake process.

When the abe process is being started on a remote machine, clearmake uses the standard UNIX

remote shell facility, referenced through the ccase-home-dir/etc/rsh symbolic link. A build script

runs under abe control as if it were executed by clearmake, except that abe collects terminal

output produced by the build script and sends it back to the build controller, where it appears in

your clearmake window. The abe process terminates after waiting three minutes for an initial

connection or after waiting three hours for a subsequent response.
150 Building Software: Rational ClearCase

Parallel Build Scheduler

clearmake schedules and manages target rebuilds as follows:

➤ It executes the build script for an out-of-date target as soon after detection as system build

resources will allow.

➤ It does not assume that executing a build script for a specific target implies that the target

was updated.

clearmake evaluates the dependency graph, beginning with the command-line supplied targets.

Before evaluating a specific target, clearmake ensures that all dependents of that target have

been evaluated and brought up to date. As soon as a target is deemed to be out of date, it is made

available for rebuilding. A rebuild is initiated as soon as system resources allow. Depending on

the availability of build hosts and load-balancing settings, this may happen immediately or be

delayed.

When DO shopping/winkin occurs, clearmake postpones DO lookup for any target that has

scheduled dependents until the target is encountered in the rebuild logic. When a target with

previously scheduled dependents is encountered in the rebuild logic, clearmake then performs

the DO shopping/winkin attempt only when the target’s dependencies have completed. This

eliminates unnecessary rebuilds in serial mode and allows a parallel clearmake to initiate

rebuilds sooner.

Failure Modes

Certain conditions can interfere with an abe process, causing a target rebuild to fail:

➤ Remote login is disabled on a particular host, preventing an abe process from being started.

➤ clearmake’s view could not be accessed on the remote host.

9.2 Setting Up the Client Host

There are three issues to consider when you set up client-side processing for parallel builds:

➤ The number of parallel build processes to request. clearmake limits the number of

concurrent target rebuilds to the value of the CCASE_CONC environment variable or the
9 - Setting Up a Parallel Build 151

number you specify with the –J command-line option. clearmake does not start more abe
processes than specified.

➤ The hosts to specify for builds. clearmake starts all abe processes on the local host unless

you provide a build hosts file. You can specify a build hosts file with the –B command-line

option or with the CCASE_HOST_TYPE environment variable.

➤ The limitations and requirements for system loading on the build hosts. ClearCase tries to

keep the build machines from becoming overloaded, by dispatching a build script to a host

only if the host is sufficiently idle. The idleness threshold is specified in the build hosts file.

If you do not specify an idleness threshold or do not use a build hosts file, clearmake
submits as many build scripts as allowed by the –J or CCASE_CONC setting.

Creating Build Hosts Files

The build hosts file is the client-side control file for parallel builds.

Build hosts files that you specify using the CCASE_HOST_TYPE environment variable must be

located in your home directory, and each file must have a name that begins with .bldhost.
Choose a file-name extension for each build hosts file that describes its intended use. For

example:

Build hosts files that you specify with the –B option can be located anywhere and do not have to

have special names.

Your build environment determines whether you need multiple build hosts files. In a

heterogeneous network, for example, architecture-specific builds may or may not need to be

performed on hosts of that architecture. (You may have cross-compilers, which eliminates this

restriction.)

When you start a parallel build, you can specify a certain build hosts file or have clearmake select

one by using the –B option. If you do not specify –B when running a parallel build, clearmake
does the following:

1. Determines the host type.

2. Looks in the password database to determine your home directory.

.bldhost.sun5 List of hosts used to build SunOS 5 binaries

.bldhost.day List of hosts used to perform parallel builds during the workday

.bldhost.night List of hosts used to perform overnight parallel builds
152 Building Software: Rational ClearCase

3. Uses the file .bldhost.$CCASE_HOST_TYPE in your home directory.

For example, you can set up two build hosts files, for daytime and nighttime use, as follows:

1. Create a build hosts file for daytime use. For daytime builds, you can use the list of hosts that

your system administrator has provided in /usr/local/lib, along with your own host. To

minimize the disruption to other work, you can specify that each host is to be used only if it

is not heavily loaded: that is, if it is at least 75% idle.

% cat > $HOME/.bldhost.day
-idle 75
neptune
#include /usr/local/lib/day_builds
<CTRL-D>

2. Create a build hosts file for overnight use. For overnight builds, you can use another list of

hosts provided by the system administrator.

% cat > $HOME/.bldhost.night
#include /usr/local/lib/night_builds
<CTRL-D>

Because this file does not include an –idle specification, clearmake uses a host only if it is at

least 50% idle.

If CCASE_HOST_TYPE is set, but clearmake cannot find or read the build hosts file, it does not

perform the build. (clearmake assumes that if you set CCASE_HOST_TYPE, you want to perform a

parallel build. Because the parallel build might use a host with a different architecture than the

local host, performing the build on the local host might yield incorrect results. Therefore,

clearmake does not default to building on the local host if CCASE_HOST_TYPE is set.)

clearmake will not use a host during a parallel build if your current view cannot be used on that

host. (For example, the host might not be able to access the view’s storage directory.)

We recommend that you set the CCASE_HOST_TYPE variable conditionally in your makefile, using

target-dependent variable bindings. If you set the variable on the clearmake command line, in

your process environment, or unconditionally in your makefile, it applies to all targets.

NOTE: clearmake supports target-dependent variable bindings in standard mode and in Sun

compatibility mode. You can also use target-dependent variable bindings in your BOS file for any

compatibility mode.

For example, to ensure that the target foo is built on host neon or saturn:
9 - Setting Up a Parallel Build 153

foo := CCASE_BLD_HOSTS = neon saturn

You can also use patterns in target names. For example, to build all .o files on host pluto:

%.o := CCASE_BLD_HOSTS = pluto

clearmake applies CCASE_BLD_HOSTS bindings to dependencies of the specified targets. To apply

CCASE_BLD_HOSTS to the specified targets but not their dependencies, add the line shown below

to the builtins file for your compatibility mode:

Load Balancing

The ClearCase load-balancing algorithm controls the way in which build scripts are dispatched

to hosts. During a parallel build, your clearmake process creates and updates a list of qualified

hosts, a subset of the hosts listed in the build hosts file. A host is qualified if all these criteria are

met:

➤ The host is at least 50% idle.

➤ Your clearmake process meets the host’s requirements, as specified in its bldserver.control
file.

➤ An abe process can be started on the host.

Whenever it needs to dispatch a build script, clearmake updates its qualified hosts list and

selects one of these hosts. If it cannot find any qualified host, it pauses and updates the list again.

(On any pass, if all hosts are eliminated due to errors, clearmake exits. If the hosts do not meet

the first two requirements, clearmake waits and tries again.) clearmake keeps trying in this

manner until it finds at least one qualified host with which to build.

The selected host is not necessarily the best one—for example, the one that is most idle at that

particular moment.

Mode Location of builtins file Line to add

standard ccase-home-dir/etc/builtin.mk % := CCASE_BLD_HOSTS =

Sun ccase-home-dir/etc/sunbuiltin.mk % := CCASE_BLD_HOSTS =
154 Building Software: Rational ClearCase

Randomizing Host Selection

The default load-balancing algorithm tends to select hosts near the top of the list more often than

those near the bottom, subject to availability. For more even-handed selection when the list of

hosts exceeds 20 or so, include this line:

–random

Note that this also changes the effective location of any #include directives.

A –random line can appear anywhere within a build hosts file. It applies to all host names in the

build hosts file.

Idleness Threshold

By default, your clearmake process does not dispatch a build script to a host unless it is at least

50% idle. You can adjust this idleness threshold with a line in the build hosts file:

–idle percentage [%]

percentage can be any integer from 0 to 100. Idleness is negatively correlated with the host’s load

factor, as shown by uptime(1); the approximate correspondence is this:

–idle directives can appear anywhere within a build hosts file. Until a –idle directive appears,

the default value of 50% is applied.

–idle can appear multiple times within a build hosts file. Each –idle directive applies to the host

names that follow, until another –idle directive appears or the end of the build hosts file is

reached.

Because a host can appear multiple times in a build hosts file, it can be associated with different

idleness thresholds. Each inclusion of the host is recorded with the associated idleness threshold.

(In practice, this means that if a host appears twice, once with a low idleness threshold and once

with a high threshold, clearmake may select it once but reject it another time.)

Load Idle Percentage

0.0 100

0.5 68

1.0 47

2.0 22

4.0 almost 0
9 - Setting Up a Parallel Build 155

NOTE: The idleness threshold can be specified with –idle directives on both the client and server

sides. If there is a conflict, the overall principle is that the build server host controls its fate. For

example:

➤ A clearmake process is searching for hosts that are at least 50% idle (the default). A build

server that appears to qualify because it is 70% idle is not used if its bldserver.control file

includes the line –idle 75.

➤ A bldserver.control file on a build server host permits access, because it contains the line

–idle 60 and the host is currently 75% idle. However, clearmake does not dispatch a build

script to this host, because the build hosts file specifies a higher threshold: –idle 80.

clearmake uses the idle specification in your host’s bldserver.control file to determine whether

it can perform the build on your host. If your host does not have a bldserver.control file,

clearmake assumes an idle threshold of 0 and performs the build regardless of the load on your

host. If a specified host appears in your build hosts file, clearmake ignores any –idle
specifications for the host in the build hosts file and uses –idle 0.

Include File Facility

A build hosts file can include the contents of one or more other build hosts files:

#include pname

If the included file has –random or –idle directives, they apply to that file’s entries. A –idle
directive in a file is passed down to included files, until and unless it is overridden by another

–idle directive. (A –idle directive in an included file does not affect the including file.)

Any line in the include file that begins with a number sign (#) (except an #include line) is treated

as a comment.

NOTE: ClearCase evaluates environment variables in pname during builds.

Including Comments in a File

You can include a comment on a line by itself or at the end of a hostname line. Comment lines

must begin with # and end with a <NEWLINE>. For example:
156 Building Software: Rational ClearCase

Solaris build hosts
#
neon # cpu Sparc, 150 MHz, Avail Mem 64MB
silicon # cpu Sparc, 400 MHz, Avail Mem 256MB

With the exception of #include, a # always indicates the start of a comment, and clearmake
ignores the rest of the line.

NOTE: You cannot put comments on –idle, –random, or #include lines.

Examples

➤ Build hosts file that uses a listed host only if it is at least 75% idle:

-idle 75
mercury
earth
mars
pluto

➤ Nesting of build hosts files:

-idle 30
einstein
bohr
fermi
#include /usr/local/lib/planet.hosts

➤ Use an environment variable to specify where other build hosts files are located.

#include ${BLDHOSTPATH}/build_hosts

➤ Use multiple –idle directives to control build access.

my machines
-idle 10
neon
saturn
project build hosts
#include ${BLDHOSTPATH)/dev_build_hosts
other random hosts
-idle 50
sunfast
bigzilla
9 - Setting Up a Parallel Build 157

The project build hosts file looks like this:

The development project owns these machines
-random
chirp
mew
-idle 10
growl
roar

Setting Up Trust Relationships

For parallel building to work correctly, the client host must be trusted by the build hosts (that is,

remote login from the client host to the build hosts must work without a password being

needed). You can set up this trust with .rhosts files on the hosts, or by having your system

administrator set up general trust (for example, with /etc/hosts.equiv). To test remote login,

execute the following command (substituting your ClearCase installation directory for

ccase-home-dir):

ccase-home-dir/etc/rsh remote-hostname echo Good-to-use

If you are prompted for a password, the client host is not trusted.

For example:

9.3 Setting Up Server Hosts

Each build server host can have a bldserver.control file, which controls its use for parallel builds.

This text file, /var/adm/atria/config/bldserver.control, specifies when, how, and by whom the

host can be used as a build server in a parallel build.This file can impose restrictions on who can

use the host for parallel builds, and when the host can be used for parallel builds. If a build server

host has no such file, it accepts all parallel build requests.

/usr/atria/etc/rsh puffin echo Good-to-use
Good-to-use (current host is trusted by host puffin)

/usr/atria/etc/rsh auk echo Good-to-use
permission denied (current host is not trusted by host auk)
158 Building Software: Rational ClearCase

During a parallel build, clearmake consults the user’s build hosts file to determine which host(s)

to use for executing build scripts. Before actually dispatching a build script, clearmake queries

the albd_server process on the target build host asking if clearmake can send a build script.

If the host’s build server control file is missing or empty, no restrictions are placed on the use of

the machine for parallel builds. The machine’s albd_server always sends a “yes” response to the

clearmake process controlling a parallel build.

If the host’s build server control file is not empty, albd_server examines the load-balancing rules

in order:

➤ If it finds a rule that matches the parameters of the current build, albd_server sends a yes
response to the originating clearmake, which then uses a remote shell command to dispatch

the build script.

➤ If no rule in the control file provides a match, albd_server sends a no response; the

controlling clearmake proceeds to query another host.

For example, suppose this rule occurs in the control file:

-host jupiter -user *.dvt -time 21:00,07:30

This rule matches any build invoked on host jupiter between 9 P.M. and 7:30 A.M., by a user

whose principal group is dvt.

To set up a build server host that is used for your team’s daytime builds and its overnight builds:

1. Create a bldserver.control file. Each line of the bldserver.control file defines a situation in

which it accepts parallel build requests.

Line 1 specifies that during the interval between 8:30 A.M. and 7:30 P.M., this host accepts a

parallel request when it is at least 60% idle. Line 2 specifies that during the interval between

7:30 P.M. and 5:30 A.M., this host accepts any parallel request, no matter how busy it is. Line

3 specifies that a parallel build request from a clearmake invoked by user bldmeister is

always accepted.

2. Protect the bldserver.control file to make sure that your access-control settings cannot be

deleted or altered:

% cat > /var/adm/atria/config/bldserver.control
–time 08:30,19:30 -idle 60 (1)
–time 19:30,05:30 (2)
–user bldmeister (3)
<CTRL-D>
9 - Setting Up a Parallel Build 159

% chmod 444 /var/adm/atria/config/bldserver.control

Each of the following specifications is optional. A missing specification implies no restriction.

The specifications are logically ANDed to form a test against the parameters of the current build.

–host host-list
Specifies client hosts that are allowed or not allowed to use the current host for builds.

host-list is a comma-separated list, and white space is allowed. Each item on the list is a

host name, as listed by uname(1). The asterisk (*) is a wildcard that matches all host

names. To exclude a host, use the logical NOT operator (!) with any host argument

except *.

For example:

NOTE: Be sure to include the name of the current host, if the command to perform a

parallel build may ever be entered here.

–user user-list
Specifies users who are allowed or not allowed to use this host for builds. user-list is a

comma-separated list, and white space is allowed. Each item on the list specifies a user

by name or by number, with a group qualifier or without. For example:

To exclude a user, use the logical NOT operator (!) with any user argument or with the

asterisk (*). For example:

–idle percentage [%]

Allows use of this host only when its idleness is at least percentage, which must be an

-host !sleepy,!crashy,neon (matches host neon, explicitly excludes
hosts sleepy and crashy, and implicitly
excludes all other hosts)

-host !grumpy (matches any host except grumpy)

jones User whose login name is jones
jones.dvt User jones, but only if logged in with principal group dvt.
jones.* Equivalent to specifying jones without any group qualifier.

566 User with user-ID 566

-user !george (matches all users except george)
-user !darren,!jo,susan (matches user susan, excludes users darren

and jo, and implicitly excludes all other
users)

-user !* (excludes all users)
160 Building Software: Rational ClearCase

integer between 0 and 100, inclusive. Idleness is negatively correlated with the host’s

load factor, as shown by uptime(1); the approximate correspondence is this:

NOTE: The idleness threshold can be specified with –idle settings on both the client and

server. If there is a conflict, the overall principle is that the build server host controls its

fate. For example:

–power factor
(Must be specified alone, on a separate line) During the computation of the host’s

idleness, divides factor into the percentage specified with –idle (or into the system

default). Thus, these two specifications are equivalent: factor must be a nonnegative

floating-point number.

This option allows you to model a powerful host—perhaps a multiprocessor—that is

more capable of accepting work at a given idleness level. You can use –power 3.0 or

–power 2.5 for a three-processor build server host. You can also model a relatively weak

host, by assigning it a power value less than 1.0.

If a build server control file includes multiple –power lines, only the last one takes effect.

–time start-time,end-time ...

Specifies one or more intervals during which the host is available as a build server.

start-time and end-time must be specified in 24-hour format:

Load Idle Percentage

0.0 100

0.5 68

1.0 47

2.0 22

4.0 almost 0

➤ A clearmake process is searching for hosts that are at least 50% idle (the default).

A build server that appears to qualify because it is 70% idle is not used if its bld-
server.control file includes the line –idle 75.

➤ A bldserver.control file on a build server host permits access, because it contains

the line –idle 60 and the host is currently 75% idle. However, clearmake does not

dispatch a build script to this host, because the build hosts file specifies a higher

threshold: –idle 80.

–idle 60 –idle 20
–power 3

hh:mm (hh = 0–23 ; mm = 0–59)
9 - Setting Up a Parallel Build 161

An interval can span midnight; for example, 17:00,8:00 specifies the interval from 5 P.M.

to 8 A.M. the following day.

Examples

➤ Allow builds by users jackson and jones, initiated from any host, if the host is at least 75%

idle and the time is between 10 P.M. and 6 A.M.

-host * -user jackson,jones -idle 75 -time 22:00,06:00

➤ Allow anyone to use this host for parallel builds between 7 P.M. and 7 A.M.

-time 19:00,7:00

➤ Declare this host to be three times as powerful (able to handle parallel build requests) as a

standard host.

-power 3.0

9.4 Starting a Parallel Build

To start a parallel build:

1. Set the CCASE_HOST_TYPE variable. The value of this variable determines which build hosts

file clearmake looks for in your home directory:

2. Invoke clearmake. To enable parallel building, use the –J command-line option or set the

CCASE_CONC environment variable. To specify a build hosts file, use the –B option. To have

clearmake choose a build hosts file, do not use –B.

For example, to specify a build hosts file and start a build that builds up to five targets

concurrently, use one of the following methods:

Value Build hosts file clearmake looks for
sun5 .bldhost.sun5
SUN5 .bldhost.SUN5
day .bldhost.day
night .bldhost.night

% clearmake –J 5 –B ~/.bldhost.day my_target (command-line options)
162 Building Software: Rational ClearCase

NOTE: If you specify –J, but do not set the CCASE_HOST_TYPE variable or specify a build hosts file

with –B, clearmake builds run in parallel on the local host.

Setting CCASE_HOST_TYPE in a Shell Startup Script

In some parallel build environments, you may find it convenient to have your shell startup script

set CCASE_HOST_TYPE. For example, your team may support an application on several

architectures.

In this scenario, you build the application for a particular architecture like this:

1. Log in to a host of that architecture.

2. Set a view and go to the appropriate directory.

3. Enter a clearmake –J command to start a parallel build.

You can implement such a scheme as follows:

1. Use architecture-specific build hosts files. Give each build hosts file a file-name extension

that names a target architecture: .bldhost.hpux9, .bldhost.sunos5, and so on. Typically, each

of these files lists hosts of one architecture only. For example, all SunOS 5 hosts are listed in

.bldhost.sunos5.

2. Set CCASE_HOST_TYPE according to the local host’s architecture. Include a routine in your

shell startup file that determines the hardware/software architecture of the local host, and

sets CCASE_HOST_TYPE to one of the file-name extension strings: hpux9, sunos5, and so on.

Here is a code fragment from a C shell startup script:

% setenv CCASE_CONC 5
% clearmake –B ~/.bldhost.day my_target

(environment variable)

% setenv CCASE_HOST_TYPE day
% clearmake –J 5 my_target

(environment variable and
command-line option)

% setenv CCASE_CONC 5
% setenv CCASE_HOST_TYPE day
% clearmake my_target

(environment variables)
9 - Setting Up a Parallel Build 163

set ARCHSTRING = "`uname -s ; uname -r`"
switch ("$ARCHSTRING")

case "Solaris 5*":
setenv CCASE_HOST_TYPE solaris5
breaksw

case "HP-UX 9*":
setenv CCASE_HOST_TYPE hpux9
breaksw

...

9.5 Preventing Parallel Builds of Targets

When clearmake builds a makefile target, there may be side effects you cannot address in a

makefile. For example, one of your build tools may create temporary files that aren’t guaranteed

to have unique names and then delete them at the end of its processing. When you use this tool

serially, there are no problems. However, if you invoke it in multiple parallel builds in

clearmake, the tool may create identical files and cause the builds to interfere with each other.

You can solve this problem by using the .NOTPARALLEL special makefile target. To disable

parallel building for a makefile, use this target without any arguments. For example:

.NOTPARALLEL:

To prevent specific targets from being built in parallel with each other, specify them as a set of

arguments. Note that parallel builds are prevented only within the set of targets. For example:

.NOTPARALLEL: %.a

.NOTPARALLEL: foo.c bar.c

In this example, clearmake does not build any .a file in parallel with any other .a file, and foo is

not built in parallel with bar. However, clearmake can build .a files in parallel with foo, bar, or

any other file.

9.6 Preventing Exponential Invocations of abe

If clearmake is invoked recursively during a parallel build, the result may be more invocations

of abe than you want or than the build servers can handle. To prevent this situation, use the

.NOTPARALLEL special makefile target for high-level invocations of clearmake.
164 Building Software: Rational ClearCase

1010 Building Software for Multiple
Platforms

This chapter addresses the challenge of using a single source tree to develop an application for a

variety of hardware and software platforms. It discusses various approaches, contrasting their

advantages and disadvantages. An extended example incorporates some of the approaches.

10.1 Issues in Multiple Platform Development

Several issues arise in an environment where developers create and maintain several

platform-specific variants of an application:

➤ Different source code is required for different variants. Different UNIX operating systems

may use different functions to implement the same task (for example, strchr(3) or index(3)).
Likewise, it may be necessary to include different header files for different variants (for

example, string.h andstrings.h).

➤ Different variants and various platforms may have different requirements. The differences

may involve such particulars as compiler locations, compiler options, and libraries.

➤ Builds for different variants must be kept separate. Because there is one source tree, care

must be taken to ensure that the object modules and executables for one architecture are not

confused with those for other architectures. For example, the link editor must not try to

create an executable using an object module that was built for another architecture.

Additional issues must be addressed if Rational ClearCase does not run on one of the target

platforms. See Chapter 11, Setting Up a Build on a Non-ClearCase Host, for a discussion of one such

issue.
10 - Building Software for Multiple Platforms 165

10.2 Handling Source Code Differences

We recommend that you use the same files (that is, the same versions of file elements) in all

builds, for all platforms. You can usually achieve this goal by using the standard UNIX approach:

conditional compilation using the C preprocessor, cpp(1). For example, if header file string.h is

to be used for the architecture whose cpp symbol is ARCH_A, and header file strings.h is to be

used for architecture ARCH_B, use this code:

#ifdef ARCH_A
#include <string.h>
#else
#ifdef ARCH_B
#include <strings.h>
#endif /* ARCH_B */
#endif /* ARCH_A */

If a file element cannot be compiled conditionally (for example, a bitmap image), the traditional

solution is to put architecture-specific code in different elements (for example,

panel.image.sparc versus panel.image.mc68k). This approach requires that build scripts be

made architecture specific, too.

With ClearCase, you have the option of splitting the element into branches. The ARCH_A
variant can be developed on the element’s /main/arch_a branch; edits and builds for that variant

are developed in a view configured with this rule:

element * /main/arch_a/LATEST

Other variants are developed on similar branches, each using a different view, configured with

a rule like the one above. In such a situation, the element’s main branch may not be used at all.

We recommend that you use this branching strategy only when necessary, because of its

disadvantages:

➤ Each time platform-independent code is changed on one of the branches, you must merge

the change to the other branches.

➤ Developers must create a view for each architecture. In each view, only one variant of the

application can be built.

If you can do so, organize your code into architecture-specific subdirectories or

architecture-specific VOBs.
166 Building Software: Rational ClearCase

10.3 Handling Build Procedure Differences

Ideally, a single file (that is, a single version of a file element) drives all architecture-specific

builds. One way to accomplish this is to revise makefiles as follows:

➤ Regularize build scripts

➤ Replace architecture-specific constructs (for example, /bin/cc) with make macro invocations

(for example, $(CC))

➤ Use the clearmake include directive to incorporate architecture-specific settings of the make

macros. See Chapter 9, Setting Up a Parallel Build, for more information about the include

directive.

For example, suppose that source file main.c is compiled differently for two different

architectures:

main.o:
/usr/ucb/cc -c -fsingle main.c

main.o:
/usr/bin/cc -c main.c

To merge these build scripts, use the compiler pathname and options in make macros CC and

CFLAGS and place an architecture-specific include line at the beginning of the makefile:

include /usr/project/make_macros/$(BLD_ARCH)_macros
 ..
main.o:

$(CC) -c $(CFLAGS) main.c

The files in the make_macros directory then have these contents:

CC = /usr/5bin/cc /usr/project/make_macros/sun4_macros
CFLAGS= -fsingle

CC = /usr/bin/cc /usr/project/make_macros/irix5_macros
CFLAGS=

The make macro BLD_ARCH acts as a selector between these two files. The value of this macro

can be placed in an environment variable by a shell startup script:

setenv BLD_ARCH ‘uname -s‘
10 - Building Software for Multiple Platforms 167

Alternatively, developers can specify the value at build time. For example:

clearmake main BLD_ARCH="HP-UX10"

Alternative Approach Using imake

NOTE: The imake utility is distributed with many UNIX variants and available for free from the

MIT Consortium.

The imake utility provides an alternative to the method of using make macros described in the

previous section. The imake methodology also involves architecture-specific make macros, but

in a different way. imake generates an architecture-specific makefile by running cpp on an

architecture-independent template file, typically named imakefile.

A typical imakefile contains a series of cpp macros, each of which expands to a build target line

and its corresponding multiline build script. Typically, the expansion itself is architecture

independent:

imake places architecture-specific make macro settings at the beginning of the generated

makefile. For example:

SRC = ..
CC = /usr/5bin/cc
CFLAGS= -fsingle
RM = rm -f

An idiosyncrasy of imake is that makefiles are derived objects, not source files. The

architecture-independent template file (imakefile) is the source file, and must be maintained as

a ClearCase element.

10.4 Segregating the Derived Objects of Different Variants

It is essential to keep derived objects (object modules, executables) built for different

architectures separate. This section describes two approaches, though others are possible.

MakeObjectFromSrc(main) (macro in ‘imakefile’)
main.o: $(SRC)/main.c (expansion in actual makefile)

$(CC) -c $(CFLAGS) $(SRC)/main.c
168 Building Software: Rational ClearCase

Approach 1: Use Architecture-Specific Subdirectories

Each variant of an application can be built in its own subdirectory of the source directory. For

example, if executable monet’s source files are located in the directory /usr/monet/src, the

variants can be built in subdirectories /usr/monet/src/sun4, /usr/monet/src/irix5, and so on. The

simplest approach is to have the makefile create view-private subdirectories for this purpose. But

if you want to use different derived object storage pools for the different variants, you must

create the subdirectories as elements (mkdir command) and then adjust their storage pool

assignments (chpool command).

Because the derived objects for the different variants are built at different pathnames (for

example, /usr/monet/src/sun4/main.o), they are segregated by variant, and clearmake never

winks in an object built for another architecture.

This approach has several advantages:

➤ All variants of the application can be built in a single view.

➤ You do not need to consider whether to suppress winkin for some or all targets.

➤ Because the derived objects for different variants have different pathnames, it is easier to

organize multiple-architecture releases.

But this approach may require build script changes: the binaries for a build are no longer in the

source directory, but in a subdirectory. The build script in Alternative Approach Using imake on

page 168 is structured for this situation:

main.o: $(SRC)/main.c
 .
 .

Approach 2: Use Different Views

Perform builds for different platforms in different views (sun4_bld_vu, irix_bld_vu, and so on).

A team of developers working on the same variant can share a view or each can work in an

architecture-specific view.

In most cases, the build script that creates a derived object differs for each variant, as described

in Handling Build Procedure Differences on page 167. If so, clearmake prevents winkin of derived

objects built for another architecture. You can force the build script to be architecture specific by
10 - Building Software for Multiple Platforms 169

including a well-chosen message or comment. For example, if BLD_ARCH is used as described

in Handling Build Procedure Differences on page 167, you can include this message:

@echo "Building $@ for $(BLD_ARCH)"

The disadvantage of this approach is that when an element is checked out, you can build only

one variant of the application. Because the checked-out version is visible only in one view, builds

of other variants (which take place in other views) do not select the checked-out version. You

must check in the element before building other variants.

Another disadvantage is the number of views that may be required. For instance, if seven

developers want to maintain their own views in which to build four variants, 28 views are

required.

10.5 Multiple Architecture Example

This section presents an example of multiple-architecture development. This example uses

imake to support building in architecture-specific subdirectories.

Scenario

This section shows how to set up multiple-platform development in the /proj/monet/src
directory.

You can perform a build for a particular architecture as follows:

1. Log on to a host of the desired architecture, for example, a workstation running Solaris 2.5.

2. In your regular view, move to the source directory, /proj/monet/src.

3. Enter the command clearmake Makefiles to have imake create the appropriate Makefile in

the architecture-specific subdirectory sun5. Note that the Makefile is a derived object, not a

source file. Thus, there is no need to create an element from this file.

4. Move to the sun5 subdirectory and builds software for that architecture using clearmake.

The sections that follow describe how imake is involved in each of these steps.
170 Building Software: Rational ClearCase

Defining Architecture-Specific CPP Macros

Step #1 places you in an environment where the C preprocessor, cpp, defines one or more

architecture-specific symbols. On a SunOS–4 host, cpp defines the symbols sun and sparc. This,

in turn, causes imake to generate many architecture-specific (machine-dependent) cpp macros:

Additional cpp macros specific to Sun are read in from the auxiliary file sun.cf.

Creating Makefiles in the Source and Build Directories

The Imakefile file in the source directory is the imake input file. This file controls the creation of

makefiles in both the source directory itself and in the architecture-specific subdirectories where

software is built:

#ifndef InMachineDepSubdir
 .
 <code to generate makefile in source directory>
 .
#else
 .
 <code to generate makefile in an architecture-specific subdirectory>
 .
#endif

The Imakefile code used in the source directory defines a symbol to record the fact that builds

do not take place in this directory:

#define IHaveMachineDepSubdirs

#ifdef sun
#undef sun
#define SunArchitecture
#ifdef mc68020
...

sun defined by C preprocessor

#endif
#ifdef sparc
#undef SUN4
#undef sun4
#define MachineDep SUN4
#define machinedep sun4
#endif
...

sparc defined by C preprocessor

imake defines longer symbols
10 - Building Software for Multiple Platforms 171

The Makefile that imake generates includes a Makefiles target that populates an

architecture-specific subdirectory with its own makefile. The CPU environment variable

determines the name of the architecture-specific subdirectory.

The command clearmake Makefiles invokes imake again, using the same Imakefile for input.

This time, the symbol InMachineDepSubdir is defined, which causes the actual build code to be

generated.

The Imakefile in /proj/monet/src contains these macros:

OBJS = cmd.o main.o opt.o prs.o
LOCAL_LIBRARIES = ../../lib/libpub/libpub.a

MakeObjectFromSrc(cmd)
MakeObjectFromSrc(main)
MakeObjectFromSrc(opt)
MakeObjectFromSrc(prs)

ComplexProgramTarget(monet)

The Makefile generated in the build directory, /proj/monet/src/sun4, includes this build script:

$(AOUT): $(OBJS) $(LOCAL_LIBRARIES)
 @echo "linking $@"
 -@if [! -w $@]; then $(RM) $@; else exit 0; fi
 $(CC) -o $@ $(OBJS) $(LOCAL_LIBRARIES) \
 $(LDFLAGS) $(EXTRA_LOAD_FLAGS)

Makefiles::
 @echo "Making Makefiles in $(CURRENT_DIR)/$$CPU"
 -@if [! -d $$CPU]; then \
 mkdir $$CPU; \
 chmod g+w $$CPU; \
 else exit 0; fi
 @$(IMAKE_CMD) -s $$CPU/Makefile \
 -DInMachineDepSubdir \
 -DTOPDIR=$(TOP) -DCURDIR=$(CURRENT_DIR)/$$CPU
172 Building Software: Rational ClearCase

1111 Setting Up a Build on a
Non-ClearCase Host

This chapter describes a technique for creating configuration records for a build that involves

ClearCase data, but is performed on a non-ClearCase host. Non-ClearCase access (exporting a

VOB through a view) makes the data available to that host; a remote shell is invoked to perform

the build on that host.

11.1 Build Scenario

Suppose you want to build library libpub.a for an architecture that Rational ClearCase does not

currently support, using a host of that architecture named titan. The VOB storage area for the

library’s sources is located at /vobstore/libpub.vbs on host sol. This VOB is also mounted on sol,
at /proj/libpub.

11.2 Setting Up an Export View

A ClearCase export view allows limited access to one or more VOBs by using standard NFS

export facilities. Each NFS export provides remote access to one VOB through a particular view.

The following limitations apply when you use an export view to access a VOB:

➤ You cannot check out or check in versions in the VOB. If you need to check out a file, you

must perform a remote login to a ClearCase host.
11 - Setting Up a Build on a Non-ClearCase Host 173

➤ Builds in the view do not perform build auditing, configuration lookup, or winkin. The

builds do not create derived objects or config records. Any files created during the build are

view-private objects.

NOTE: You can use remote-shell techniques to overcome this limitation, so that the files built

on a non-ClearCase host become derived objects. See Revising the Build Script.

➤ You cannot reconfigure the view from the non-ClearCase host. If you need to reconfigure

the view, you must perform a remote login to a ClearCase host.

NOTE: If you modify an export view’s config spec, all users who may currently have the view

mounted for non-ClearCase access must unmount and remount the view. Remounting the

view ensures access to the correct set of files as specified in the updated config spec.

For information on setting up views and VOBs for export, refer to the Administrator’s Guide for

Rational ClearCase.

NOTE: Export views are to be used only for non-ClearCase access to VOBs. To make a view

accessible on a remote host, use the startview or setview command on that host. An export view

can be mounted on a ClearCase host, but never try to mount it on the dynamic-views root directory,

/view.

11.3 Mounting the VOB Through the Export View

On the non-ClearCase host, a standard NFS mount is performed on the exported pathname. For

example, mount /view/libpub_expvu/proj/libpub at /proj/libpub (the same location at which

the VOB is mounted on ClearCase hosts).

11.4 Revising the Build Script

To produce an audited build on a non-ClearCase host, you must revise the build script. Thus, it

makes sense to build in an architecture-specific subdirectory, with a customized makefile. (For

more information, see Chapter 10, Building Software for Multiple Platforms.)

To create a CR that lists all of the build’s input files and output files, the build script executed by

clearmake must do the following:
174 Building Software: Rational ClearCase

➤ Declare all input files as explicit dependencies. Because the MVFS does not run on the

non-ClearCase host, source dependencies are not detected.

➤ Invoke a remote shell to perform the build on the non-ClearCase host.

➤ If the build performed by the remote shell succeeds, run the touch(1) on all output files

from the ClearCase host. This command converts the view-private files created by the

remote shell command to derived objects.

A simple build script can be transformed as follows:

The remote shell command (rsh in the example above) varies from system to system.

Native Build
OBJS = data.o errmsg.o getcwd.o lineseq.o

data.o: (source dependencies need not be
declared)

cc -c data.c

.

.

.

(other object modules produced
similarly)

libpub.a: $(OBJS)

ar -rc $@ $(OBJS)

Non-ClearCase Build
OBJS = data.o errmsg.o getcwd.o lineseq.o

data.o: data.c libpub.h (must declare source dependencies)

rm -f $@

rsh titan 'cd /proj/libpub ; cc -c data.c'

if [-w $@]; then \

touch $@ ; \

fi

.

.

.

(other object modules produced
similarly)

libpub.a: $(OBJS)

rm -f $@

rsh titan 'cd /proj/libpub ; ar -rc $@ $(OBJS)'

if [-w $@]; then \

touch $@ ; \

fi
11 - Setting Up a Build on a Non-ClearCase Host 175

The remote shell program typically exits with a status of zero, even if the compilation fails. Thus,

you must use some other technique to check the success of the build after the remote shell

returns. In this example, the build scripts assume that the remote build is successful if the target

file exists and is writable.

11.5 Performing an Audited Build in the Export View

To perform the desired build:

1. Register and set the export view on your workstation, which is a ClearCase host:

cleartool mktag –tag libpub_expvu /public/export.vws
cleartool setview libpub_expvu

2. Build in the normal way, on your host:

cd /proj/libpub
clearmake

The script listed above specifies a particular non-ClearCase host, titan, on which remote shells

are to be executed. If builds are performed on more than one non-ClearCase host, you must

generalize this script.

NOTE: Because the remote host name is part of the build script, winkin of derived objects built on

the various hosts fails, unless you make further modifications (for example, using clearmake –O
to disable build-script checking).
176 Building Software: Rational ClearCase

Index

.cmake.state file 22

.JAVA_TGTS target 87

.MAKEFILES_AFFECT_REUSE target 88

.MAKEFILES_IN_CONFIG_REC target 87

.NOTPARALLEL target 164

A

abe (audited build executor) 150, 164

abe process, use for parallel builds 150

ar, use of u key 50

archives
format in makefile 80
incremental update example 48

attache-home-dir directory xvii

attributes, attaching to versions in CR 74

B

bldserver.control file 158

BOS files
about 78
clearmake read order 79
format of contents 91
recommended use 78
special targets for 86

branch strategy for multiple platforms 166

build auditing
about 5
effect of background processes 47
in export views 176
including non-MVFS files 38
incremental updates and 48
multiple levels, problems 46
without clearmake 9

build avoidance
about 6
algorithms for make and clearmake 49
Cfront-based compilers 102
differences in clearmake and make 34
multiple build scripts for target 36
Index

/vobs/doc/ccase/build/cc_build.uxI
scheme for in make 38
template instantiation method 98

build environment
for clearmake and make 32
views used 1

build hosts
client setup for parallel builds 151
non-ClearCase 12
non-ClearCase, setting up 173
parallel builds 158
server setup 158

build hosts files 152

build scheme in ClearCase 2

build scripts
DO-IDs in 60
format in makefile 77
multiple for single target 36
non-ClearCase hosts 174
parallel builds 150
temporary changes to 34
when omitted from CRs 19

builds
DOs and performance 8
forced, problems with 41
how they work 3
javac behavior 143
labeling versions created in 45
reference time 17
reference time and build sessions 4
starting 31
subsessions 45
verbosity levels, increasing 34
working while in progress 42

builds for multiple platforms
branching strategy 166
DOs and subdirectories 168
DOs and views 169
example with imake 170
handling source code differences 166
makefiles for 167

built-in rules in makefiles 81
177

X.fm — October 3, 2001 4:51 pm

C

C++ templates
about 98
alternative instantiation procedures 99
recommended method of instantiation 98

catcr command
DO versions 66
sample listing 16

CCASE_BLD_UMASK environment variable 55

CCASE_HOST_TYPE environment variable 152–153, 162–163

CCASE_OPTS_SPECS environment variable 79

CCASE_VERBOSITY environment variable 34

ccase-home-dir directory xvii

Cfront-based compilers
about 100
Forced Instantiation model 113
how link-time template instantiation works 101
interaction with clearmake 100
Multiple Repositories model 106
Simple instantiation model 103

clearaudit
about 9
contents omitted from CR 19
coordinating multiple builds 46
multiple log files, workarounds 46
use with make programs 95

clearmake
build scenario 32
compatibility modes 9, 95
declaring dependencies in makefiles 38
double-colon rules 41
format of makefiles 77
increasing verbosity level for builds 34
interaction with SGI Delta/C++ compiler 131
interaction with XLC compiler 133
interactions with Cfront-based compilers 100
interactions with SPARCompiler C++ 4.x 117
internal macros 83
invoking 31
Java behavior 141
link-time template instantiation problems 102
macro substitution 83
recursive invocation 36
standard input as makefile 80
symptoms of template problems for C++ 98

clock skew
about 43
time rules and 44

commands, control of echoing during build 81

compatibility modes in clearmake
about 95
adjusting levels of 9

config specs, time rules in 43

configuration lookup
about 6
common outcomes 7
in hierarchical builds 8
problems with dependencies 39
VPATH macro 84

conventions, typographical xvii

CRs (configuration records)
about 6
attaching labels and attributes to versions in 74
cache 22
comparing 73
contents of 15
contents of, effect of background processes 47
displaying contents of 73
displaying for DO versions 66
double-colon rules and contents of 41
effect on DOs when unavailable 73
example 16
hierarchy of 19
hierarchy, and winkin 61
hierarchy, processing by cleartool commands 21
how created 47
incremental updates and 48
Java builds 141
merging dependencies in 50
recording makefile version 74
storage of 22

D

.DEFAULT target 85

dependencies
build order, in makefiles 41
declaring in makefiles 38
detected, log of 8
format in makefiles 77
merging in CRs 50
problems when searching directories for 39
tracking 5
tracking non-MVFS files 6

.DEPENDENCY_IGNORED_FOR_REUSE target 86

describe command 58

diffcr command 73

DO versions
about 26
access to 65
as release mechanism 69
creating 64
creating in builds 65
displaying configuration records 66
displaying description of 58
178 Building Software: Rational ClearCase

/vobs/doc/ccase/build/cc_build.uxIX.fm — October 3, 2001 4:51 pm

documentation
online help description xviii

DO-IDs
about 14
displaying 58
in build scripts 60
in cleartool commands 60
vs. OID 58

DOs (derived objects)
about 6, 13
attaching labels and attributes to sources in CR 74
build avoidance role 6
converting to view-private files 64
costs of creating 8
criteria for reuse or winkin 7
degenerate 72
disk space usage, displaying 71
displaying kind of 57
effect of forced builds 41
incremental updating 48
incremental updating by Cfront-based compilers 102
incremental updating, example 48
incremental updating, links in 51
incremental updating, scenarios 51
kinds of 22
listing at specific pathnames 56
listing views that reference 58
multiple platform, separating 168
overwriting 72
removing 71
scrubbing 72
selecting versions for in view 74
siblings of 6
siblings of, types 23
specifying in commands 60
storage 23
when created 33

dospace command 71

double-colon rules, how clearmake interprets 41

E

environment variables 80
CCASE_BLD_UMASK 55
CCASE_HOST_TYPE 162
CCASE_OPTS_SPECS 79
CCASE_VERBOSITY 34
order of precedence in makefiles 82
SHELL 93

error handling, control of in makefile 81

exit status 4

export views
about 173
auditing builds in 176
mounting VOBs 174

express builds
about 8
creating views for 63
reconfiguring views for 63
when to use 62
winkin to 62

F

function names in makefiles 80

H

hard links
VOB, creating to DOs 70
when winked in 28

header files, precompiled 99

hierarchical builds
configuration lookup in 8
reference time of 18
use of 46

HP aC++ compiler
about 139
template instantiation models 139

I

idleness threshold 155

.IGNORE target 85

imake utility
about 168
build example 170

include file facility 156

include files in makefiles 81

including comments in a file 156

.INCREMENTAL_REPOSITORY_SIBLING target 86

.INCREMENTAL_TARGET target 87

J

Java compilers
benefits of using make with 142
build problems 141
configuring makefiles 147
makefiles for 144
rebuilding targets 146
Index 179

/vobs/doc/ccase/build/cc_build.uxIX.fm — October 3, 2001 4:51 pm

L

labels, attaching to versions in CR 74

libraries, format in makefile 80

load balancing 154

lsdo command 58
examples 56

lsprivate command 57

M

macros
internal clearmake 83
order of precedence in makefiles 82
substitution by clearmake 83
target-dependent definitions 78

$(MAKE) macro, defining for clearmake 37

make
about 1
build avoidance scheme 38
use with Java 142

make macros
format in makefile 78
format of definition 83
temporary overrides of 34

makefiles
about 77
builds for multiple platforms 167
built-in rules 81
controlling execution of 81
declaring dependencies in 38
design models for Cfront-based compilers 103
double-colon rules and clearmake 41
format for clearmake 77
format of libraries 80
function names in 80
imakefiles 168
include files in 81
incremental updating and 49
Java compilers 144
javac, using with 142
non-MVFS dependencies and 6
order of precedence, macros and environment variables 82
overriding build scripts in 34
special targets 85
standard input as, in clearmake 80
UNIX, on Windows NT 90
version of in CR 74

mounting VOBs, in export views 174

MVFS
template instantiation outside 99

MVFS files
about 5
in configuration records 18

N

.NO_CMP_NON_MF_DEPS target 88

.NO_CMP_SCRIPT target 88

.NO_CONFIG_REC target 88

.NO_DO_FOR_SIBLING target 89

.NO_WINK_IN target 89

non-ClearCase hosts
about 12
setup for build 173

non-MVFS files
as dependencies, tracking 6
in configuration records 18

nonshareable DOs
about 8, 23
automatic conversion to shareable 70
converting to shareable 69
promotion and winkin 24
storage 23
types of siblings 23
unique DO-IDs for 27

.NOTPARALLEL target 89
uses of 164

O

OIDs
how used 17

online help, accessing xviii

order of precedence in makefiles 82

P

parallel builds
about 10, 149
client setup 151
how clearmake works 11
how controlled 149
preventing parallel, of targets 164
scheduler 151
server setup 158
starting 162

pathnames
accessing DOs 60
and DO-IDs 14
for DO versions 65
form in build scripts 78
180 Building Software: Rational ClearCase

/vobs/doc/ccase/build/cc_build.uxIX.fm — October 3, 2001 4:51 pm

.PRECIOUS target 86

pseudotargets, and winkin 37

R

reference count
about 27
hard links and 28
when zero 72

reference time
about 17
effect on source control 42
for multiple builds 46

release areas, structure and management 69

rmdo command 71

S

scrubbing DOs 72

SGI Delta/C++ compiler 4.x
about 130
interactions with clearmake 131
template instantiation models 131

shareable DOs
about 22
components of 23
converting to nonshareable 69
in views reconfigured for express builds 63
permissions to share 55
promotion and winkin 24
removing data containers 71
storage 23
types of siblings 23
unique DO-IDs for 27

shell
auditing build in 9

SHELL environment variable 93

shells
setting CCASE_HOST_TYPE in 163

.SIBLING_IGNORED_FOR_REUSE target 89

siblings of DOs
about 6
shareable and nonshareable 23

.SIBLINGS_AFFECT_REUSE target 90

.SILENT target 86

SPARCompiler C++ 4.x
about 117
interaction with clearmake 117
makefile example 126
Multiple Repositories model 123
repository cleanup 119

repository setup 118
Simple model 120

subsessions in builds 45

subtargets in makefiles 41

symbolic links 13

T

targets
build rules and clearmake macros 83
format in makefiles 77
multiple build scripts for 36
preventing parallel builds 164
rebuilding by Java compilers 146
recursive invocation of clearmake 36
special 85
special, format in makefile 78
special, lists of 85

technical support xix

time rules
effect of clock skew 44
use in config specs 43

time stamps, adding to C-language executables 52

trust relationships 158

typographical conventions xvii

U

umask setting to share DOs 55

V

version strings, adding to C-language executables 52

versions
checked-out, how clearmake handles 33
created in builds, labeling 45
of DOs 26

view-extended pathnames for DOs 60

views
configuring for express builds 63
configuring to select versions for DO 74
context 3
for builds 1
preventing winkin to and from 62
references to DOs, listing 58
time rules and 43
using in builds for multiple platforms 169

VPATH macro 84
Index 181

/vobs/doc/ccase/build/cc_build.uxIX.fm — October 3, 2001 4:51 pm

W

what string, creating 52

winkin
about 7
criteria for 7
from other platforms, preventing 63
hard links and 28
javac behavior 143
manual 61
permissions for 56
preventing 61
pseudotargets and 37
recursive, uses of 61
reference count and 27

X

XLC compiler
about 133
Compile-Time Demand Instantiation model 136
Explicit Instantiation model 138
interaction with clearmake 133
Simple model 134
182 Building Software: Rational ClearCase

/vobs/doc/ccase/build/cc_build.uxIX.fm — October 3, 2001 4:51 pm

	Building Software
	Contents
	Figures
	Preface
	About This Manual
	ClearCase Documentation Roadmap
	Typographical Conventions
	Online Documentation
	Technical Support

	ClearCase Build Concepts
	1.1 Overview of the ClearCase Build Scheme
	View Context Required
	How Builds Work
	Build Reference Time and Build Sessions
	Exit Status

	1.2 Dependency Tracking of MVFS and Non-MVFS Files
	Automatic Detection of MVFS Dependencies
	Tracking Non-MVFS Files

	1.3 Derived Objects and Configuration Records
	1.4 Build Avoidance
	Hierarchical Builds
	Automatic Dependency Detection

	1.5 Express Builds
	1.6 Build Auditing with clearaudit
	1.7 Compatibility with Other make Programs
	1.8 Parallel Building
	The Parallel Build Procedure

	1.9 Building on a Non-ClearCase Host

	Derived Objects and Configuration Records
	2.1 Derived Objects Overview
	Derived Object Naming

	2.2 Configuration Records
	Configuration Record Example
	Contents of a Configuration Record
	Header Section
	MVFS Objects Section
	Non-MVFS Objects Section
	Variables and Options Section
	Build Script Section

	Configuration Record Hierarchies
	Configuration Record Cache

	2.3 Kinds of Derived Objects
	Shareable DOs
	Nonshareable DOs
	Storage of Derived Objects
	Promotion and Winkin

	DO Versions

	2.4 Reuse of DO-IDs
	2.5 Derived Object Reference Counts

	Pointers on Using ClearCase Build Tools
	3.1 Invoking clearmake
	3.2 A Simple clearmake Build Scenario
	3.3 Accommodating Build Avoidance
	Increasing the Verbosity Level of a Build
	Handling Temporary Changes in the Build Procedure
	Specifying Build Options

	Handling Targets Built in Multiple Ways
	Using a Recursive Invocation of clearmake
	Optimizing Winkin by Avoiding Pseudotargets
	Accommodating the Build Tool’s Different Name

	3.4 Declaring Source Dependencies in Makefiles
	Source Dependencies Declared Explicitly
	Explicit Dependencies on Searched-For Sources

	3.5 Build-Order Dependencies
	3.6 Problems with Forced Builds
	3.7 How clearmake Interprets Double-Colon Rules
	3.8 Continuing to Work During a Build
	3.9 Using Config Spec Time Rules
	Inappropriate Use of Time Rules

	3.10 Build Sessions, Subsessions, and Hierarchical Builds
	Subsessions
	Versions Created During a Build Session
	Coordinating Reference Times of Several Builds
	Objects Written at More Than One Level

	3.11 Build Auditing and Background Processes
	3.12 Working with Incremental Update Tools
	Example: Building an Archive
	Makefile Restructuring for Incremental Archive Targets
	A Note on the Use of ar Keys

	Example: Incremental Linking
	Additional Incremental-Update Situations

	3.13 Adding a Version String or Time Stamp to an Executable
	Creating a what String
	Implementing a –Ver Option

	Working with Derived Objects and Configuration Records
	4.1 Setting Correct Permissions for Derived Objects
	4.2 Listing and Describing Derived Objects
	Listing Derived Objects Created at a Certain Pathname
	Listing a Derived Object’s Kind
	Displaying a DO’s OID
	Displaying a Description of a DO Version

	4.3 Identifying the Views That Reference a Derived Object
	Caching Unavailable Views

	4.4 Specifying Views That Can Wink In Derived Objects
	4.5 Specifying a Derived Object in Commands
	4.6 Winking In a DO Manually
	4.7 Preventing Winkin
	Preventing Winkin to Your View
	Preventing Winkin to Other Views
	Using Express Builds to Prevent Winkin to Other Views
	Enabling Express Builds
	Configuring an Existing View for Express Builds
	Creating a New View That Uses Express Builds

	Preventing Winkin to or from Other Architectures

	4.8 Converting Derived Objects to View-Private Files
	4.9 Working with DO Versions
	Creating DO Versions
	Checking In DOs During a Build
	Accessing DO Versions
	Displaying Configuration Records for DO Versions
	DOs in Unavailable Views

	Releasing DOs

	4.10 Converting Nonshareable DOs to Shared DOs
	Automatic Conversion of Nonshareable DOs to Shareable DOs

	4.11 Creating Links to Derived Objects
	4.12 Displaying VOB Disk Space Usage for Derived Objects
	4.13 Deleting Derived Objects
	Removing Data Containers for Derived Objects
	Scrubbing Derived Objects and Data Containers
	Degenerate Derived Objects
	Data Container Deleted
	DO Deleted from VOB Database
	CR Unavailable

	4.14 Displaying Contents of Configuration Records
	4.15 Comparing Configuration Records
	4.16 Attaching Labels or Attributes to Versions in a CR
	4.17 Configuring a View to Select Versions Used to Build a DO
	4.18 Including a Makefile Version in a Configuration Record

	clearmake Makefiles and BOS Files
	5.1 Makefile Overview
	5.2 Build Options Specification Files
	5.3 Format of Makefiles
	Restrictions
	Libraries
	Command Echoing and Error Handling
	Built-In Rules
	Include Files
	Macros
	Order of Precedence of Make Macros and Environment Variables
	Make Macros
	Internal Macros
	VPATH Macro

	Special Targets
	Special Targets for Use in Makefiles
	Special Targets for Use in Makefiles or BOS Files

	5.4 Sharing Makefiles Between UNIX and Windows
	5.5 BOS File Entries
	Standard Macro Definitions
	Target-Dependent Macro Definitions
	Shell Command Macro Definitions
	Special Targets
	Include Directives
	Comments

	5.6 Conflict Resolution
	5.7 SHELL Environment Variable
	5.8 CCASE_BRANCH0_REUSE Environment Variable

	Using clearmake Compatibility Modes
	Using ClearCase to Build C++ Programs
	7.1 Working with Templates
	Explicit Instantiation
	Alternative to Using the Procedures in This Chapter
	Precompiled Header Files

	7.2 Working with Cfront-Based C++ Compilers
	Cfront Template Instantiation: Interaction with clearmake
	Link-Time Cfront Template Instantiation
	How Link-Time Instantiation Interferes with clearmake

	Models for Working with Cfront-Based Compilers
	The Simple Model
	How the Simple Model Works
	Sample Scenario Using the Simple Model
	Limitations of the Simple Model

	The Multiple Repositories Model
	Using a Recognized Compiler Macro
	Inserting Special Build Rules in Your Makefile
	Using an Alternate (CM-safe) Multiple Repository Model
	Example Makefile Using the Multiple Repository Model
	Testing the Makefile
	How the Multiple Repositories Model Works
	Limitations of the Multiple Repositories Model

	The Forced Instantiation Model
	Maintaining Dummy Source Files
	Setting Up the Makefile
	How the Forced Instantiation Model Works
	Limitations of the Forced Instantiation Model

	7.3 Working with SPARCompiler C++
	SPARCompiler Template Instantiation: Interaction with clearmake
	Setting Up the Repository
	Cleaning the Repository
	Models for Working with SPARCompiler C++
	The Simple Model
	How the Simple Model Works
	Sample Scenario Using the Simple Model
	Limitations of the Simple Model
	Building Archives That Contain Template Code
	Managing Template References
	Building the Archive

	The Multiple Repositories Model
	Using a Recognized Compiler Macro
	Inserting Special Build Rules in Your Makefile
	Example Makefile Using the Multiple Repositories Model
	Testing the Makefile
	How the Multiple Repositories Model Works
	Limitations of the Multiple Repositories Model
	Building Archives That Contain Template Code
	Multiple Repositories Example

	7.4 Working with the SGI Delta/C++ Compiler
	SGI Delta/C++ Compiler Template Instantiation: Interaction with clearmake
	Automatic Instantiation
	Compile-Time Demand Instantiation
	Explicit Instantiation

	7.5 Working with the IBM AIX XLC C++ Compiler
	XLC Compiler Template Instantiation: Interaction with clearmake
	Models for Working With IBM XLC
	The Simple Model
	Modifying the Source Files
	Designing Your Makefile
	Limitations of the Simple Model

	The Compile-Time Demand Instantiation Model
	Modifying the Source Files
	Designing Your Makefile
	Duplicate Symbol Warnings from the Linker

	The Explicit Instantiation Model
	Modifying the Source Files
	Designing Your Makefile

	7.6 Working with the HP aC++ Compiler
	Automatic Instantiation
	Command-Line Option Instantiation
	Explicit Instantiation

	Using ClearCase Build Tools with Java
	8.1 ClearCase Build Problems with Java
	Java Toolkits
	Scope of the Problems

	8.2 Benefits of Using make Tools with javac
	Using javac Inside a Makefile
	Using javac with clearmake Instead of make

	8.3 Unnecessary Rebuilds and Prevention of Winkin
	8.4 Building Java Applications Successfully
	Writing Correct Makefiles
	No Mutually Dependent Files
	Mutually Dependent Files

	Allowing Rebuilds
	Configuring Makefiles to Behave Like make

	Setting Up a Parallel Build
	9.1 Overview of Parallel Building
	Parallel Build Scheduler
	Failure Modes

	9.2 Setting Up the Client Host
	Creating Build Hosts Files
	Load Balancing
	Randomizing Host Selection
	Idleness Threshold

	Include File Facility
	Including Comments in a File
	Examples
	Setting Up Trust Relationships

	9.3 Setting Up Server Hosts
	Examples

	9.4 Starting a Parallel Build
	Setting CCASE_HOST_TYPE in a Shell Startup Script

	9.5 Preventing Parallel Builds of Targets
	9.6 Preventing Exponential Invocations of abe

	Building Software for Multiple Platforms
	10.1 Issues in Multiple Platform Development
	10.2 Handling Source Code Differences
	10.3 Handling Build Procedure Differences
	Alternative Approach Using imake

	10.4 Segregating the Derived Objects of Different Variants
	Approach 1: Use Architecture-Specific Subdirectories
	Approach 2: Use Different Views

	10.5 Multiple Architecture Example
	Scenario
	Defining Architecture-Specific CPP Macros
	Creating Makefiles in the Source and Build Directories

	Setting Up a Build on a Non-ClearCase Host
	11.1 Build Scenario
	11.2 Setting Up an Export View
	11.3 Mounting the VOB Through the Export View
	11.4 Revising the Build Script
	11.5 Performing an Audited Build in the Export View

	Index

