
November 18, 1997 8:24 am Configuration Management Process, v1.0.1 page 1 of 58

Copyright© 1997, Floyd W. Shackelford. All Rights Reserved

Configuration Management Process

1. Table of Contents
1. Table of Contents . 1
2. Introduction. 2
3. Configuration Management Plan . 3

3.1. Policy . 3
3.2. Responsibility . 3
3.3. Configuration Managed Items . 4
3.4. Configuration Data. 5
3.5. Configuration Management Tool. 5
3.6. Training . 5

4. Configuration Managed Item Identification Scheme 7
4.1. Configuration Managed Item Identifier . 7
4.2. Configuration Managed Item Identifier Registry 7

5. Configuration Database . 8
6. Configuration Managed Repository . 10

6.1. Installing ClearCase. 10
6.2. Creating the Repository . 11
6.3. Initially Loading the Repository . 11
6.4. Creating a Branch . 12
6.5. Creating your View . 12
6.6. Adding a Configuration Managed Item to the Repository. 12
6.7. Checking out a Configuration Managed Item 13
6.8. Checking in a Configuration Managed Item 13
6.9. Merging a Branch . 13

7. Change Management . 14
7.1. Defects . 16
7.2. Problem Reports. 19
7.3. Change Requests . 26
7.4. System Development Requests . 33

8. Version Management . 37
9. System Building. 39

9.1. Building a Branch . 39
9.2. Building the Main Line . 39

10. Release Management . 40
11. Quality Assurance. 41
12. Forms . 42
13. References . 58

November 18, 1997 8:24 am Configuration Management Process, v1.0.1 page 2 of 58

Copyright© 1997, Floyd W. Shackelford. All Rights Reserved

2. Introduction

A Configuration Management Process “is the process which controls the changes made to a sys-
tem and manages the different versions of the evolving software product” [Sommerville 1996].
Configuration Management involves more than source code control, although that is an important
part of it. “The purpose of Software Configuration Management is to establish and maintain the
integrity of the products of the software project throughout the project’s software life cycle”
[Paulket al. 1993]. Configuration Management includes control over “all documents which may
be necessary for future system maintenance” [Sommerville 1996] as well. It is important that we
distinguish between software development products and software itself. For instance, the Require-
ments Document is a software development product and is just as much a part of the system con-
figuration as the actual software which implements those requirements. Configuration
Management, then, is about managing the configuration of all software development products
which comprise the system.

Configuration Management (CM) is one of the most fundamental processes necessary for suc-
cessfully developing quality software. Sommerville [1996] goes so far as to claim that “formal
CM standards and procedures [are] essential” to developing a quality software product.

November 18, 1997 8:24 am Configuration Management Process, v1.0.1 page 3 of 58

Copyright© 1997, Floyd W. Shackelford. All Rights Reserved

3. Configuration Management Plan

This section essentially documents the development organization’s “requirements” for Configura-
tion Management. These requirements typically identify what we expect from a Configuration
Management Process without specifying the details. Later sections will enumerate the details for
implementing these policies.

3.1. Policy

It is the policy of this organization that the Configuration Management process will be used to
Configuration Manage every product which qualifies as a Configuration Managed Item.

Quality Assurance will identify products which are not under Configuration Management control,
but should be, and bring this to the attention of the Producer.

Process will work with the Producer to bring the identified product under Configuration Manage-
ment control.

3.2. Responsibility

Here are the roles which appear in this Configuration Management process and the responsibili-
ties assigned to each role.

Build and Integration. Build and Integration is responsible for initiating the nightly builds of the
software product, following up on all build errors, and helping the developers integrate their new
software into the existing product.

Configuration Management.1 Configuration Management is responsible for creating and main-
taining the Configuration Management Repository and for initiating and administering the Con-
figuration Managed Item Identification Scheme.

Process.This person is responsible for leading the creation of the Configuration Management
process and to educate development people in its use.

Producers.Producers are responsible for identifying which of their products qualify as Configu-
ration Managed Items and using the Configuration Management process to configuration manage
those products.

Quality Assurance.Quality Assurance monitors the use of this process, analyzes resultant met-
rics, and assists in its institutionalization.

1. For purposes of this process, it is expected that, initially, the Build and Integration and Configuration
Management roles will be filled by the same person.

November 18, 1997 8:24 am Configuration Management Process, v1.0.1 page 4 of 58

Copyright© 1997, Floyd W. Shackelford. All Rights Reserved

3.3. Configuration Managed Items

Generally, items which are subject to change over the life of the project (i.e. mutable) are good
candidates for being classified as Configuration Managed Items. Items which are typically pro-
duced and remain unchanged should be archived but not necessarily Configuration Managed.

We will Configuration Manage the following work products:

• Needs Analysis
• Requirements Analysis
• Architecture documents
• Design documents
• Test plans, test results, run log files
• Software source code
• Build scripts, make files, build options
• Operating systems
• Patch sets
• Project plan, schedules, and budgets
• Commercial off-the-shelf (COTS) products, both source code (e.g. Rogue Wave, ILog) and

binaries (e.g. Orbix, TCP/IP, Oracle)
• Third partied software (e.g. custom vendor supplied binaries)
• User’s Guides
• Administrator’s Guides
• All other product documentation
• Tools
• Compilers
• Training material
• Sales material
• Policy statements
• Directory structures: develop, build, install & run
• File naming conventions
• Processes and procedures
• Standards

Unless the Producer deems otherwise, we will not Configuration Manage these work products:

• Meeting minutes
• E-mail
• News groups
• Telephone messages
• Announcements
• Invoices and payments
• Contracts (they tend to be amended rather than changed)

Although these products are not Configuration Managed Items, they should be archived as part of
the project.

November 18, 1997 8:24 am Configuration Management Process, v1.0.1 page 5 of 58

Copyright© 1997, Floyd W. Shackelford. All Rights Reserved

3.4. Configuration Data

We will capture the following Configuration Data for each Configuration Managed Item:

• Item Identification
• Title
• Abstract
• Version History:

• Date
• Version Number
• Reason for Change (Problem Report or Change Request number)
• Description of Change

3.5. Configuration Management Tool

We will use ClearCase to manage our Configuration Management Repository.

ClearCase is sold and supported by Rational Software.

ClearCase training is available from Rational.

3.6. Training

In order for people to use this process effectively, they will need to receive the following training:

Table 1: Training

Course Name Course Description Who should attend Duration

Configuration
Management
Process

This course covers the content of
the Configuration Management
Process. Students are encouraged
to identify areas in which this
process might be used to enhance
their ability to get their work
completed.

This is a required course.

• Build and
Integration

• Configuration
Management

• Product
Producers

• Quality
Assurance

tbd

November 18, 1997 8:24 am Configuration Management Process, v1.0.1 page 6 of 58

Copyright© 1997, Floyd W. Shackelford. All Rights Reserved

Using ClearCase in
Our Organization

This course covers how to use
ClearCase to create and manage a
Configuration Managed
Repository within our
organization.

This is a required course unless the
student has had previous
experience using ClearCase.

• Build and
Integration

• Configuration
Management

• Product
Producers

• Quality
Assurance

4 hours

Table 1: Training

Course Name Course Description Who should attend Duration

November 18, 1997 8:24 am Configuration Management Process, v1.0.1 page 7 of 58

Copyright© 1997, Floyd W. Shackelford. All Rights Reserved

4. Configuration Managed Item Identification Scheme

Every Configuration Managed Item will be assigned a unique Configuration Managed Item Iden-
tifier which differentiates that Configuration Managed Item from all other Configuration Managed
Items. The Configuration Managed Item Identifier is directly associated with the Configuration
Managed Item’s name and its location in the Repository. This section describes the organizational
structure and naming convention to be used for all Configuration Managed Items.

4.1. Configuration Managed Item Identifier

The Configuration Managed Item Identifier has the following format:

XXXnnnnn

where:
• XXX is the product acronym
• nnnnn is a unique number, assigned by the Configuration Management Team, probably

sequentially generated

4.2. Configuration Managed Item Identifier Registry

For each project, a Configuration Managed Item Identifier Registry will be maintained by the
Configuration Management Team. The Configuration Managed Item Identifier Registery is a table
consisting of the following fields:

Table 2: Configuration Managed Item Identifier Index Fields

Field name Description of the field

Configuration Managed
Item Identifier

This is the Configuration Managed Item Identifier assigned to
this Configuration Managed Item. This field represents the
unique key to this table. The table rows should be sorted in
ascending order on this field.

Title This is the title of the Configuration Managed Item

Abstract This is a brief description of the Configuration Managed Item

Repository This is the fully qualified path to the top of the Repository

Location This is the path and file name of the Configuration Managed Item
inside the Repository

November 18, 1997 8:24 am Configuration Management Process, v1.0.1 page 8 of 58

Copyright© 1997, Floyd W. Shackelford. All Rights Reserved

5. Configuration Database

Whenever you check in a Configuration Managed Item, ClearCase requires you to supply com-
ments for why you are checking in the item. We will use this comment field, and the Configura-
tion Managed Item version numbering scheme, to maintain the configuration database2 specified
in “Configuration Data” on page 5 for the Configuration Managed Items.

2. This table should be generated directly from the Configuration Managed Items in the Configuration
Managed Repository. It is to unwieldy to be maintained by hand.

Table 3: Configuration Database Fields

Configuration Data
Element

How we will capture the data element

Configuration Managed
Item Identification

Every Configuration Managed Item will contain on its cover
page or in its header section the following string:

“Configuration Managed Item ID: XXXnnnnn”

Title Every Configuration Managed Item will contain on its cover
page or in its header section the following string:

“Title: xxxxx”

Abstract Every Configuration Managed Item will contain on its cover
page or in its header section the following string:

“Abstract: xxxxx”

Version History: A new version history record is created every time a
Configuration Managed Item is checked in to the Configuration
Managed Repository.

Version History: Date The date and time when the check in ocurred is automatically
stored in the version history by ClearCase.

Version History: Version
Number

A new version number is automatically created by ClearCase
when the Configuration Managed Item is checked in to the
Configuration Managed Repository.

Version History: Who The user id of who checked in the Configuration Managed Item
is automatically captured by ClearCase.

Version History: Reason
for Change

When a Configuration Managed Item is checked in to the
Repository, ClearCase requires that the user enter comments
about why the Item is being checked in. Place the Defect or
Change Request Identifier in the comments field.a

November 18, 1997 8:24 am Configuration Management Process, v1.0.1 page 9 of 58

Copyright© 1997, Floyd W. Shackelford. All Rights Reserved

a. ClearCase does not enforce the format of the contents of the comment field. This process relies upon the
user to supply this information without verification.

b. ClearCase does not enforce the format of the contents of the comment field. This process relies upon the
user to supply this information without verification.

Version History:
Description of Change

When a Configuration Managed Item is checked in to the
Repository, ClearCase requires that the user enter comments
about why the Item is being checked in. Place a description of the
changes made to the Configuration Managed Item in the
comments field.b

Table 3: Configuration Database Fields

Configuration Data
Element

How we will capture the data element

November 18, 1997 8:24 am Configuration Management Process, v1.0.1 page 10 of 58

Copyright© 1997, Floyd W. Shackelford. All Rights Reserved

6. Configuration Managed Repository

The Configuration Managed Repository (“Repository”) is where all the Configuration Managed
Items are stored. All changes to a Product will be made in that Product’s Repository. See the Pro-
cedures later in this section for details on how to manipulate the Repository.3

Our Repository Manager is ClearCase.

ClearCase supports parallel development via branching and merging. In our use, major releases
will branch directly from the main line. Minor releases will branch from a major release line.
Changes must be merged onto the main line or release line to participate in the next automatic
build. This activity occurs only after the Configuration Managed Item has been built on the appro-
priate branch and thoroughly tested. Once merged to the main line or the release line, the new ver-
sion will be labelled by the Configuration Management Team.

Figure 1. ClearCase Branching and Merging.Circles represent build points. The numbers in the circles
represent the build number for that branch and not ClearCase version numbers. Dotted lines represent
change activity.

6.1. Installing ClearCase

Contact the ClearCase Administrator to have ClearCase installed on your workstation.

3. Some commands in the following procedures begin with a “%”. The “%” represents your shell prompt
and should not actually be keyed. These shell commands are in the Korn shell (ksh) format. You will
need to use the syntax appropriate for your shell.

1
main line

3

release 1.0
1

defect 123

2

2

1

change request 456

2 3

1

release 2.0

1

release 1.1

1

2

November 18, 1997 8:24 am Configuration Management Process, v1.0.1 page 11 of 58

Copyright© 1997, Floyd W. Shackelford. All Rights Reserved

6.2. Creating the Repository

Contact the ClearCase Administrator to have a repository created for your product. You will need
to provide the following information.

6.3. Initially Loading the Repository

If this is a new product, then there may be nothing to initially load into the repository. However, if
this is an existing product which is not already in ClearCase, then the ClearCase repository will
need to be initialized with the appropriate version of that product.

Generally, the Configuration Management Team will assist you with initially loading the Reposi-
tory. If your product is stored in an SCCS, RCS, or CVS repository, then there are ClearCase tools
which will migrate the product into ClearCase and preserve its change history. If your product is

Table 4: ClearCase VOB Plan Questionaire

Product name

Number of configuration managed items in this product

Cumulative size of all configuration managed items in this product

COTS products which are used by this product

COTS products which are used to develop this product

Platforms on which this product is developed

Platforms to which this product is deployed

November 18, 1997 8:24 am Configuration Management Process, v1.0.1 page 12 of 58

Copyright© 1997, Floyd W. Shackelford. All Rights Reserved

in a “normal” file system, then the following script will load a copy of the entire product structure
into ClearCase:

6.4. Creating a Branch

To create a branch, ask the Configuration Management Team to create a config spec for the new
branch. Once the config spec is created, you use the config spec when you want to reference that
branch from within your View.

6.5. Creating your View

In ClearCase, Work Spaces are called Views. Every developer has a private View separate from
every other deverloper. To get a View, ask the Configuration Management Team to create a View
for you.

Your View may be deleted at any time. You will not impact the Repository. However, if you have
any uncommitted changes in the View, they will be lost.

6.6. Adding a Configuration Managed Item to the Repository

This procedure describes how to add a new Configuration Managed Item to the Repository. This
procedure assumes that you already have your View and config spec created. These steps may be
performed by any Project Team member:

% cleartool co -c “ reason ”.
% cleartool mkelem -elt file -c “ reason ” fileName
% cleartool ci -c “ reason ” .

#! /bin/ksh

You need to provide the following values . . .
PRODUCT_TOP=pathToProductTop ;
VOB_TOP=pathToVobTop ;

COMMENT=“Initial Load” ;

cd ${PRODUCT_TOP} ;

for CMITEM in ‘find . -name “*” -print‘
do

if [-d ${CMITEM}]
then

cleartool mkdir -c ${COMMENT} ${VOB_TOP}/${CMITEM} ;
else

cleartool mkelem -elt file -c ${COMMENT} ${VOB_TOP}/${CMITEM} ;
cleartool ci -c ${COMMENT} -from ${CMITEM} ${VOB_TOP}/${CMITEM} ;
cleartool mklabel -c ${COMMENT} INITIAL_LOAD ${VOB_TOP}/${CMITEM};

fi
done

November 18, 1997 8:24 am Configuration Management Process, v1.0.1 page 13 of 58

Copyright© 1997, Floyd W. Shackelford. All Rights Reserved

6.7. Checking out a Configuration Managed Item

This procedure describes how to check out a Configuration Managed Item from the Repository.
This procedure assumes that you already have your View and config spec created.

% cleartool co -c “ reason ” fileName

6.8. Checking in a Configuration Managed Item

This procedure describes how to check out a Configuration Managed Item from the Repository.
This procedure assumes that you already have your View and config spec created.

% cleartool ci -c “ reason ” fileName

Your View may be deleted at any time. You will not impact the Repository. However, if you have
any uncommitted changes in the View, they will be lost.

6.9. Merging a Branch

This procedure describes how to merge a branch to another branch or the main line in the Reposi-
tory. This procedure assumes that you have already made the changes you want to the Configura-
tion Managed Items in your View and you have committed those changes to the Repository. This
procedure will be performed by any Project Team member.

Table 5: Merging a Branch

Step Activities

1. Set the merge-to branch
view

% cleartool setview viewName
% cleartool setcs configSpec

2. Merge the branch 1. Merge the merge-from branch into the merge-to branch:
% cleartool findmerge -ver / branchName / fileName

2. Correct merge errors
3. Verify that the merged product is still viable

3. Check in the merged-
to branch

1. Get a new revision number from the Configuration
Management Team and schedule a time with them to commit
this new revision to the Repository

2. Label the View with the new revision number:
% cleartool mklabel -replace versionNumber

3. At the agreed upon time, commit your View to the
Repository:
% for fn in ‘cleartool lsco -r -s -me /vob/ productName ‘
do

cleartool ci -c “ reason ” ${fn}
done

November 18, 1997 8:24 am Configuration Management Process, v1.0.1 page 14 of 58

Copyright© 1997, Floyd W. Shackelford. All Rights Reserved

7. Change Management

Once a Configuration Managed Item has been placed in the Repository, no changes may be made
to the Configuration Managed Item without first having an approved reason for making the
change. Typically, change is introduced by initiating some sort of “Change Request” and submit-
ting it to a “Change Control Board”. Refer to the Software Development Life Cycle process for an
explanation on where within the project life cycle each change control procedure is applicable.

This Change Management process recognizes four types of changes:
• Defects
• Problem Reports
• Change Requests
• System Development Requests

Defects.Defects are problems found with Configuration Managed Items for a Product which is
still under development and has not yet been released to the customer. Defects are not generally
written against items which are not under Configuration Management. Defects are usually gener-
ated as a result of an Inspection, a Test, or a Problem Report on a previously released version of
the Product. In particular, a Defect is written when a product does not properly implement its
specification.4 Defects may result in the generation of follow-on Change Requests.5

Problem Reports.Problem Reports are problems found with released products and often result
in changes to the project development products themselves (e.g. software or documentation).
Problem Reports typically result in the generation of Defects against current development and/or
Change Requests for inclusion in future development.

Change Requests.Change Requests are enhancements to system capabilities. They are generated
to change the system’s requirements, which in turn should result in a changed system. Change
Requests are typically applied to a Project after the Requirements Analysis has been completed
and approved. In effect, the Change Request is a request to change the Requirements for the
project or the Design of the product.6

System Development Requests.7 System Development Requests are requests for a new product
or to introducesignificant change in a released product. They usually represent new business
opportunities for the organization.

4. For instance: a design specification may not be in agreement with its requirements specification; a pro-
gram module may not be written as designed; a test plan may not be properly testing the requirements.

5. For instance, the Defect may specify a short-term work around or patch to be applied to the current Sys-
tem Development effort. The Change Request may then specify that a more strategically acceptable
change will be implemented in the Product later on.

6. In this case, we discover that while the product implemented its specifications properly, so there is no
Defect against the product, the result, for whatever reason, is not what we want. The business case may
have changed or additional information may have become available which prompts us to need to
“change course”. Therefore, we create a Change Request - there is no error, we just need to change the
specification for what it is we are going to produce.

November 18, 1997 8:24 am Configuration Management Process, v1.0.1 page 15 of 58

Copyright© 1997, Floyd W. Shackelford. All Rights Reserved

In essence, all four changes differ only in the scope of the change they are requesting and the
point at which that type of change may be introduced. System Development Requests represent
the largest, most encompassing changes and are submitted only at the very beginning of the Soft-
ware Development Life Cycle. Defects, on the other hand, usually have the smallest impact and
can be applied as late as the Deploy phase of the Software Development Life Cycle. Change
Requests typically impact only the Requirements or the Design. Problem Reports are found in the
field and result in not only an immediate fix, but may also result in one or more Defects or Change
Requests against any current development activities. The following diagram demonstrates where
changes originate and where those changes might be applied.8

Figure 2. Change Management - Sources and Targets.There are four ways to initiate change to the Sys-
tem: System Development Requests, Change Requests, Problem Reports, and Defects.

7. Technically, System Development Requests do not necessarily cause a change to an existing Product,
although it may. However, once the work effort produces a Configuration Managed Item (and it will),
that Configuration Managed Item is subject to Change Management just like every other Configuration
Managed Item. Both the initial creation of and subsequent changes to the Configuration Managed Item
must be justified. Thus, the System Development Request provides the justification for the initial cre-
ation of the Configuration Managed Entiry and for possibly some of its changes during the course of the
system development life cycle.

8. In this diagram, the Development box represents the development organization. Items within the box
represent changes which originate within development and the activities in development to which those
changes may be applied. For instance, Change Requests and Defects may originate from someone
within the development organization. Items outside the box represent changes which originate from
organizations outside of development which desire to change the system development activities within
development. For instance, Problem Reports originate from users outside the development organization.

development

Define Design Develop Test Deploy Support

System Development Requests

Change Requests

Change Requests

Defects

Problem Reports

November 18, 1997 8:24 am Configuration Management Process, v1.0.1 page 16 of 58

Copyright© 1997, Floyd W. Shackelford. All Rights Reserved

7.1. Defects

A Defect progresses through a series of states before it it finally closed. Graphically, it may be
represented as shown in “Figure 3. Defect - State Transition Diagram” on page 16.

Figure 3. Defect - State Transition Diagram.

This procedure describes how a Defect progresses through its different states as depicted in the
previous state diagram.

Table 6: Defect Procedure

Step Roles Activities Deliverables

1. Submitter 1. Discovers an error in a
Configuration Managed
Item

2. Fills out a Defect
3. Delivers the Defect to the

Configuration Managed
Item’s owner

Defect

2. Owner 1. Reviews the Defect with
the Submitter

2. Dispositions the Defect:
• Returna

• Rejectb

• Duplicatec

• Acceptd

Dispositioned Defect

3. • Owner
• Submitter

Agrees upon a fix Fix identified

Open Accepted

Rejected

ClosedVerifyWorking

Duplicate

Returned

November 18, 1997 8:24 am Configuration Management Process, v1.0.1 page 17 of 58

Copyright© 1997, Floyd W. Shackelford. All Rights Reserved

A Defect tracks certain information about the error. Here is a list of the fields which are tracked by
the Defect.

a. The Configuration Managed Item Owner has determined that the Defect does not adequately describe the
problem. If the Submitter agrees with this assessment, then the Submitter may either add additional infor-
mation to the Defect and re-submit it or the Submitter may close the Defect.

b. The Configuration Managed Item Owner does not agree that the problem described by the Defect is an
error in the Configuration Managed Item. If the Submitter agrees with this assessment, then the Submitter
should close the Defect. If the Submitter disagrees with this assessment, then the Submitter should re-
submit the Defect and escalate the issue to the appropriate level of management if necessary.

c. The Configuration Managed Item Owner has determined that the Defect is a duplicate of another Defect,
a Problem Report, or is already incorporated in the work associated with an active Change Request. If the
Submitter agrees with this assessment, then the Submitter should close the Defect. If the Submitter dis-
agrees with this assessment, then the Submitter should re-submit the Defect and escalate the issue to the
appropriate level of management if necessary.

d. The Configuration Managed Item Owner agrees that the problem described by the Defect is an error in
the Configuration Managed Item and further agrees to fix the problem.

4. Owner 1. Checks out the
Configuration Managed
Item

2. Applies the fix to the
Configuration Managed
Item

Fix applied

5. Submitter 1. Verifies that the
Configuration Managed
Item has been fixed

2. Checks in the
Configuration Managed
Item

3. Closes the Defect

• Fix verified
• Defect closed

Table 7: Defect Fields

Field Description

Defect Identification This is the identifier assigned to the Defect to uniquely
distinguish it from all other Defect within development.
Defect Identifiers are in the form:

Dnnnnn

where:
nnnnn is a unique sequential number

Current Status This is the latest status

Table 6: Defect Procedure

Step Roles Activities Deliverables

November 18, 1997 8:24 am Configuration Management Process, v1.0.1 page 18 of 58

Copyright© 1997, Floyd W. Shackelford. All Rights Reserved

a. For example: page number, line number, paragraph number, etc.

Date/Time created This is the date and time which this Defect was first
created

Submitter name This is the full name of the person who submitted the
Defect

Contact information This is all the information necessary to make it easy for
people to contact the Submitter regarding this Defect

Product name The name of the Product in which this Defect was found

Item identification This is the the identifier of the Configuration Managed
Item in which this Defect was found

Item title This is the title of the Configuration Managed Item

Location This is where the Defect is located within the
Configuration Managed Itema

Abstract Give a brief description of the Defect

Detailed description Give as much detail about the Defect as possible. This
section can easily consist of many pages of material.

Assigned to This is the full name of the Producer assigned to fix the
Defect

Status: Create a new status record every time the disposition
changes

Status: date/time The date and time of this status change

Status: disposition The new disposition:
• Return
• Reject
• Duplicate
• Accept
• Working
• Verify
• Close

Status: description Justify the new disposition

Items changed This is a list of all the Configuration Managed Items
modified to fix this defect

Table 7: Defect Fields

Field Description

November 18, 1997 8:24 am Configuration Management Process, v1.0.1 page 19 of 58

Copyright© 1997, Floyd W. Shackelford. All Rights Reserved

Conceptually, the Defect represents a relational organization. Here are the same fields in relational
form:

7.2. Problem Reports

In this process, we use terminology not found in other parts of this document to specify certain
roles particular to the Problem Report process.

User.The User is the person who is using the product and discovers the Problem.

Help Desk.The Help Desk is the primary point of contact for all Users. Users call the Help Desk
to report all Problems.

Product Support Specialist.A Product Support Specialist is someone who is knowledgeable in a
particular Product and is able to service all Problem Reports which do not actually require a pro-
gramming modification to fix.

Developer.A Developer is the person who is able to modify the Product’s software.

A Problem Report progresses through a series of states before it it finally closed as shown in “Fig-
ure 4. Problem Report - State Transition Diagram” on page 20.

Defect - Entity Relationship Diagram

Defect

date/time created
submitter name

contact information
product name

item identification
item title
location
abstract

description
assigned to

items changed

identification

Status

date/time
disposition
description

1

m

current status

November 18, 1997 8:24 am Configuration Management Process, v1.0.1 page 20 of 58

Copyright© 1997, Floyd W. Shackelford. All Rights Reserved

Figure 4. Problem Report - State Transition Diagram.

This procedure describes how a Problem Report progresses through its different states as depicted
in the previous state diagram.

Table 8: Problem Report Procedure

Step Roles Activities Deliverables

1. User 1. Finds a problem in the
product

2. Creates a Problem Report
3. Forwards the Problem

Report to the Help Desk

2. Help Desk 1. Discusses the reported
problem with the User and
captures as much detail as
possible

2. Routes the Problem
Report to the appropriate
Product Support Specialist

Open Accepted

Rejected

Returned

Closed

Duplicate

Deferred

Not Reproducible

VerifyWorking

November 18, 1997 8:24 am Configuration Management Process, v1.0.1 page 21 of 58

Copyright© 1997, Floyd W. Shackelford. All Rights Reserved

3. Product Support
Specialist

1. Works with the user to
work around the problem

2. Determines the severity of
the Problem Report with
the User

3. Adds additional details to
the Problem Report

4. Forwards the Problem
Report to the Problem
Review Board

4. Problem Review
Board

1. The Problem Review
Board meets regularly and
on anad hoc basis as
needed.

2. Reviews the Problem
Report and determines the
appropriate response:

• Returna

• Rejectb

• Deferc

• Duplicated

• Accepte

3. Forwards the Accepted
Problem Report to the
appropriate Developer for
action

Table 8: Problem Report Procedure

Step Roles Activities Deliverables

November 18, 1997 8:24 am Configuration Management Process, v1.0.1 page 22 of 58

Copyright© 1997, Floyd W. Shackelford. All Rights Reserved

a. The Problem Report may be returned to the User or the Product Support Specialist for more information.
b. The Problem Report may not be a problem at all, or the Problem Report may be better classified as a

functional enhancement. The Problem Report may be rejected with a suggestion that the user submit
either a Change Request or a System Development Request. If the Submitter agrees with this assessment,
then the Submitter should close the Problem Report. If the Submitter disagrees with this assessment, then
the Submitter should re-submit the Problem Report and escalate the issue to the appropriate level of man-
agement if necessary.

5. Developer 1. Reviews the Problem
Report and talks to the
Product Support
Specialist, the Help Desk,
and the User as appropriate
to gather additional
information as required.

2. Creates a branch off of the
main line of the Product’s
Repositoryf g

3. Recreates the problemh

4. Debugs the problem
5. Determines an estimation

of when the fix can be
ready for integration into
the main line of the
Product’s Repository

6. Help Desk Informs the user when the fix
is expected to be released

7. Developer 1. Develops a solution to the
problemi j

2. Causes the solution to be
Inspected

3. Fixes Inspection Defects
4. Integrates the solution into

the main line of the
Product’s Repositoryk

5. Forwards the Problem
Report to the Build and
Integration Team for
inclusion in the next
Product Release

Table 8: Problem Report Procedure

Step Roles Activities Deliverables

November 18, 1997 8:24 am Configuration Management Process, v1.0.1 page 23 of 58

Copyright© 1997, Floyd W. Shackelford. All Rights Reserved

A Problem Report tracks certain information about the error. Here is a list of the fields which are
tracked by the Problem Report:

c. The Problem Report may in fact be a true problem, but the Problem Review Board chooses to not fix the
problem in the current release but instead fix the problem in some later release of the Product. If the Sub-
mitter agrees with this assessment, then the Submitter should close the Problem Report. If the Submitter
disagrees with this assessment, then the Submitter should re-submit the Problem Report and escalate the
issue to the appropriate level of management if necessary.

d. The Problem Report may be a duplicate of an existing Problem Report. In this case, the Problem Report
should be returned to the Submitter, referencing the other Problem Report. If the Submitter agrees with
this assessment, then the Submitter should close the Problem Report. If the Submitter disagrees with this
assessment, then the Submitter should re-submit the Problem Report and escalate the issue to the appro-
priate level of management if necessary.

e. The Problem Report describes a problem with the product and the Problem Review Board chooses to fix
the problem in the current release.

f. See “Creating a Branch” on page 12.
g. See “Checking out a Configuration Managed Item” on page 13.
h. If, after all reasonable attempts to recreate the problem, the problem cannot be recreated, then return the

Problem Report to the User as “non reproducible”. If the Submitter agrees with this assessment, then the
Submitter should close the Problem Report. If the Submitter disagrees with this assessment, then the Sub-
mitter should re-submit the Problem Report, demonstrate that the problem is reproducible, and escalate
the issue to the appropriate level of management if necessary.

i. See “Building a Branch” on page 39.
j. See “Checking in a Configuration Managed Item” on page 13.
k. See “Merging a Branch” on page 13.

Table 9: Problem Report Fields

Field Description

Problem Report Identification This is the identifier assigned to the Problem Report to
uniquely distinguish it from all other Problem Report
within development. Problem Report Identifiers are in the
form:

PRnnnnn

where:
nnnnn is a unique sequential number assigned by the
Help Desk

Current Status This is the latest status

Date/Time received by Help Desk This is the date and time which this Problem Report was
first reported to the Help Desk

Reported by This is the full name of the person who reported the
Problem to the Help Desk

November 18, 1997 8:24 am Configuration Management Process, v1.0.1 page 24 of 58

Copyright© 1997, Floyd W. Shackelford. All Rights Reserved

Severity 1. • stops critical customer functions
• no work around available
• work around must be made available within 24

hoursa

2. • impacts critical customer functions
• work around available
• fix strategy must be made available within 24

hours
• fix must be made available in the next release

3. • customer can perform critical functions
• no work around necessary
• function does not work as documented
• fix will be made available in the next release

4. minor correctionb

Contact information This is all the information necessary to make it easy for
people to contact the Submitter regarding this Problem
Report

Abstract Give a brief description of the Problem

Description Give as much detail about the Problem as possible. This
section can easily consist of many pages of material.

Help Desk Attendant’s name This is the full name of the Help Desk Attendant who
created the Problem Report

Steps to recreate the problem These are the steps necessary to recreating the Problem

Date/Time forwarded to Product
Specialist

This is the date and time at which the Problem Report
was forwarded to a Product Specialist for resolution

Product Specialist name This is the full name of the Product Specialist assigned to
investigate the problem

Date/Time forwarded to PR
Review Board

This is the date and time which this Problem Report was
forwarded to the Problem Review Board

PR Review Board reviewers This is a list of the names of the Problem Review Board
members who reviewed this Problem Report

Table 9: Problem Report Fields

Field Description

November 18, 1997 8:24 am Configuration Management Process, v1.0.1 page 25 of 58

Copyright© 1997, Floyd W. Shackelford. All Rights Reserved

Conceptually, the Problem Report represents a relational organization. Here are the same fields in
relational form

a. At which time severity changes to 2.
b. For example: typographical errors, etc.

Priority This is the priority assigned to the Problem Report by the
Problem Review Board:
1. Fix and incorporate into a regularly scheduled build

as soon as possible
2. Fix and incorporate into the next regularly scheduled

release

Delivery target When the Problem Review Board expects to have the fix
delivered (e.g. date, release)

Date/Time forwarded to Developer This is the date and time which this Problem Report was
given to the Developer for fix

Developer name This is the full name of the Developer

Technical description This is a technical description of the problem

Completion estimate This is an estimate of when the Developer thinks the fix
can be ready for delivery

Description of fix This is a technical description of the fix

Tests used to validate the fix This is a description of the tests used by the Developer to
verify that the fix:
1. fixed the problem
2. did not introduce additional errors

Inspection ID Every fix must be inspected before it can be incorporated
into the main line.

Date/Time fix integrated with main
line

This is the date and time which this fix was incorporated
into the main line

Resulting Change Requests and
Defects

List all the Defects and Change Requests which were
generated to implement a fix in follow-on releases.

Table 9: Problem Report Fields

Field Description

November 18, 1997 8:24 am Configuration Management Process, v1.0.1 page 26 of 58

Copyright© 1997, Floyd W. Shackelford. All Rights Reserved

Figure 5. Problem Report - Entity Relationship Diagram.

7.3. Change Requests

A Change Request progresses through a series of states before it is finally closed. Graphically,
these state transitions may be diagrammed as shown in “Figure 6. Change Request - State Transi-
tion Diagram” on page 27.

Problem Report

date/time received
reported by

severity
contact information

abstract
description

help desk name
steps to recreate

date/time to prod spec
product specialist name

date/time pr board
pr board names

identification
status

priority
delivery target

date/time to developer
developer name

technical description
completion estimate

fix description
test

inspection identification
date/time fix integrated

other changes

November 18, 1997 8:24 am Configuration Management Process, v1.0.1 page 27 of 58

Copyright© 1997, Floyd W. Shackelford. All Rights Reserved

Figure 6. Change Request - State Transition Diagram.

This procedure describes how a Change Request progresses through its different states as depicted
in the previous state transition diagram.

Table 10: Change Request Procedure

Step Roles Activities Deliverables

1 Submitter 1. Fills out a Change Request
form

2. Submits the Change
Request form to the
Change Control Board

Change Request created

2 Change Control
Board

1. Meets on a regular basis to
review open Change
Requests

2. Reviews the open Change
Request and dispositions it:
• Returna

• Rejectb

• Deferc

• Acceptd

3. Appoints a Systems
Analyst to process the
Change Request

Initial disposition of Change
Request registered

Open Accepted

Rejected

Returned

Closed

Deferred

Rejected

Returned

Deferred

Working

November 18, 1997 8:24 am Configuration Management Process, v1.0.1 page 28 of 58

Copyright© 1997, Floyd W. Shackelford. All Rights Reserved

a. The Change Control Board has determined that the Change Request has insufficient information to
understand the change being requested. The Change Request is returned for more information.

b. The Change Control Board has determined that the Change Request is outside the scope of the Product
targeted for the change. If the Submitter agrees with this assessment, then the Submitter should close the
Change Request. If the Submitter disagrees with this assessment, then the Submitter should re-submit the
Change Request and escalate the issue to the appropriate level of management if necessary.

c. The Change Control Board has determined that the Change Request is appropriate for the targeted Prod-
uct and that the change should be included in the Product. However, the Change Control Board has also
determined that the change should not be included in the release specified by the Change Request, but
that the change should instead be deferred to a subsequent release. If the Submitter agrees with this
assessment, then the Submitter should close the Change Request. If the Submitter disagrees with this
assessment, then the Submitter should re-submit the Change Request and escalate the issue to the appro-
priate level of management if necessary.

d. The Change Control Board has determined that the Change Request should be included in the next
release of the Product.

e. The Change Control Board has determined that the Change Request has insufficient information to evalu-
ate the full extent of the change being requested. The Change Request is returned for more analysis.

f. The Change Control Board has determined that the Change Request is outside the scope of the Product
targeted for the change. If the Submitter agrees with this assessment, then the Submitter should close the
Change Request. If the Submitter disagrees with this assessment, then the Submitter should re-submit the
Change Request and escalate the issue to the appropriate level of management if necessary.

g. The Change Control Board has determined that the Change Request is appropriate for the targeted Prod-
uct and that the change should be included in the Product. However, the Change Control Board has also
determined that the change should not be included in the release specified by the Change Request, but
that the change should instead be deferred to a subsequent release. If the Submitter agrees with this
assessment, then the Submitter should close the Change Request. If the Submitter disagrees with this
assessment, then the Submitter should re-submit the Change Request and escalate the issue to the appro-
priate level of management if necessary.

3 Systems Analyst 1. Completes the
requirements analysis,
impact assessment, and
dependencies sections of
the Change Request

2. Presents the updated
Change Request to the
Change Control Board

Change Request technical and
planning details completed

4 Change Control
Board

Reviews the Accepted Change
Request and dispositions it:
• Returne

• Rejectf

• Deferg

• Workingh

Change Request ready for
inclusion in the Product

5 Product Team Incorporates Change Request
into project deliverables.

Requested change
incorporated into the Product

Table 10: Change Request Procedure

Step Roles Activities Deliverables

November 18, 1997 8:24 am Configuration Management Process, v1.0.1 page 29 of 58

Copyright© 1997, Floyd W. Shackelford. All Rights Reserved

A Change Request tracks certain information about the desired change. Here is a list of the fields
which are tracked by the Change Request:

h. The Change Control Board has determined that work may proceed with including the requested change in
the next release of the Product.

Table 11: Change Request Fields

Field Description

Change Request Identification This is the identifier assigned to the Change Request to
uniquely distinguish it from all other Change Requests
within development. Change Request Identifiers are in
the form:

CRnnnnn

where:
nnnnn is a unique sequential number assigned by the
Configuration Management Team

Current Status This is the latest status from either the Initial Review or
the Detailed Review

Date/Time created This is the date and time which this Change Request was
first created

Submitter names This is the full name of the person who submitted the
Change Request

Contact information This is all the information necessary to make it easy for
people to contact the Submitter regarding this Change
Request

Priority 1. critical functionalitya

2. necessary functionalityb

3. desirable functionalityc

Products to be changed List the names of the Products which will be changed by
this Change Request

Type of change • usabilityd

• functionalitye

• performancef

• platformg

• integrationh

Abstract Give a brief description of the change

Description of the change Give as much detail about the change as possible. This
section can easily consist of many pages of material.

November 18, 1997 8:24 am Configuration Management Process, v1.0.1 page 30 of 58

Copyright© 1997, Floyd W. Shackelford. All Rights Reserved

Justification for the change Discuss why this change should be made

CCB Initial Review: Make an Initial Review entry for each time the Change
Control Board conducts an Initial Review of this Change
Request

CCB Initial Review: Date/Time
submitted

The date and time the Change Request was submitted to
the Change Control Board for an Initial Review

CCB Initial Review: Date/Time
reviewed

The date and time the Change Control Board reviewed
the Change Request

CCB Initial Review: Reviewed by
names

The list of Change Control Board members who reviewed
the Change Request

CCB Initial Review: Disposition Record the results of the review in terms of a new
disposition:
• Return
• Reject
• Defer
• Accept

CCB Initial Review: Details Justify the new disposition

Systems Analyst name This is the full name of the Systems Analyst assigned to
research the Change Request

Requirements Analysis This section contains the Requirements Analysis
performed by the Systems Analyst

Impacts: Make an Impact entry for each product which will need
to be changed as a result of this Change Request

Impacts: Product The name of the Product for which this Impact entry is
created

Impacts: Description of changes The technical changes which must be made to the
Product to accommodate this Change Request

Impacts: Budget The changes which must be made to the budget to
accommodate this Change Request

Impacts: Schedule The changes which must be made to the schedule to
accommodate this Change Request

Impacts: Resources The changes which must be made to the resource
allocations to accommodate this Change Request

Table 11: Change Request Fields

Field Description

November 18, 1997 8:24 am Configuration Management Process, v1.0.1 page 31 of 58

Copyright© 1997, Floyd W. Shackelford. All Rights Reserved

a. Critical Functionality is functionality which is necessary for the User to be able to conduct business. Lack
of the functionality makes it extrememly difficult or impossible for the user to be able to perform critical
business functions. Alternatively, projections show that this functionality has a tremendous return on
investment or a significant impact on market share.

b. Necessary Functionality is functionality which is necessary for the User to be able to conduct business.
Lack of the functionality means that the customer will have to continue performing the business function
in a manual manner. Thus, the lack of this functionality means that the system’s ability to enhance the
User’s productivity is greatly impaired. Alternatively, projections show that this functionality has a desir-
able return on investment.

c. Desirable Functionality is functionality which would make the User’s job more efficient or eliminate or
combine certain steps in the way the User performs the business function.

d. Usability means that this change is requested primarily to enhance the usability of the system.
e. Functionality means that this change is requested primarily to add or modify functionality.
f. Performance means that this change is requested primarily to improve the performance characteristics of

the system

Impacts: Dependencies Any dependencies which which will be created, modified,
or severed as a result of this Change Request

CCB Detailed Review: Make a Detailed Review entry for each time the Change
Control Board conducts a Detailed Review of this
Change Request

CCB Detailed Review: Date/Time
submitted

The date and time the Change Request was submitted to
the Change Control Board for a Detailed Review

CCB Detailed Review: Date/Time
reviewed

The date and time the Change Control Board reviewed
the Change Request

CCB Detailed Review: Reviewed
by names

The list of the Change Control Board members who
reviewed the Change Request

CCB Detailed Review: Disposition Record the results of the review in terms of a new
disposition:
• Return
• Reject
• Defer
• Working

CCB Detailed Review: Details Justify the new disposition

Target Release Identify the release to which the Change Request is to be
appliedi

Implementation assigned to name Identify the Project Manager who is responsible for
implementing the Change Requestj

Items Changed This is a list of all the Configuration Managed Items
changed to implement this Change Request

Table 11: Change Request Fields

Field Description

November 18, 1997 8:24 am Configuration Management Process, v1.0.1 page 32 of 58

Copyright© 1997, Floyd W. Shackelford. All Rights Reserved

Conceptually, the Change Request represents a relational organization. Here are the same fields in
relational form.

Figure 7. Change Request - Entity Relationship Diagram.

g. Platform means that this change is requested primarily to port the system to another platform, whether
hardware or software or both.

h. Integration means that this change is requested primarily to integrate the system with another system.
i. If this Change Request impacts multiple Products, then list each Product and its corresponding release

number.
j. If this Change Request impacts multiple Products, then list each Product and its corresponding Project

Manager.

Change Request

date/time created
submitter names
contact names

priority
products to be chagned

type of change

description of change
justification for change

systems analyst
requirements analysis

target release
implementation assignee

identification

Initial Review

Detailed Review

Impacts

date/time submitted
date/time reviewed

reviewers
disposition

details

product
technical description

budget changes
schedule changes
resource changes

dependencies

date/time submitted
date/time reviewed

reviewers
disposition

details

1

m

1

m

1

m

current status

abstract

items changed

November 18, 1997 8:24 am Configuration Management Process, v1.0.1 page 33 of 58

Copyright© 1997, Floyd W. Shackelford. All Rights Reserved

7.4. System Development Requests

A System Development Request progresses through a series of states before it is finally closed.
Graphically, these state transitions may be diagrammed as shown in “Figure 8. System Develop-
ment Request - State Transition Diagram” on page 33.

Figure 8. System Development Request - State Transition Diagram.

This procedure describes how a System Development Request progresses through its different
states as depicted in the previous state transition diagram.

Table 12: System Development Request Procedure

Step Roles Activities Deliverables

1. Submitter 1. Determines that a new
Product needs to be
produced or that a
significant change needs to
be made to an existing
Product

2. Completes the System
Development Request form

3. Submits the System
Development Request form
to the Software
Development Steering
Committee

• Completed System
Development Request
submitted to the Software
Development Steering
Team

• Software Development
Life Cycle begins

Open Accepted

Rejected

Returned

Closed

Deferred

November 18, 1997 8:24 am Configuration Management Process, v1.0.1 page 34 of 58

Copyright© 1997, Floyd W. Shackelford. All Rights Reserved

a. The Software Development Steering Committee has determined that the System Development Request
has insufficient information to understand the change being requested. The System Development Request
is returned for more information.

b. The Software Development Steering Committee has determined that the System Development Request is
beyond the business objectives of the development organization. If the Submitter agrees with this assess-
ment, then the Submitter should close the System Development Request. If the Submitter disagrees with
this assessment, then the Submitter should re-submit the System Development Request and escalate the
issue to the appropriate level of management if necessary.

c. The Software Development Steering Committee has determined that the System Development Request is
within the business objectives of the development organization. However, the Change Control Board has
also determined that the Product should not be developed in the development business cycle specified by
the System Development Request, but that the project should instead be deferred to a subsequent devel-
opment business cycle. If the Submitter agrees with this assessment, then the Submitter should close the
System Development Request. If the Submitter disagrees with this assessment, then the Submitter should
re-submit the System Development Request and escalate the issue to the appropriate level of management
if necessary.

d. The Software Development Steering Committee has determined that the requested Product should be
included in the current development business cycle.

e. Continue with the Software Development Life Cycle process.

2. Software
Development
Steering
Committee

1. Reviews the Software
Development Request and
dispositions it:
• Returna

• Rejectedb

• Deferredc

• Acceptedd

2. Assigns the Software
Development Request to a
Systems Analyste

Define phase begins

Table 12: System Development Request Procedure

Step Roles Activities Deliverables

November 18, 1997 8:24 am Configuration Management Process, v1.0.1 page 35 of 58

Copyright© 1997, Floyd W. Shackelford. All Rights Reserved

A System Development Request tracks certain information about the desired change. Here is a list
of the fields which are tracked by the System Development Request:

a. Critical Functionality is functionality which is necessary for the User to be able to conduct business. Lack
of the functionality makes it extrememly difficult or impossible for the user to be able to perform critical
business functions. Alternatively, projections show that this functionality has a tremendous return on
investment or a significant impact on market share.

b. Necessary Functionality is functionality which is necessary for the User to be able to conduct business.
Lack of the functionality means that the customer will have to continue performing the business function
in a manual manner. Thus, the lack of this functionality means that the system’s ability to enhance the
User’s productivity is greatly impaired. Alternatively, projections show that this functionality has a desir-
able return on investment.

c. Desirable Functionality is functionality which would make the User’s job more efficient or eliminate or
combine certain steps in the way the User performs the business function.

Table 13: System Development Request Fields

Field Description

System Development Request
Identification

This is the identifier assigned to the System Development
Request to uniquely distinguish it from all other System
Development Requests within development. System
Development Request Identifiers are in the form:

SDRnnnnn

where:
nnnnn is a unique sequential number assigned by the
Configuration Management Team

Current Status This is the latest disposition assigned to this System
Development Request

Date/Time created This is the date and time which this System Development
Request was first created

Submitter names This is the full name of the person who submitted the
System Development Request

Contact names This is all the information necessary to make it easy for
people to contact the Submitter regarding this System
Development Request

Priority 1. critical functionalitya

2. necessary functionalityb

3. nice functionalityc

Abstract Give a brief description of the Product

Description Give as much detail about the change as possible. This
section can easily consist of many pages of material.

Justification Discuss why this Product should be developed.

November 18, 1997 8:24 am Configuration Management Process, v1.0.1 page 36 of 58

Copyright© 1997, Floyd W. Shackelford. All Rights Reserved

Conceptually, the System Development Request represents a relational organization. Here are the
same fields in relational form

Figure 9. System Development Request - Entity Relationship Diagram.

System Development

date/time created
submitter names
contact names

priority
abstract

description
justification

identification
status

Request

November 18, 1997 8:24 am Configuration Management Process, v1.0.1 page 37 of 58

Copyright© 1997, Floyd W. Shackelford. All Rights Reserved

8. Version Management

This section describes how we identify new versions of a Product.

Whenever a Configuration Managed Item is checked out, changed, and subsequently checked in, a
new version number is automatically assigned to that new version of the individual Configuration
Managed Item. We define a version of a Product as the set of all the Configuration Managed Items
in the Product at particular version levels. Product versioning requires someone to decide which
versions of its component Configuration Managed Items should be incorporated in the new ver-
sion of the Product. Therefore, unlike version numbers for individual Configuration Managed
Items, Product version numbers are manually generated and assigned by the Configuration Man-
agement Team.

Release Number.The Release Number is a sequential number which identifies significant ver-
sions of the Product which will be released to the Customer. Assigning Release Numbers is a pol-
icy decision which relies mostly upon subjective factors. The Release Number for a Product
begins with 1 (one) for the first version of the Product to be released to the Customer and is
sequentially incremented when it is decided that a sufficiently different version of the Product is
to be developed.

Revision Number.The Revision Number is a sequential number which identifies versions of the
Product which have been released for general use within the development organization. When a
branch is committed to the main line, its component Configuration Managed Items are considered
released to the development organization. The Revision Number for a Product begins with 1 (one)
for the first time the Product is committed to the main line of a particular Repository and is
sequentially incremented thereafter.

Version Number.The Version Number uniquely identifies the configuration of the Product at any
single point in time. The Version Number is the value we use to label Configuration Managed
Items in the Repository. A Version Number consists of a Release Number and a Revision Number
and is usually constructed as follows:

vn.m

where:
• n is the Release Number
• m is the Revision Number

By way of example, suppose that we are working on Release 1 of Product XYZ. Suppose too that
we have three Configuration Managed Items in the Product called ItemA, ItemB, and ItemC.
Again, suppose that these Configuration Managed Items have the versions in the Product XYZ
Release 1 Repository as shown in “Figure 10. Configuration Managed Item Versions.” on
page 38.

Say we decide that Revision 1 of Release 1 of the System should consist of version 2.1 of ItemA,
version 1.4 of ItemB, and version 1.1 of ItemC. Therefore, Product XYZ v1.1 consists of the
selected Configuration Managed Items as shown in “Figure 11. System Version.” on page 38.

November 18, 1997 8:24 am Configuration Management Process, v1.0.1 page 38 of 58

Copyright© 1997, Floyd W. Shackelford. All Rights Reserved

Figure 10. Configuration Managed Item Versions.Each Configuration Managed Item has one or more
versions within the repository.

Figure 11. System Version.The System consists of a particular version of each Configuration Managed
Item.

Product XYZ Release 1

ItemA ItemB ItemC

1.1
1.2
2.1
2.2

1.1
1.2
1.3
1.4
1.5

1.1

Product XYZ v1.1

ItemB

1.1
1.2

1.5

ItemA

ItemC1.1
1.2
2.1
2.2

1.3
1.4 1.1

November 18, 1997 8:24 am Configuration Management Process, v1.0.1 page 39 of 58

Copyright© 1997, Floyd W. Shackelford. All Rights Reserved

9. System Building

This section describes how to build the Product or a portion of the Product.

Developers will almost always work on a branch. However, the “official” version of the Product is
always assembled and built by the Build Team from the Configuration Managed Items present on
the Repository’s main line.

9.1. Building a Branch

This procedure is intentionally incomplete. This section must be customized for each Product.

9.2. Building the Main Line

This procedure is intentionally incomplete. This section must be customized for each Product.

Table 14: Building a Branch

Step Activities

1.

Table 15: Building the Main Line

Step Activities

1.

November 18, 1997 8:24 am Configuration Management Process, v1.0.1 page 40 of 58

Copyright© 1997, Floyd W. Shackelford. All Rights Reserved

10.Release Management

This section describes how we manage the deployment of new releases of a Product.9 We release
the Product any time we deliver a new version of the Product to the Customer, or otherwise make
the Product generally available. Typically, we do not release a new version of a Product to the
Customer until we have something significant to deliver, like a fix for a serious Defect for
instance.

Version Description Document.The Version Description Document (VDD) is a document
which describes the content and configuration of the release. The VDD usually contains the fol-
lowing information:

• New features
• Defect fixes
• Software dependencies (e.g. operating system version)
• Hardware dependencies (e.g. minimum RAM requirements)
• Installation instructions

This procedure is primarily performed by the Configuration Management / Build and Integration
Team, with assistance from the Project Team and Quality Assurance.

9. Do not confuse the act of releasing the Product to the Customer with the Release Number of the Prod-
uct. We do not necessarily increment the Release Number every time we release the Product to the Cus-
tomer. However, when we do release the Product to the Customer, itwill have a Version Number
different from the previous release of the Product.

a. See “Building the Main Line” on page 39.

Table 16: Releasing the Product

Step Activities

1. Build 1. Build the Producta

2. Complete the VDD

2. Validation 1. Run the appropriate regression and validation tests
2. Validate the VDD
3. Quality Assurance sign-off

3. Package Package the run-time products into a deliverable format

4. Deliver Deliver the run-time products to the Customer

November 18, 1997 8:24 am Configuration Management Process, v1.0.1 page 41 of 58

Copyright© 1997, Floyd W. Shackelford. All Rights Reserved

11.Quality Assurance

This section discusses the metrics to be captured by the Configuration Database, when audits of
these metrics are to be conducted, and the analyses to be applied to those metrics. Audits and
analyses are typically performed by the Quality Assurance Team.

November 18, 1997 8:24 am Configuration Management Process, v1.0.1 page 42 of 58

Copyright© 1997, Floyd W. Shackelford. All Rights Reserved

12.Forms

This section contains sample form templates.

November 18, 1997 8:24 am Configuration Management Process, v1.0.1 page 43 of 58

Copyright© 1997, Floyd W. Shackelford. All Rights Reserved

Defect

D________ page 1 of 2

Date/Time created

Submitter name

Contact
information

Product name

Item identification

Item title

Location

Abstract

Detailed
description

Assigned to

November 18, 1997 8:24 am Configuration Management Process, v1.0.1 page 44 of 58

Copyright© 1997, Floyd W. Shackelford. All Rights Reserved

D________ page 2 of 2

a. Valid dispositions are: Return, Reject, Duplicate, Accept, Working, Verify, Close

Status Log

date/time dispositiona description

November 18, 1997 8:24 am Configuration Management Process, v1.0.1 page 45 of 58

Copyright© 1997, Floyd W. Shackelford. All Rights Reserved

Change Request

CR________ page 1 of 6

a. Valid Priorities are: critical functionality, necessary functionality, desirable functionality
b. Valid Types are: Usability, Functionality, Performance, Platform, Integration

Date/Time created

Submitter names

Contact information

Prioritya

Products to be changed

Type of changeb

Abstract

Description of the change

Justification for the change

November 18, 1997 8:24 am Configuration Management Process, v1.0.1 page 46 of 58

Copyright© 1997, Floyd W. Shackelford. All Rights Reserved

CR________ page 2 of 6

a. Valid Dispositions are: Return, Reject, Defer, Accept

Change Control Board - Initial Review

Date/Time
Submitted

Date/Time
Reviewed

Reviewers Dispositiona Description

November 18, 1997 8:24 am Configuration Management Process, v1.0.1 page 47 of 58

Copyright© 1997, Floyd W. Shackelford. All Rights Reserved

CR________ page 3 of 6

Analysis

Systems Analyst name

Requirements Analysis

November 18, 1997 8:24 am Configuration Management Process, v1.0.1 page 48 of 58

Copyright© 1997, Floyd W. Shackelford. All Rights Reserved

CR________ page 4 of 6

Impacts

Product
Description of

Changes
Budget

Changes
Schedule
Changes

Resource
Changes

Dependency
 Changes

November 18, 1997 8:24 am Configuration Management Process, v1.0.1 page 49 of 58

Copyright© 1997, Floyd W. Shackelford. All Rights Reserved

CR________ page 5 of 6

a. Valid Dispositions are: Return, Reject, Defer, Working

Change Control Board - Detailed Review

Date/Time
Submitted

Date/Time
Reviewed

Reviewers Dispositiona Description

November 18, 1997 8:24 am Configuration Management Process, v1.0.1 page 50 of 58

Copyright© 1997, Floyd W. Shackelford. All Rights Reserved

CR________ page 6 of 6

Target Release

Implementation assigned to name

Items Changed

November 18, 1997 8:24 am Configuration Management Process, v1.0.1 page 51 of 58

Copyright© 1997, Floyd W. Shackelford. All Rights Reserved

Problem Report

PR________ page 1 of 5

a. Valid Severities are: 1, 2, 3, 4.

Date/Time received by Help Desk

Reported by

Severitya

Contact information

Abstract

Description

November 18, 1997 8:24 am Configuration Management Process, v1.0.1 page 52 of 58

Copyright© 1997, Floyd W. Shackelford. All Rights Reserved

PR________ page 2 of 5

a. Valid Priorities are: 1, 2.

Help Desk Attendant’s name

Steps to recreate the problem

Date/Time forwarded to Product
Specialist

Product Specialist name

Date/Time forwarded to PR
Review Board

PR Review Board reviewers

Prioritya

Delivery target

Date/Time forwarded to Developer

November 18, 1997 8:24 am Configuration Management Process, v1.0.1 page 53 of 58

Copyright© 1997, Floyd W. Shackelford. All Rights Reserved

PR________ page 3 of 5

Developer name

Technical description

November 18, 1997 8:24 am Configuration Management Process, v1.0.1 page 54 of 58

Copyright© 1997, Floyd W. Shackelford. All Rights Reserved

PR________ page 4of 5

Completion estimate

Description of fix

November 18, 1997 8:24 am Configuration Management Process, v1.0.1 page 55 of 58

Copyright© 1997, Floyd W. Shackelford. All Rights Reserved

PR________ page 5 of 5

Tests used to validate the fix

Inspection ID

Date/Time fix integrated with main
line

Resulting Change Requests and
Defects

November 18, 1997 8:24 am Configuration Management Process, v1.0.1 page 56 of 58

Copyright© 1997, Floyd W. Shackelford. All Rights Reserved

System Development Request

SDR________

Steering Team

Steering Team Representative

Date/Time Created

Submitter

Subject Matter Contacts

Priority (circle one): Critical Necessary Desirable

Urgency

Problem Abstract

Problem Description

Types and Numbers of Users

Expectations

Justification

November 18, 1997 8:24 am Configuration Management Process, v1.0.1 page 57 of 58

Copyright© 1997, Floyd W. Shackelford. All Rights Reserved

System Development Request
Field Descriptions

Steering Team.This is the name of the Steering Team to which this System Development
Request is to be submitted.

Steering Team Representative.This is the name of the Steering Team Representative who will
present this System Development Request to the Steering Team for their consideration. Please
include at a minimum: name, location, telephone number(s), and e-mail address.

Date/Time Created.This is the date and time at which the Submitter first filled out the System
Development Request.

Submitter. This is the name and contact information of the person who is submitting the form.
Please include at a minimum: name, location, telephone number(s), and e-mail address.

Subject Matter Contacts.List the names and contact information of the people who are the sub-
ject matter experts regarding this System Development Request. Please include at a minimum:
name, location, telephone number(s), and e-mail address.

Priority. Circle the appropriate priority. Critical priority means that you cannot perform a neces-
sary business function without Development support. Necessary priority means that you can per-
form a business function, but you cannot do so effectively without Development support.
Desirable means that you can perform a necessary business function, but you can do so more effi-
ciently with Development support.

Urgency.Express how urgent this request is in terms of a a particular date (e.g. “No later than
31 March 1997”) or a time frame (e.g. “3Q97”).

Problem Abstract. Describe the problem in one or two sentences.

Problem Description.Describe the problem in more detail.

Types and Numbers of Users.Describe the types and numbers of users which are affected by the
problem.

Expectations.Describe your expectations of what a solution to this problem should provide.

Justification. Provide a quantitative description of why this System Development Request should
be approved by the Steering Team in terms of: customer satisfaction, dollar expenditures, cycle
time, business opportunities, etc..

November 18, 1997 8:24 am Configuration Management Process, v1.0.1 page 58 of 58

Copyright© 1997, Floyd W. Shackelford. All Rights Reserved

13.References

[Cederqvist 1993] Per Cederqvistet al., Version Management with CVS for CVS 1.9 (Linkoping,
Sweden: Sigmun Support AB, 1993) http://www.loria.fr/~molli/CVS/doc/CVS_toc.html

[Paulket al. 1993] Mark C. Paulk, Bill Curtis, Mary Beth Chrissis, Charles V. Weber,Key
Practices of the Capability Maturity Model for Software, Version 1.1 (Pittsburgh: Software
Engineering Institute, Carnegie Mellon University, 1993) L2.71-L2.83

[Sommerville 1996] Ian Sommerville,Software Engineering, Fifth Edition (Harlow, England:
Addison-Wesley, 1996) 675-698

