
Sun Microsystems, Inc.
901 San Antonio Road
Palo Alto, CA 94303 USA
650 960-1300 fax 650 969-9131

Implementing LDAP in the

Solaris™ Operating

Environment

By Tom Bialaski - Enterprise Engineering

Sun BluePrints™ OnLine - October 2000

http://www.sun.com/blueprints

Part No.: 806-7036-10
Revision 01, October 2000

Please

Recycle

Copyright 2000 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, California 94303 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.

No part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors,

if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in

the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, Sun Enterprise, iPlanet and Solaris are trademarks, registered trademarks, or service marks of Sun

Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks

of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by

Sun Microsystems, Inc.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87) and

FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a).

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,

INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-

INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 1999 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, Californie 94303 Etats-Unis. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la

décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans

l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie

relative aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque

déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, Sun Enterprise, iPlanet, et Solaris sont des marques de fabrique ou des marques déposées, ou marques de

service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des

marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les

marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun

reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique

pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence

couvrant également les licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux

licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE "EN L’ETAT" ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS

DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION

PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE

S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

1

Implementing LDAP in the
Solaris™ Operating Environment

Abstract

The first new naming service in over 10 years was introduced in the Solaris™ 8

Operating Environment. This naming service is based on the Lightweight Directory

Access Protocol (LDAP) which provides an industry standard interface for accessing

data stored in LDAP compliant directories.

This paper takes a look at how LDAP was implemented in the Solaris 8 Operating

Environment and what steps you need to perform to take advantage of this

technology. Since the installation and configuration of native Solaris LDAP is quite

complex, only an overview of what steps are required is presented.

Introduction

The acronym LDAP stands for Lightweight Directory Access Protocol, but LDAP is

more that just a protocol. Besides providing a standard access method for clients and

servers, LDAP also defines a naming, information, and security model for how data

is stored and protected. Knowing how these models work and how they pertain to

the Solaris LDAP implementation will help you gain a better understanding why

certain configuration steps are required.

The first part of this whitepaper explains what the LDAP models are in order to

form a foundation for the second part which delves into the actual implementation.

While not meant to be an all inclusive guide to deploying LDAP as a naming service,

this whitepaper should serve as a foundation for understanding the fundamental

principles involved.

2 Implementing LDAP in the Solaris™ Operating Environment • October 2000

Although the Solaris native LDAP implementation is independent of any particular

LDAP server, the server chosen for these examples is the iPlanet™ Directory Server

4.11 from iPlanet E-Commerce Solutions, a Sun-Netscape Alliance. The server

software ships on a companion CD co-packaged with the Solaris 8 Operating

Environment.

LDAP Models

LDAP is commonly defined in terms of four models. These are:

■ Information Model

■ Naming Model

■ Access Model

■ Security Model

The information model specifies how data is stored within the directory. The naming

model defines how objects within the directory structure are organized and

identified. The mechanics for accessing data are specified in the access model. How

data is protected is defined in the security model.

The following sections examine what each of these models consists of and how they

are implemented in native Solaris LDAP.

Information Model

The basic LDAP storage unit is the directory entry, which is where information

about a particular object resides. Objects are a collection of attributes which each

have a corresponding value. What attributes an object may contain is defined in an

object class. For example, to describe a person, an object of object class person is

created. The person object class defines a set of attributes, like first name, surname,

and telephone number, which describes the person you are creating a directory entry

for.

To maintain order, a set of rules is established to govern which attributes are

required, which ones are optional, and what type of data can be stored in them. This

set of rules is called the directory schema. To promote interoperability between

different vendor’s LDAP servers a well-defined standard schema exists, which is

expected to be included on all LDAP servers.

Naming Model 3

Within the LDAP standard is a provision for extending the schema. That is, to create

your own object classes and attributes. When you develop new LDAP-enabled

applications, you are advised to use the standard object classes if possible.

Sometimes, as was the case with native LDAP, new object classes and attributes are

required.

To extend the schema which ships with the iPlanet Directory Server 4.11, you update

the schema configuration files and then restart the server. This step is required

before entries which support native Solaris LDAP can be created.

Implementing LDAP as a Solaris naming service requires making the same

information that NIS maps contain available to naming service clients. LDAP entries

that represent the data found in NIS maps must be created. To promote

interoperability, the object class definitions used to store NIS data are defined in a

specification called RFC 2307 which was later updated to RFC 2307bis.

The RFC 2307 schema definitions are part of the iPlanet Directory Server 4.11 default

configuration, however, there are some object classes that go beyond the RFC2307

specification which do need to be defined.

In addition to LDAP entries that contain NIS map data, object classes which are

required to support the Solaris LDAP client implementation must be defined in the

schema. Information about how the client connects to a server is placed in a client

profile. Also, each LDAP server which supports Solaris clients must have an entry

which denotes the name of the domain that it is servicing.

The specific object classes required to support native Solaris LDAP and their

associated attributes are described later in this whitepaper.

Naming Model

How entries are organized within a directory is defined by the naming model. The

tree-like structure that information is kept in is called the directory information tree

(DIT) which looks similar to a Solaris filesystem. However, there are a number of

subtle but important differences.

Unlike a Solaris filesystem there is no root directory, which serves as an entry point

into the entire structure. Instead, LDAP directories contain one or more suffixes

which signify the top node of a DIT. Under each suffix there is a separate DIT which

provides its own namespace. Each directory server does have an entry called the

Directory Specific Entry (DSE) which contains information pertinent to the directory

server but is not connected to any of the DITs.

4 Implementing LDAP in the Solaris™ Operating Environment • October 2000

Below the directory suffixes are containers and directory entries. These are similar to

filesystem directories and files except that containers can hold data in addition to

entries and other containers. In a filesystem, only files contain data.

Entries are identified by their distinguished name (DN) which is similar to a

filesystem absolute path name. The main difference is that the DN is specified in the

reverse order of a filesystem pathname.

The following diagram shows a portion of a DIT to illustrate how DNs are

referenced.

In this example, the suffix of the DIT is dc=sun,dc=com . Below the suffix is a

container called ou=People and below the container is a directory entry for a

person in the organization.

As you can see, the DN of the person is specified beginning with an attribute value,

followed by a container, then the suffix. An interesting note here is that the entry is

identified by an attribute, which is uid in this case. Any attribute can be specified,

but since some entries may have common attribute values, for example, manager= ,

one attribute is chosen whose value will be unique to each entry. For user account

entries, the uid attribute is used.

Alternatively, a relative distinguished name (RDN), which is similar to a filename

can be used to identify an entry. In this example, uid=tom would be the RDN which

refers to the entry. Since there is only one entry which has a value of uid=tom , the

DN does not need to be specified to identify the entry.

Another aspect of naming is the abbreviations used to identify suffixes and

containers. Suffixes can appear either in the X.500 style or the domain component

style. X.500 specifies a rigid nomenclature which includes a country code, locality,

and organization name. The domain component (dc) style mirrors the DNS address

of a company and is preferable to the X.500 style since registered DNS names are

guaranteed to be unique. Instead of using the dot notation, a series of comma-

separated dc= statements are specified.

dn:dc=sun,dc=com
o: sun.com

dn:ou=People,dc=sun,dc=com
ou: People

dn: uid=tom,ou=People,dc=sun,dc=com
sn: Brooks
cn: Tom Brooks

Access Model 5

To configure an LDAP server to support native Solaris LDAP clients, you need to

create a DIT to provide a structure to store the NIS map data. You can store data

under any branch in the DIT but the client must be aware of where to start looking

for it. The top level of the DIT must also have a nisDomainObject entry which

holds the identity of the domain the server is servicing.

Access Model

The access model defines how a client gains access to the directory and subsequently

starts issuing requests. Before any search or write requests can be made, the client

must be authenticated by the directory server. After authentication a connection is

established which is used for subsequent LDAP requests.

The authentication process is called binding and consists of the client sending the

directory server a set of credentials and the server sending back either a success or

failure error code. The security method used can either be a simple username

password pair or a more sophisticated method such as a challenge/response

mechanism.

Once the client is authenticated, commands for searching and modifying entries can

be sent. Search commands are the most common, consisting of specifying a search

base (where in the DIT to start searching) and a particular attribute value or

wildcard. The server either returns a list of matching entries or a NOTFOUNDerror.

To disconnect from the server, the client sends an unbind command, which closes

the connection.

When LDAP is used as a Solaris naming service, the Solaris system takes on the role

of a LDAP client. During the booting process, the Solaris client binds to the directory

server using a specified security method to establish a connection. Once the

connection is established, the Solaris client sends LDAP commands and retrieves

data back from the directory. System utilities that use the Solaris name switch, issue

getXbyY type calls which in turn get translated to LDAP commands.

The information the Solaris client uses to bind to the server, resides in a profile file

which gets read initially when the system boots and then is placed in a cache. The

client periodically checks to see if the profile it is using gets updated on the server. If

it does, the cache is refreshed with the new information and, if need be, the client

will automatically bind to another directory server.

The iPlanet Directory Server 4.11 can only support simple username/password

authentication from Solaris LDAP clients, although the client can support more

sophisticated methods if they were available.

6 Implementing LDAP in the Solaris™ Operating Environment • October 2000

Security Model

The security model defines how objects in the DIT are protected and who is

authorized to access them. This model is very flexible allowing for the protection of

the entire DIT down to the attribute level. You can set Access rights for a single user,

a group of users, all users, or anonymous users. The model distinguishes between all

users, that is, users with an account on the server, and anonymous users, who do

not.

The user identity is determined by the DN that the client binds to the directory with.

The DN usually contains the uid of the person binding to the directory. If that

person appears in a group, then group access rights apply.

Access rights are established by specifying an access control instruction (ACI) which

appears as an attribute in a directory entry. ACIs can be set to either allow or deny

access. Multiple rules can be defined within a single ACI.

To use LDAP as a Solaris naming service, specific access rights need to be

established. Most of the data stored needs to be readable by everyone and only

writable by designated administrators. However, the userpassword attribute

needs to be modifiable by the owner.

Solaris LDAP Naming

This section describes the specific naming contexts used in the native Solaris LDAP

implementation starting at the DIT top node and working down to NIS object

names.

The suffix of the DIT that supports Solaris LDAP is best represented by using the

domain component (dc) nomenclature. The dc is typically a sub-component of your

DNS name. For example, a directory server at Sun might have the suffix:

dc=east,dc=sun,dc=com . Alternatively the suffix may be expressed as an

organization (o=), but the dc= notation is more convenient since most DNS names

are aligned with NIS domain names.

Located somewhere below the top node in the DIT are several containers which are

referenced using the Organizational Unit (ou=) notation. These are:

■ ou=people

Stores login and password information similar to /etc/password and

/etc/shadow. The objects stored here are posixAccount and shadowAccount .

Solaris LDAP Naming 7

■ ou=group

Stores Solaris group information, similar to /etc/group . Objects of the type

posixGroup are stored here.

■ ou=services

Stores information about available services, similar to /etc/services . Objects of

the type ipService are stored here.

■ ou=protocols

Stores information about protocols, similar to /etc/protocols . Objects of the type

ipProtocols are stored here.

■ ou=rpc

Stores information related to remote procedure calls (RPCs) similar to /etc/rpc .

Objects of the type oncRPC are stored here.

■ ou=hosts

Stores the host table, similar to /etc/hosts . Objects of the type ipHost are stored

here.

■ ou=ethers

Stores ethernet addresses, similar to /etc/ethers . Objects of the type

ieee802Device and bootableDevice are stored here.

■ ou=networks

Stores names of networks, similar to /etc/networks . Objects of the type

ipNetwork are stored here.

■ ou=netgroup

Stores netgroup information in the object type nisNetwork .

■ ou=profiles

Stores LDAP client profiles in the object type SolarisNamingProfile .

■ ou=projects

Stores project accounting information in the object type SolarisProject .

■ ou=solarisauthattr

Stores information used in Role-based Access Control authentication.

■ ou=solarisprofattr

Stores information used in Role-based Access Control authentication.

■ nismapname=auto_*

Stores automounter information.

8 Implementing LDAP in the Solaris™ Operating Environment • October 2000

Solaris LDAP Schema

The schema required by Solaris LDAP clients consists of object classes that come

with iPlanet Directory Server 4.11 and some additional ones. These object classes and

their attributes are listed below.

Object classes:

■ posixAccount

Requires cn , uid , uidNumber , gidNumber , and homeDirectory . Optional

attributes are description , gecos , loginShell , userPassword

■ shadowAccount

Requires uid . Optional attributes are description , shadowLastChange,
shadowMax, shadowMin, shadowWarning, shadowInactive,
shadowExpire, ShadowFlag, and userPassword .

■ posixGroup

Requires cn and gidNumber . Optional attributes are description , memberUid ,

and userPassword .

■ ipService

Requires cn , ipServiceProtocol , and ipServicePort .

■ ipProtocol

Requires cn and ipProtocolNumber .

■ oncRPC

Requires cn and oncRpcNumber .

■ ipHost

Requires cn and ipHostNumber . Optional attributes are bootFile ,

bootParameter , description , macAddress , manager , serialNumber .

■ ipNetwork

Requires cn and ipNetworkNumber . Optional attributes are description ,

ipNetmaskNumber , and manager .

■ nisNetgroup

Requires cn . Optional attributes are description , memberNisNetgroup , and

nisNetgroupTriple .

■ ieee802Device

Requires cn and macAddress .

Solaris LDAP Software 9

■ bootableDevice

Requires cn . Optional attributes are bootFile and bootParameter .

■ nisMap

Requires nisMapName . Optional attribute is description .

■ nisObject

Requires nisMapName . Optional attributes are cn , description , and

nisMapEntry .

■ nisKeyObject

Requires cn , nisPublicKey , and nisSecretKey . Optional attributes are

uidNumber and description .

■ nisDomainObject

Requires nisDomain .

Solaris LDAP Software

The Solaris 8 Operating Environment implementation is client side only. That is, the

client expects to see a properly configured LDAP server. As described in the next

section, you need to perform particular modifications to the LDAP server

configuration to support Solaris LDAP clients.

The specific pieces of software that comprise the Solaris LDAP implementation are:

■ LDAP client

■ PAM module

■ nsswitch.conf ldap tag

■ LDAP libraries

■ LDAP tools

The LDAP client is the piece of software which is run from the Solaris startup scripts

in place of, or in addition to, ypbind . The client software is responsible for reading

a configuration file that provides instructions on what LDAP server to connect to and

what credentials to use for authentication. Once the client is running, the

ldap_cachemgr daemon is responsible for updating the client profile with a

current copy. This is accomplished by periodically checking the profile configuration

file on the LDAP server to see if it has changed.

The UNIX® PAM module has been modified in the Solaris 8 Operating Environment

to work with data stored in an LDAP directory. When this module is used for user

authentication, passwords are stored in crypt format on the directory server like they

would in the NIS or NIS+ data stores. The authentication is then performed locally

10 Implementing LDAP in the Solaris™ Operating Environment • October 2000

on the client system after the crypted password is retrieved. A new PAM LDAP

module is also available in the Solaris 8 Operating Environment. This module uses

authentication methods that may be available on the LDAP server, such as CRAM-

MD5. Instead of being performed locally, authentication takes place on the LDAP

server.

The Name Service Switch has been enhanced to include the ldap tag as an option.

LDAP can be used as the only naming service or as a supplemental one. The same

rules for naming service searches apply.

LDAP libraries are included so LDAP-enabled applications, such as Solaris LDAP

tools can use them. The libraries can also be used to create your own LDAP-enabled

applications.

The standard ldapmodify and ldapsearch commands are available in the native

Solaris LDAP package. To view data stored in a LDAP directory, the command

ldaplist is provided which performs a similar function as the ypcat command.

Server Configuration Changes

Any LDAP server that supports specific V3 features, such as Virtual Lists View

(VLV) and page mode, can be configured to support Solaris LDAP clients, but since

the iPlanet Directory Server is bundled with Solaris 8 Operating Environment, it is

used as the sample LDAP server. To configure your LDAP server perform the

following steps.

■ Add additional schema elements

■ Set proper permissions

■ Set up the DIT

■ Populate the DIT

■ Create a proxyagent account

■ Tune for performance

Adding Schema Elements

As described in the schema section, there are a number of LDAP object classes and

associated attributes which must be defined in the LDAP server configuration files.

In the iPlanet Directory Server 4.11, some of the object classes and attributes ship

with the standard schema files. These are the RFC 2307 defined object classes which

Setting Proper Permissions 11

specify NIS to LDAP mappings. You need to add additional object classes which are

part of an updated version of RFC 2307 and also add object classes which support

Solaris LDAP client profiles.

The easiest way to update the schema files is to obtain the new object class and

attribute files and copy them into the user-defined schema files.

Setting Proper Permissions

Correct permissions need to be established for the objects residing in the DIT. This

requires modifying the default ACIs for particular directory objects. You need to

modify the ACI, VLV Control. The Virtual List View (VLV) feature is used by the

Solaris LDAP client to improve performance. The Solaris client requires anonymous

access to the VLV object, which is not the default, so it needs to be changed.

As a Solaris naming service, you want information to be readable by everyone, but

only modifiable by certain administrators. One exception to this is a user’s

password, which needs to be modifiable by the owner of the object.

The ACI modification can either be made through the iPlanet Directory Console or

by importing a LDAP file which contains the proper ACIs.

Setting up the DIT

Before data can be placed in the LDAP directory, a proper DIT structure must exist.

Create the containers, from the iPlanet Directory Console, for the NIS map data

(which will be imported) or by importing a LDIF file.

Populating the DIT

Included on the iPlanet companion CD which ships with the Solaris 8 Operating

Environment is an utility called dsimport . This utility takes input in the form of

/etc files then creates the appropriate LDAP entries. A nis.mapping file is used to

customize where and how the data is placed in the DIT.

12 Implementing LDAP in the Solaris™ Operating Environment • October 2000

Creating a proxyagent Account

Before a Solaris LDAP client can bind to a LDAP server, it must be authenticated.

This requires the existence of a LDAP account for the client. In reality, a LDAP

account is any entry that contains an userPassword attribute.

By default, an entry called proxyagent is used by the Solaris LDAP client as the

account it binds as. This account must be set up and granted appropriate

permissions so a Solaris LDAP client can access LDAP as a naming service.

Tuning for Performance

Once the basic configuration steps are performed on the LDAP server it is

recommended that the server be tuned to provide better performance, especially

when dealing with large maps. To achieve optimum performance, database indices

are created for commonly accessed attributes.

LDAP Client Setup

The client setup consists of running a client program that binds to a specified LDAP

server, then accesses configuration data found on the server. The result of running

the initialization program is the creation of two configuration files. One file contains

the client’s credentials and the other file contains information about the server it is

connecting to and other configuration parameters. These files are located in

/var/ldap and are called ldap_client_cred and ldap_client_file .

The other configuration parameter which needs to change is in the nsswitch.conf
file. Depending on which naming service you want to use, and in which order you

choose to search them in, add the ldap tag to the appropriate lines. The client

initialization program automatically makes these changes.

The other option which needs to be set is the type of authentication you want to use.

The two options are: pam_unix and pam_ldap . The pam_unix module performs

the authentication locally, while the pam_ldap module preforms it on the LDAP

server.

Alternatives 13

Alternatives

You can deploy LDAP without running the Solaris LDAP client. The NIS extensions

for Solaris Operating Environment is an alternative which provides a NIS server

front-end to a LDAP directory and a synchronization between NIS maps and LDAP

entries. The implementation is transparent to NIS clients, which do not have to be

modified. The drawback with this approach is that you need to maintain both NIS

maps and the LDAP directory.

An alternative to the NIS extensions is the ypldapd software from PADL. This

software provides a gateway between NIS and LDAP. In this implementation, there

is only one data store which is the LDAP directory. The drawback here is that Sun

service does not provide support for ypldapd .

Conclusion

Implementing LDAP as a Solaris naming service is not an easy task. Since LDAP

provides a general purpose directory, it is very flexible. However, with flexibility

comes complexity. While it does not make sense transitioning from NIS/NIS+ just

for the sake of doing it, the future benefits of a consolidated data store, makes it

worth exploring.

References

Solaris and LDAP Naming Services - Sun BluePrints

Understanding and Deploying LDAP Directory Services - Howes, Smith, Good

Acknowledgments

I would like to thank Michael Haines, co-author of the Solaris and LDAP Naming
Services Sun BluePrints for all his help in locating correct information.

14 Implementing LDAP in the Solaris™ Operating Environment • October 2000

Author’s Bio: Tom Bialaski

Tom Bialaski is currently a Staff Engineer with the Enterprise Engineering group at Sun Microsystems,
and is the author of "Solaris Guide for Windows NT Administrators." Tom has nearly 20 years of
experience with the UNIX operating system and has been a Sun Engineer since 1984.

