
Secure Linux containers cookbook
Strengthen lightweight containers with SELinux and Smack

Skill Level: Advanced

Serge E. Hallyn (sergeh@us.ibm.com)
Advisory Software Engineer
IBM

03 Feb 2009

Lightweight containers, otherwise known as Virtual Private Servers (VPS) or Jails,
are often thought of as a security tools designed to confine untrusted applications or
users; but as presently constructed, these containers do not provide adequate
security guarantees. By strengthening these containers using SELinux or Smack
policy, a much more secure container can be implemented in Linux®. This article
shows you how to create a more secure Linux-Security-Modules-protected container.
Both the SELinux and Smack policy are considered works in progress, to be
improved upon with help from their respective communities.

A common response when someone first hears about containers is "How do I create
a secure container?" This article answers that question by showing you how to use
Linux Security Modules (LSM) to improve the security of containers. In particular, it
shows you how to specify a security goal and meet it with both the Smack and
SELinux security modules.

For background reading on Linux Containers, see "LXC: Linux container tools"
(developerWorks, February 2009).

Linux containers are really a conceptual artifice built atop several Linux
technologies:

• Resource namespaces allow the manipulation of lookups of processes,
files, SYSV IPC resources, network interfaces, and more, all inside of
containers.

Secure Linux containers cookbook
© Copyright IBM Corporation 2008. All rights reserved. Page 1 of 15

mailto:sergeh@us.ibm.com
http://www.ibm.com/developerworks/linux/library/l-lxc-containers/index.html
http://www.ibm.com/legal/copytrade.shtml

• Control groups allow resource limits to be placed on containers.

• Capability bounding sets limit the privilege available to containers.

These technologies must be coordinated in order to provide the illusion of
containers. Two projects already provide this functionality:

• Libvirt is a large project that can create virtual machines using the Xen
hypervisor, qemu emulator, and kvm, and also using lightweight
containers.

• Liblxc is a smaller set of libraries and userspace commands written in part
to help kernel developers quickly and easily test the containers
functionality.

Because "LXC: Linux container tools" was written using liblxc as its foundation, I will
continue with liblxc here; however, anything we do here can just as easily be done
using libvirt's container support.

Major player 1: LSM

Before we start, if you know little about the LSM, here is a quick review. According to
the Wikipedia entry: Linux Security Modules (LSM) is a framework that allows the
Linux kernel to support a variety of computer security models while avoiding
favoritism toward any single security implementation. The framework is licensed
under the terms of the GNU General Public License and is standard part of the Linux
kernel since Linux 2.6.... LSM was designed to provide the specific needs of
everything needed to successfully implement a mandatory access control module,
while imposing the fewest possible changes to the Linux kernel. LSM avoids the
approach of system call interposition as used in Systrace because it does not scale
to multiprocessor kernels and is subject to TOCTTOU (race) attacks. Instead, LSM
inserts "hooks" (upcalls to the module) at every point in the kernel where a user-level
system call is about to result in access to an important internal kernel object such as
inodes and task control blocks.... The project is narrowly scoped to solve the
problem of access control to avoid imposing a large and complex change patch on
the mainstream kernel. It is not intended as a general "hook" or "upcall" mechanism,
nor does it support virtualization.... LSM's access control goal is very closely related
to the problem of system auditing, but is subtly different. Auditing requires that every
attempt at access be recorded. LSM cannot deliver that, because it would require a
great many more hooks, so as to detect cases where the kernel "short circuits"
failing system calls and returns an error code before getting near significant objects.

System security consists of two somewhat contradictory goals. The first is to achieve
complete and fine-grained access control. At every point that information can be
leaked or corrupted, you must be able to exert control. Controls that are too coarse

developerWorks® ibm.com/developerWorks

Secure Linux containers cookbook
Page 2 of 15 © Copyright IBM Corporation 2008. All rights reserved.

http://www.ibm.com/developerworks/linux/library/l-lxc-containers/index.html
http://www.ibm.com/legal/copytrade.shtml

is the same as being uncontrolled. For instance, if (at the extreme) all files must be
classified as one type and any one file must be world-readable, then all files must be
world-readable.

On the other hand, configuration must also be simple, otherwise administrators will
often default to giving too much access (and I can't emphasize this enough -- this is
the same as being uncontrolled). For instance, if making a program work requires
thousands of access rules, then chances are an admin will give the program too
many access rights rather than testing whether each access rule was really needed.

The two primary security modules in Linux each take a different view on how to
handle this balance.

• SELinux begins by controlling everything while using an impressive policy
language to simplify policy management.

• Smack is primarily concerned with providing a simple access control.

Major player 2: SELinux

SELinux is by far the most well-known MAC system for Linux (mandatory access
control). While it certainly still has its detractors, the fact that the popular Fedora®
distribution has been deployed with SELinux enforcing for years is a tremendous
testament to its success.

SELinux is configured using a modular policy language which allows an installed
policy to be easily updated by users. The language also provides interfaces, allowing
more high-level statements to be used to represent a collection of low-level "allow"
statements.

In this article, we will be using a new interface to define containers. While the
interface itself will be quite large due to the many access rights you must give the
container, using the interface to create a new container will be very simple. Hopefully
the interface can become a part of the core distributed policy.

Major player 3: Smack

Smack is the Simplified Mandatory Access Control Kernel. It begins by labeling all
processes, files, and network traffic with simple text labels. Newly created files are
created with the label of the creating process. A few default types always exist with
clearly defined access rules. A process can always read and write objects of the
same label. Privilege to bypass the Smack access rules are controlled using POSIX
capabilities, so a task carrying CAP_MAC_OVERRIDE can override the rules; a task
carrying CAP_MAC_ADMIN can change the rules and labels. "POSIX file capabilities:

ibm.com/developerWorks developerWorks®

Secure Linux containers cookbook
© Copyright IBM Corporation 2008. All rights reserved. Page 3 of 15

http://www.ibm.com/legal/copytrade.shtml

Parceling the power of root" (Resources) demonstrates these privileges.

Our security goal

Instead of simply blindly applying policy and hoping to end up with something useful,
let's begin by defining a clear security goal. The simplicity of Smack actually limits
the goals we can achieve, but we'll pursue the following goal:

1. Create containers with segregated file systems providing Web and ssh
services.

2. Containers will be protected from each other. A container designated vs1
cannot read files owned by another container vs2 or kill its tasks.

3. The host can protect its key files from containers.

4. The outside world can reach the Web servers and ssh servers on the
containers.

The general setup

In this article we'll do two experiments -- first we'll set up containers protected by
SELinux, then containers protected by Smack. The experiments will share much of
the preliminary setup.

You can use a real machine to do these experiments, but you may find it easier or
more comforting to use a virtual machine. To use qemu or kvm, you can create a
hard disk using qemu-img create vm.img 10G.

Boot the virtual machine from CDROM using a command like kvm -hda vm.img
-cdrom cdrom.iso -boot d -m 512M. A good choice for a CDROM image is
to go to fedoraproject.org/get-fedora and download an installation DVD for Fedora
10 for i386. Substitute the filename you download for cdrom.iso in the previous
command. You can mostly use the installation defaults, but make sure to unselect
office and productivity and select software development. You'll also want to install
the bridge-utils, debootstrap, and ncurses-devel rpms, probably using the yum
package manager.

Now you need to compile a custom kernel. Download the kernel-sources rpm, patch
it with enable-netns.patch (see the Download section) to provide network
namespaces (which will be upstream as of 2.6.29 but not in Fedora 10), change the
configuration, then complete the compilation and installation, by following the
following instructions as root:

developerWorks® ibm.com/developerWorks

Secure Linux containers cookbook
Page 4 of 15 © Copyright IBM Corporation 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

yumdownloader --source kernel
rpm -i kernel*
cd rpmbuild
rpmbuild -bc SPECS/kernel-*
cd BUILD/kernel-2.6.27/linux-2.6*
patch -p1 < ~/enable-netns.patch
make menuconfig
make && make modules_install && make install

For both experiments, in the make menuconfig step, select Network Namespaces
(under Networking support -> Networking options menus). For the Smack
experiment, also go into the Security options menu, deselect SELinux, and select
the next option, Smack. You may also need to switch the default boot entry in
/boot/grub/grub.conf back to 0 instead of 1.

Now we want to try out liblxc. "LXC: Linux container tools" describes the basic usage
of liblxc in detail, so we'll gloss over it here. Simply use the container_setup.sh script
(see the Download section) to set up the bridge on which container network devices
will talk. It will also clear your firewall, which by default isn't set up to handle the
bridge, as well as set up the Smack policy (which we'll create later in the file
/etc/smackaccesses) if you are doing the Smack experiment. You'll need to run
container_setup.sh after each reboot or if you know how, make it run at boot
automatically.

Now your machine is ready! Let's try out liblxc. You can download the latest source
using cvs from lxc.sf.net and compile it using the following:

cvs -d:pserver:anonymous@lxc.cvs.sourceforge.net:/cvsroot/lxc
login
cvs -z3
-d:pserver:anonymous@lxc.cvs.sourceforge.net:/cvsroot/lxc co -P
lxc
cd lxc
./bootstrap && ./configure && make && make install

Now if you look at the README, you'll see there are quite a few options for getting
started. Containers can be extremely lightweight because they can share many
resources with your system -- including the filesystem. But our goal is to provide
some simple isolation so we will use the script lxc-debian to create a full debian
chroot image for each container. Begin by creating a container named vsplain:

mkdir /vsplain
cd /vsplain
lxc-debian create

container name: vsplain
hostname: vsplain
IP 10.0.2.20
gateway: 10.0.2.2

The configuration for this container is stored under the directory

ibm.com/developerWorks developerWorks®

Secure Linux containers cookbook
© Copyright IBM Corporation 2008. All rights reserved. Page 5 of 15

http://www.ibm.com/developerworks/linux/library/l-lxc-containers/index.html
http://www.ibm.com/legal/copytrade.shtml

/usr/local/var/lxc/vsplain. If you look at the file called cgroup, you'll see some lines
beginning with devices.. These are directives to the devices whitelist cgroup which
will mediate device creation, read, and write by the container.

Start this container using the command lxc-start -n vsplain. You'll be
presented with a login prompt. Login to the container using username root with no
password. Finally, when your container is up and running, you will want to

apt-get install openssh-server
apt-get install apache

Now you can ssh from the kvm host to the container and look at its Web page using
10.0.2.20 for vsplain's ip address and 10.0.2.15 for the host's. You can shut the
container down at any time from a root terminal on the kvm host using the command
lxc-stop -n vsplain.

At this point, you may want to save yourself some time by cloning two new virtual
machines from this template. Shut down your vm and do:

cp vm.img selinux.img
cp vm.img smack.img

SELinux-protected containers

The SELinux policy for containers we'll use will consist of a policy module; the
module has been posted to refpolicy -- SELinux Reference Policy development mail
list. Download the policy into a directory /root/vs, into files called vs.if, vs.fc, and
vs.te respectively. Compile and install the new module as follows:

cp -r /usr/share/selinux/devel /usr/share/selinux/vs
cp /root/vs.?? /usr/share/selinux/vs/
cd /usr/share/selinux/vs
make && semodule -i vs.pp

Then create containers /vs1 and /vs2 using lxc-debian and relabel their filesystems
using

mkdir /vs1; cd /vs1
lxc-debian create

container name: vs1
hostname: vs1
address: 10.0.2.21
gateway: 10.0.2.2
arch: 2 (i386)

mkdir /vs2; cd /vs2
lxc-debian create

developerWorks® ibm.com/developerWorks

Secure Linux containers cookbook
Page 6 of 15 © Copyright IBM Corporation 2008. All rights reserved.

http://oss.tresys.com/pipermail/refpolicy/2008-December/000511.html
http://www.ibm.com/legal/copytrade.shtml

container name: vs2
hostname: vs2
address: 10.0.2.22
gateway: 10.0.2.2
arch: 2 (i386)

fixfiles relabel /vs1
fixfiles relabel /vs2

When you start your containers (for instance by using lxc-start -n vs1), you'll
likely get a few audit messages about SELinux access denials. Don't worry -- the
container starts up fine with network services enabled and the containers are now
isolated. If you help container vs1 cheat using mount --bind /
/vs1/rootfs.vs1/mnt before starting the container, you'll find that even though
you are the root user, ls /mnt/root will be refused.

To see how this works, let's look at the vs.if interface file. This defines an interface
called container which takes one argument, the base name for the container to
define. The vs.te file calls this function twice with the container names vs1, vs2. In
the interface, $1 is expanded to the argument, so $1_t becomes vs1_t when we
call container(vs1). (From here on let's assume we are defining vs1).

The most important lines are those involving vs1_exec_t. The container runs in
type vs1_t. It enters this type when unconfined_t executes the container's
/sbin/init which is of type vs1_exec_t.

Most of the rest of the policy merely is there to grant the container sufficient privilege
to access bits of the system: network ports, devices, consoles, etc. The interface is
as long as it is due to the fine-grained nature of the existing SELinux reference
policy. As we're about to see, the Smack-protected container will have a much
simpler policy; in return, it will promise much less flexible protection from
misbehaving system services.

There is one more thing you need to do. You may have noted that while the
container is not able to overwrite its $1_exec_t, that is /sbin/init. But what it can do
is something like

mv /sbin /sbin.bak
mkdir /sbin
touch /sbin/init

The resulting /sbin/init will be of type vs1_file_t. Why do you think the container
admin would want to do this? Because it would launch the container, including the
ssh daemon, in the unconfined_t domain, giving him a privileged shell and
allowing him to escape the SELinux constraints we were trying to enforce.

To prevent this, you actually want to start the container through a custom script and
relabel sbin/init to vs1_exec_t before starting the container. In fact, you can copy a
pristine copy of init back into the container and relabel that if the container

ibm.com/developerWorks developerWorks®

Secure Linux containers cookbook
© Copyright IBM Corporation 2008. All rights reserved. Page 7 of 15

http://www.ibm.com/legal/copytrade.shtml

administrator didn't mind. But we'll just relabel the existing init:

cat >> /vs1/vs1.sh << EOF
#!/bin/sh
chcon -t vs1_exec_t /vs1/rootfs.vs1/sbin/init
lxc-start -n vs1
EOF
chmod u+x /vs1/vs1.sh

Now you'll need to start the container using /vs1/vs1.sh instead of using
lxc-start by hand.

Smack-protected containers

Recompile the kernel with Smack enabled. You should be able to simply enter the
/root/rpmbuild/BUILD/kernel*/linux* directory, make menuconfig, go to
the security menu, disable SELinux, and enable Smack. Then just repeat the steps
make && make modules_install && make install.

Also stop userspace from trying to configure SELinux. You can do this through the
SELinux administration GUI or you can edit /etc/selinux/config and set
SELINUX=disabled. You also will want to do a few more steps to install a Smack
policy at boot:

mkdir /smack
cd /usr/src
wget http://schaufler-ca.com/data/080616/smack-util-0.1.tar
tar xf smack-util-0.1.tar; cd smack-util-0.1
make && cp smackload /bin

The actual Smack policy looks like Listing 1:

Listing 1. smackaccesses

vs1 _ rwa
_ vs1 rwa
vs2 _ rwa
_ vs2 rwa
_ host rwax
host _ rwax

It should be copied into a file called /etc/smackaccesses. The next time you run
/bin/container_setup.sh, it will load this file into smackload.

The policy is pretty simple. By default, any label can read data labeled _. We define
a new label host for host-private data which containers should not be able to
access; we assign this to the cgroups filesystem in the container_setup.sh script.

developerWorks® ibm.com/developerWorks

Secure Linux containers cookbook
Page 8 of 15 © Copyright IBM Corporation 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Other sensitive files like /etc/shadow should certainly get this label.

We define vs1 and vs2 to label containers. By default they can each access their
own data. We add a rule to allow them to write _ so as to allow sending network
packets. Since vs1 cannot access vs2 data and vice versa, containers are
protected from each other.

As mentioned before, the ability to define or bypass Smack access rules is
determined by the CAP_MAC_ADMIN and CAP_MAC_OVERRIDE capabilities. So you
will need to keep containers from having those capabilities. You can do that using
the a helper program dropmacadmin.c (in the Download section). You must compile
it statically since the containers have different library versions from the host:

gcc -o dropmacadmin dropmacadmin.c -static
cp dropmacadmin /bin/

Create a new container called vs1:

mkdir /vs1; cd /vs1
lxc-debian create

container name: vs1
hostname: vs1
address: 10.0.2.21
router: 10.0.2.2
arch: 2 (i386)

Label all files in vs1's filesystem with the label vs1:

for f in `find /vs1/rootfs.vs1`; do
attr -S -s SMACK64 -V vs1 $f

done

Now you need to create a script which will start the container safely. What this
means is that it will set it's process label to vs1 and wrap the container's /sbin/init
through dropmacadmin (like so):

cat >> /vs1/vs1.sh << EOF
#!/bin/sh
cp /bin/dropmacadmin /vs1/rootfs.vs1/bin/
attr -S -s SMACK64 -V vs1 /vs1/rootfs.vs1/bin/dropmacadmin
echo vs1 > /proc/self/attr/current
lxc-start -n vs1 /bin/dropmacadmin /sbin/init
EOF
chmod u+x /vs1/vs1.sh

One more thing will let vs1 write to the tmpfs filesystem it is going to mount:

ibm.com/developerWorks developerWorks®

Secure Linux containers cookbook
© Copyright IBM Corporation 2008. All rights reserved. Page 9 of 15

http://www.ibm.com/legal/copytrade.shtml

sed -i 's/defaults/defaults,smackfsroot=vs1,smackfsdef=vs1/' \
/vs1/rootfs.vs1/etc/fstab

This will cause the tmpfs filesystem mounted at /dev/shm to carry the vs1 label so
that vs1 can write to it. Otherwise, vs1 init scripts won't be able to create the
/dev/shm/network directory it uses while setting up the network. Similarly, if you want
to use a ram-based /tmp, you'll want those same options.

Now again let's help vs1 cheat. Create vs2 the same way you created vs1,
substituting vs2 for vs1 at each step. Then bind-mount the root filesystem under
vs1's /mnt:

mount --bind /vs1 /vs1
mount --make-runbindable /vs1
mount --rbind / /vs1/rootfs.vs1/mnt

Start the container using vs1.sh. Note that you can still see the Web page on vs1
and vs2 from the kvm host. Note also that vs1 cannot access vs2 over the network.
It also can't look through vs2's files:

vs1:~# ls /mnt/
(directory listing)

vs1:~# ls /mnt/vs2/rootfs.vs2
ls:/mnt/vs2/rootfs.vs2: Permission denied

vs1:~# mkdir /cgroup
vs1:~# mount -t cgroup cgroup /cgroup
vs1:~# ls /cgroup
ls:/mnt/vs3: Permission denied

vs1:~# mknod /dev/sda1 b 8 1
mknod: `/dev/sda1': Operation not permitted

vs1:~# mount /mnt/dev/sda1 /tmp
mount: permission denied

It can look through the host file system. Anything we want to protect against, we can
label with the host label. That's what we did with the cgroup filesystem which is why
ls /cgroup failed.

Finally, the devices whitelist cgroup is preventing us from creating a disk device, as
well as mounting it if it exists (as it does through /mnt).

Of course, the way we've set this up, the container admin can remove
/mnt/dev/sda1, as well mess up the host in any number of ways, so other than as
demonstration this bind mount is obviously not desirable!

Note that while on the SELinux system, the default (and easy) route was to allow the
containers to talk to each other over the network, the inverse is true in Smack.
Allowing containers to talk to each other is currently very hard to do. An ability to set
labels on IP addresses is coming soon though and should allow us to set up policy
to allow containers to communicate.

developerWorks® ibm.com/developerWorks

Secure Linux containers cookbook
Page 10 of 15 © Copyright IBM Corporation 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Related to how we set up Smack networking, we have another problem. The
command kill -9 -1 kills every task on the system. When done by a task in a
container, this should only kill tasks in the same container. That behavior is now
fixed in the upstream kernel, but not in the Fedora 10 kernel we are using. So every
task will be sent a -9 signal.

In the SELinux-protected containers, SELinux stops the signals from passing the
container boundary, so kill -9 -1 is actually safe. But in Smack tasks by default
are labeled _ just as the network is, so since we allowed the container to write _ to
allow writing to the network, and since killing a task is considered a write access by
Smack, you are also allowing the container admin to kill any tasks on the whole
system.

Another shortcoming (which is also present in the SELinux containers) has to do
with Unix98 pseudo-terminals. Open two graphical terminals. In the first, start up vs1
and look under /dev/pts. You will see at least two entries, 0 and 1, one belonging
to each terminal. From the vs1 container you are able to write into the entry
corresponding to the other terminal.

With the Fedora kernel there are two solutions. You can use the device whitelist
cgroup to deny the container the ability to open the devices. However, this will have
to be done by hand each time the container is started in order to grant it access to its
terminal; or you can achieve the same effect by applying SELinux and Smack labels.

The newer 2.6.29 kernel supports devpts namespaces. A container will remount
/dev/pts, after which it will be unable to access the devpts entries belonging to the
host or other containers.

Conclusion

This article showcased the basic tools for creating LSM-protected containers, but
much work remains to be done:

• For Smack, you must choose files to label as host.

• For SELinux, you should fine-tune and then push a container interface
into the upstream reference policy.

While such work is ongoing, and until more experience is gained with LSM-protected
containers, you should not put all your trust in these mechanisms to protect against
an untrusted root user.

Although there are no established best practices for creating containers yet (that I
know of), there are a few ideas worth starting with. First, remember you are
consolidating two somewhat contradictory goals: You want to minimize duplication

ibm.com/developerWorks developerWorks®

Secure Linux containers cookbook
© Copyright IBM Corporation 2008. All rights reserved. Page 11 of 15

http://www.ibm.com/legal/copytrade.shtml

among containers (and the host) while needing to ensure isolation. One way to
achieve these goals could be to create a single full minimal rootfs in which no
container runs and labeling it a type which all containers can read. Then use a
custom version of the lxc-sshd script to create each actual container based on the
prototype, creating read-only mounts for most of the container's filesystem while
providing a private writable place for the container to store files, say like /scratch.
Since each container has a private mounts namespace, it can bind-mount any files
or directories which it needs to be private and/or writeable from its private shared
directory. For instance, if it wants a private /lib, it can mount --bind
/scratch/rootfs/lib /lib. Likewise, the admin can ensure that every
container does mount --bind /scratch/shadow /etc/shadow at startup.

One clear limitation of the approach I demonstrated here with both SELinux and
Smack is that the container administrator cannot exploit LSM to control information
flow within his own container. Rather, for simplicity, all tasks in the container are
treated the same by MAC policy. In another article, I hope to explore how to allow
container administrators to specify their own LSM policies without allowing them to
escape their own contraints.

Acknowledgments

Casey Schaufler, the author of Smack, helped in getting the Smack-protected
container off the ground, and Dan Walsh was kind enough to provide feedback on
the SELinux policy.

developerWorks® ibm.com/developerWorks

Secure Linux containers cookbook
Page 12 of 15 © Copyright IBM Corporation 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Downloads

Description Name Size Download method

Code for this article code.zip 3KB HTTP

Information about download methods

More downloads

• Demo: SELinux containers policy

ibm.com/developerWorks developerWorks®

Secure Linux containers cookbook
© Copyright IBM Corporation 2008. All rights reserved. Page 13 of 15

http://download.boulder.ibm.com/ibmdl/pub/software/dw/linux/l-lxc-security/code.zip
http://www.ibm.com/developerworks/library/whichmethod.html
http://oss.tresys.com/pipermail/refpolicy/2008-December/000511.html
http://www.ibm.com/legal/copytrade.shtml

Resources

Learn

• "LXC: Linux container tools" (developerWorks, February 2009) is a step-by-step
guide to creating Linux containers.

• "POSIX file capabilities: Parceling the power of root" (developerWorks, October
2007) showcases the Linux POSIX file capabilities that split root user powers
into smaller privileges.

• The refpolicy -- SELinux Reference Policy development mail list is where you'll
find the policy module we used in this article.

• "SELinux from scratch" (developerWorks, May 2006) is a detailed introduction
to SELinux.

• Planet SELinux is an aggregation of blog posts from members of the SELinux
development community.

• "Reference Policy for Security Enhanced Linux" (PDF document) is a paper
presenting the SELinux reference policy.

• "Smack for simplified access control" (LWN.net, August 2007) is an early
writeup on the Smack submission.

• Other container technologies include

• Solaris Zones (Solaris)

• BSD jails (FreeBSD)

• Linux-Vserver (Linux)

• OpenVZ (Linux)

• FreeVPS (Linux)

• In the developerWorks Linux zone, find more resources for Linux developers
(including developers who are new to Linux), and scan our most popular articles
and tutorials.

• See all Linux tips and Linux tutorials on developerWorks.

• Stay current with developerWorks technical events and Webcasts.

Get products and technologies

• Linux Resource Containers project on SourceForge.net is a repository of code
for application container implementation in the Linux kernel, a staging area for
code that may be sent to the linux-kernel mailing list.

developerWorks® ibm.com/developerWorks

Secure Linux containers cookbook
Page 14 of 15 © Copyright IBM Corporation 2008. All rights reserved.

http://www.ibm.com/developerworks/linux/library/l-lxc-containers/index.html
http://www.ibm.com/developerworks/library/l-posixcap.html
http://oss.tresys.com/mailman/listinfo/refpolicy
http://oss.tresys.com/pipermail/refpolicy/2008-December/000511.html
http://www.ibm.com/developerworks/linux/library/l-selinux.html
http://selinuxnews.org/planet/
http://lwn.net/Articles/244531/
http://en.wikipedia.org/wiki/Solaris_Zones
http://en.wikipedia.org/wiki/FreeBSD_jail
http://en.wikipedia.org/wiki/Vserver
http://en.wikipedia.org/wiki/Openvz
http://en.wikipedia.org/wiki/FreeVPS
http://www.ibm.com/developerworks/linux/
http://www.ibm.com/developerworks/linux/newto/
http://www.ibm.com/developerworks/linux/library/l-top-10.html
http://www.ibm.com/developerworks/linux/library/l-top-10.html
http://www.ibm.com/developerworks/views/linux/libraryview.jsp?topic_by=All+topics+and+related+products&sort_order=desc&lcl_sort_order=desc&search_by=linux+tip%3A&search_flag=true&type_by=All+Types&show_abstract=true&start_no=1&sort_by=Date&end_no=100&show_all=false
http://www.ibm.com/developerworks/views/linux/libraryview.jsp?topic_by=All+topics+and+related+products&sort_order=desc&lcl_sort_order=desc&search_by=&search_flag=&type_by=Tutorials&show_abstract=true&sort_by=Date&end_no=100&show_all=false
http://www.ibm.com/developerworks/offers/techbriefings/
http://sourceforge.net/projects/lxc/
http://www.ibm.com/legal/copytrade.shtml

• With IBM trial software, available for download directly from developerWorks,
build your next development project on Linux.

Discuss

• Get involved in the developerWorks community through blogs, forums,
podcasts, and spaces.

About the author

Serge E. Hallyn
Serge Hallyn is a part of IBM's Linux Technology Center, focusing on Linux kernel
and security. He obtained his Ph.D. in computer science from the College of William
and Mary. He has written and contributed to several security modules. He currently
focuses on adding support for virtual server functionality, application
checkpoint/restart, and POSIX file capabilities.

Trademarks

IBM, the IBM logo, ibm.com, DB2, developerWorks, Lotus, Rational, Tivoli, and
WebSphere are trademarks or registered trademarks of International Business
Machines Corporation in the United States, other countries, or both. These and other
IBM trademarked terms are marked on their first occurrence in this information with
the appropriate symbol (® or ™), indicating US registered or common law
trademarks owned by IBM at the time this information was published. Such
trademarks may also be registered or common law trademarks in other countries.
See the current list of IBM trademarks.
Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

ibm.com/developerWorks developerWorks®

Secure Linux containers cookbook
© Copyright IBM Corporation 2008. All rights reserved. Page 15 of 15

http://www.ibm.com/developerworks/downloads/
http://www.ibm.com/developerworks/community
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

	Table of Contents
	Major player 1:
 LSM
	Major player 2:
 SELinux
	Major player 3:
 Smack
	Our security
 goal
	The general
 setup
	SELinux-protected
 containers
	Smack-protected
 containers
	Conclusion
	Downloads
	Resources
	About the author
	Trademarks

