
JavaStation Client Software Guide

901 San Antonio Road
Palo Alto, , CA 94303-4900

USA 650 960-1300 Fax 650 969-9131

Part No: 805-5890-10
September 1998, Revision A

Copyright Copyright 1998 Sun Microsystems, Inc. 901 San Antonio Road, Palo Alto, California 94303-4900 U.S.A. All rights reserved.
This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and
decompilation. No part of this product or document may be reproduced in any form by any means without prior written authorization of
Sun and its licensors, if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.
Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered
trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd. Portions of the software copyright 1997 by
Carnegie Mellon University. All Rights Reserved.
Sun, Sun Microsystems, the Sun logo, AnswerBook, Solaris, NFS, Java, the Java Coffee Cup logo, 100% Pure Java, JavaStation, JavaOS,
HotJava, HotJava Views, Java Development Kit, JDK, Netra, docs.sun.com, microSPARC-II, and UltraSPARC are trademarks, registered
trademarks, or service marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and
are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks
are based upon an architecture developed by Sun Microsystems, Inc. Netscape is a trademark of Netscape Communications Corporation.
PostScript is a trademark of Adobe Systems, Incorporated, which may be registered in certain jurisdictions.
The OPEN LOOK and Sun

TM

Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun
acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the
computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s
licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license agreements.
RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87) and
FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a).
DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY
INVALID.
Copyright 1998 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, Californie 94303-4900 U.S.A. Tous droits réservés.
Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la
distribution, et la décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque
moyen que ce soit, sans l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et
qui comprend la technologie relative aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.
Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd. Copyright 1997 des portions du
logiciel par l’université de Carnegie Mellon. Tous droits réservés.
Sun, Sun Microsystems, le logo Sun, AnswerBook, Solaris, NFS, Java, le logo Java Coffee Cup, 100% Pure Java, JavaStation, JavaOS,
HotJava, HotJava Views, Java Development Kit, JDK, Netra, docs.sun.com, microSPARC-II, et UltraSPARC sont des marques de fabrique
ou des marques déposées, ou marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques
SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et
dans d’autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.
Netscape est une marque de Netscape Communications Corporation. PostScript est une marque de fabrique d’Adobe Systems,
Incorporated, laquelle pourrait é‘tre déposée dans certaines juridictions.
L’interface d’utilisation graphique OPEN LOOK et Sun

TM

a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés.
Sun reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou
graphique pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox,
cette licence couvrant également les licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre
se conforment aux licences écrites de Sun.
CETTE PUBLICATION EST FOURNIE "EN L’ETAT" ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y
COMPRIS DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE
UTILISATION PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE
GARANTIE NE S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

Please
Recycle

Contents

Preface ix

1. Planning the JavaStation Environment 1

JavaStation Overview 1

JavaOS Operating System 3

Statically Linking the User Application to JavaOS 3

Dynamically Loading the User Application in JavaOS 3

JavaStation Hardware 4

Brick Model 4

Tower Model 5

JavaStation Model Comparison 5

Network Services 6

DHCP 8

TFTP 9

NFS 9

DNS 9

NIS 10

RAP 10

HTTP 10

Understanding the Boot Sequence 11

Contents iii

2. JavaStation Boot Process: Theory of Operations 13

JavaStation Boot Sequence 13

Power On 14

Task 1: Lease an IP Address 14

Task 2: Deliver and Boot the JavaOS Software 16

Task 3: Deliver Main Application 17

Task 4: Update Flash Memory With New JavaOS Image 18

JavaStation Boot Services 19

DHCP 19

TFTP 27

H To Set Up a JavaStation TFTP Server 28

NFS 29

H To Set Up a JavaStation NFS Server 29

HTTP 29

H To Set Up a JavaStation Web Server 30

3. Boot Progress Indicators 31

Text and Logo Progress Indicators 31

Java
TM

Coffee Cup Progress Indicator 33

Troubleshooting Key Chords 37

4. JavaOS Properties 39

JavaOS and System Properties 39

General Properties 40

Application Loading Properties 43

Video Resolution Properties 44

User Properties 45

Printing Properties 47

Localization Properties 49

Setting Properties 52

iv JavaStation Client Software Guide ♦ September 1998, Revision A

Syntax 53

Referencing a Properties File in the DHCP Vendor Options 54

5. Dynamically Loading Applications 57

Overview 57

JavaOS Properties 58

Setting Up Dynamic Delivery of an Application 58

H To Create an Archive 59

H To Set Up Dynamic Delivery 60

H To Deliver a Single Application 60

H To Set Up AppLoader With a List of Applications 62

6. Statically Linking an Application to the JavaOS Image 65

Static Link Overview 65

Using SLK 65

H To Statically Link a Custom Application to the JavaOS Image 66

7. HotJava Browser and HotJava Views 71

HotJava Browser 71

HotJava Views 71

HotJava Views Model 72

Properties 72

8. JavaStation PPP-Modem Dialup 73

PPP-Modem Overview 73

PPP-Modem Requirements 73

9. JavaStation Peripherals 75

Configuring Printers 75

NIS Network Printers 76

H To Set Up NIS Printer Access 76

H To Create an NIS Printer Map 77

lpd Network Printers 77

Contents v

H To Set Up lpd Printer Access 77

Local Printers 78

H To Set Up a Local Serial Printer 78

H To Set Up a Local Parallel Printer 78

Configuring a Touch Screen 79

H To Set Up a Touch Screen 79

10. Setting Locales and Adding Fonts 81

What You Must Configure 81

Overview and Examples 83

JavaOS Properties for All Locales 83

Example Configurations 83

Setting Mount Directories 84

H To Set Mount Directories 85

Setting the Locale 85

H To Change the Locale Setting 86

Modifying the Languages Displayed at Login 87

H To Modify the Languages Displayed at Login 87

Adding Fonts 87

Overview 88

H To Install and Configure Fonts 88

H To Make Fonts Available to JavaStation Computers 92

Adding a Keyboard 92

H To Add a Localized Keyboard 93

Enabling Special Characters on the U.S. Keyboard 94

H To Enable Latin Accent Characters on the U.S. Keyboard 95

H To Enable Arabic Characters on the U.S. Keyboard 95

H To Enable Hebrew Characters on the U.S. Keyboard 95

H To Enable Thai Characters on the U.S. Keyboard 96

vi JavaStation Client Software Guide ♦ September 1998, Revision A

Setting the Input Method 96

H To Set the Input Method 97

Changing the File Encoding Setting 98

H To Change the File Encoding Setting 98

Setting the HotJava Browser Document URL 99

H To Set the Document URL 99

A. JavaStation User Setup Forms 101

B. Troubleshooting the Boot Process 109

Troubleshooting Process 109

Tower JavaStation Flash RAM Boot Trace 110

Boot Trace 111

Contents vii

viii JavaStation Client Software Guide ♦ September 1998, Revision A

Preface

JavaStation
TM

computers rely on the services of Solaris
TM

operating environments in
their network for initial boot information and JavaStation client software. The
required Solaris services can be configured using the Netra

TM

j web-based
administration interface.

For experienced system administrators, it is also possible to configure the required
services using Solaris commands. This guide explains the concepts behind command
line administration of a JavaStation network.

For information on Netra j, go to the Netra j web site at
http://www.sun.com/netra-j , or peruse the Netra j 3.0
Administrator’s Guide .

How This Book Is Organized
Chapter 1 describes how to plan a JavaStation network.

Chapter 2 describes the JavaStation boot sequence in detail.

Chapter 3 describes the boot progress icon that appears on the JavaStation screen.

Chapter 4 lists the properties that control JavaOS
TM

software behavior and explains
how to set these properties.

Chapter 5 describes how to deliver the JavaStation user application dynamically
during the boot sequence.

Chapter 6 describes how to deliver the JavaStation user application as part of the
JavaOS binary.

Preface ix

Chapter 7 describes the default user applications included with JavaOS: HotJava
TM

Browser and HotJava
TM

Views
TM

.

Chapter 8 describes how to boot a JavaStation computer over a PPP/modem
connection.

Chapter 9 explains how to set up JavaStation peripheral devices.

Chapter 10 describes how to enable JavaStation computers to be used in a language
other than U.S. English.

Appendix A contains forms that show users how to set up their JavaStation
computers.

Appendix B describes how to troubleshoot the JavaStation boot sequence.

Using UNIX Commands
This document may not contain information on basic UNIX® commands and
procedures such as shutting down the system, booting the system, and configuring
devices.

See one or more of the following for this information:

� Solaris 2.x Handbook for SMCC Peripherals

� AnswerBook
TM

online documentation for the Solaris 2.x software environment

� Other software documentation that you received with your system

Typographic Conventions

x JavaStation Client Software Guide ♦ September 1998, Revision A

TABLE P–1 Typographic Conventions

Typeface or
Symbol Meaning Examples

AaBbCc123 The names of commands, files, and
directories; on-screen computer
output.

Edit your .login file.

Use ls -a to list all files.

% You have mail .

AaBbCc123 What you type, when contrasted
with on-screen computer output.

%su

Password:

AaBbCc123 Book titles, new words or terms,
words to be emphasized.

Command-line variable; replace
with a real name or value.

Read Chapter 6 in the User’s Guide.

These are called class options.

You must be root to do this.

To delete a file, type rm filename.

Shell Prompts

TABLE P–2 Shell Prompts

Shell Prompt

C shell machine_name%

C shell superuser machine_name#

Bourne shell and Korn shell $

Bourne shell and Korn shell superuser #

xi

Related Documentation

TABLE P–3 Related Documentation

Application Title Part Number

JavaStation setup (brick model JavaStation Hardware Setup
Instructions

802-7450-10

JavaStation setup (tower model) JavaStation Hardware Setup
Instructions

805-1249-10

Netra
TM

j administration Netra j 3.0 Administrator’s Guide 805-5363-10

Sun Documentation on the Web
The docs.sun.com web site enables you to access Sun

TM

technical documentation
on the Web. You can browse the docs.sun.com archive or search for a specific book
title or subject at:

http://docs.sun.com

Sun Welcomes Your Comments
We are interested in improving our documentation and welcome your comments and
suggestions. You can email your comments to us at:

smcc-docs@sun.com

Please include the part number of your document in the subject line of your email.

xii JavaStation Client Software Guide ♦ September 1998, Revision A

CHAPTER 1

Planning the JavaStation Environment

This chapter introduces the JavaOS operating system, describes JavaStation
hardware, and explains the requirements you should understand before configuring
your network to administer JavaStation computers.

� “JavaStation Overview ” on page 1

� “JavaOS Operating System ” on page 3

� “JavaStation Hardware” on page 4

� “Network Services” on page 6

� “Understanding the Boot Sequence” on page 11

JavaStation Overview
The JavaStation network computer is a new type of computing device that provides
application processing power but does not store software or data. The JavaStation
computer relies on servers throughout the network for its boot information and
software. The JavaStation environment is composed of several JavaStation clients and
the server(s) that administer them. This figure shows a simple network configuration
in which all the services required by JavaStation computers reside on a single server.

1

Figure 1–1 Sample Configuration of a JavaStation Network

Legend:

1. Internet or intranet

2. Sun server with home directories, boot, NIS, DNS, web, and DHCP services

3. JavaStation computers

The JavaStation computer’s uniquely open software platform enables it to replace
existing stateless devices, such as dumb terminals, and to bring high-performance
computing to environments where it was not used before.

This chapter gives an overview of setting up a JavaStation network, addressing the
following key topics:

� JavaOS Operating System – The compact, efficient operating system that drives
JavaStation computers.

2 JavaStation Client Software Guide ♦ September 1998, Revision A

� JavaStation Hardware – Sun’s two JavaStation hardware models, which offer
scalability of memory, processing power, and device access.

� Network Services – The network services required to administer JavaStation
computers.

JavaOS Operating System
The JavaOS operating system is specifically designed to run network computers such
as the JavaStation computer. The compact architecture of the JavaOS software
provides the following advantages:

� Minimum JavaStation memory requirements - JavaOS software has a small runtime
footprint that conserves memory space and reduces memory costs.

� Short download times – The compact size of the JavaOS software reduces the time
needed to download software to the JavaStation computers.

� Ease of training – The JavaOS feature set reduces user training on core OS
functionality, enabling trainers to spend more time on application functionality.

� Customization – The JavaOS software supports customization of the JavaStation
user’s desktop environment through static linking or dynamic loading (see the
following descriptions).

Statically Linking the User Application to JavaOS
The JavaOS operating system supports linking of application files to the JavaOS
binary via a special build you can execute at the command line. The JavaOS image
resulting from the new build can be downloaded to JavaStation computers in exactly
the same way as the old image, with exactly the same core functionality. However, in
addition, the user application will be launched automatically when the JavaOS
software boots.

Static linking is useful when the JavaStation computer is a public kiosk or other
fixed-function device running a single, dedicated application. For instructions on
using the static link procedure, see “Using SLK” on page 65.

Dynamically Loading the User Application in
JavaOS
Dynamic loading is similar to static linking, in that it enables the user application to
be launched immediately when the JavaOS software boots. However, in this case the

Planning the JavaStation Environment 3

application is not physically linked to the JavaOS image; rather, the JavaOS software
finds and downloads the application from a network server via HyperText Transfer
Protocol (HTTP) immediately after it boots. Because HTTP is used to download the
application, the application can reside anywhere on the network that is visible to the
JavaStation web server.

The dynamic loading scenario is not limited to a single application. If you like,
JavaOS can open a dialog window with a list of applications for the user to choose
from. When the user selects an application, JavaOS locates and launches it.

Dynamic loading works in any situation where the JavaStation computer has web
access. For instructions on using the dynamic loading procedure, see “Setting Up
Dynamic Delivery of an Application ” on page 58.

JavaStation Hardware
JavaStation systems are available in two distinct models as shown in the figure
below. The first-generation “brick” model (left) is recognized by its rectangular
shape. The newer “tower” (right) sits vertically on the desktop and features a
striking, swept profile.

Figure 1–2 JavaStation Systems from Sun

Brick Model
The first-generation brick model JavaStation computer includes the following
features:

� microSPARC-II – The brick model JavaStation computer is equipped with a 100
MHz microSPARC-II processor.

4 JavaStation Client Software Guide ♦ September 1998, Revision A

� Scalable memory – The brick model includes 8–64 Mbytes DRAM (64-bit memory
bus) and a PC-compatible memory system comprising four SIMM slots (2 logical
banks, 2 SIMMs per bank). Memory size can be increased by installing 4-Mbyte or
16-Mbyte SIMMs in the slots.

� Device connectors – Connectors for a PS2 mouse, a PS2 keyboard, and a 14-inch or
17-inch monitor are included.

� Serial port – A serial port enables local printing to a PostScript
TM

or PCL5 printer.

� Power switch – The brick model includes a continuous contact, long life industrial
grade rocker switch for power cycling. The power switch is located at the rear of
the unit.

Tower Model
The second-generation tower model JavaStation computer includes the following
enhancements to the original model:

� microSPARC-IIep processor – The microSPARC-IIep uses less power and generates
less heat than the microSPARC-II, eliminating the need for an internal fan.

� Flash RAM and PPP support – Tower JavaStation computers come optionally
equipped with onboard nonvolatile flash random-access memory (RAM). This
flash memory can be used to store the JavaStation computer’s operating system
(JavaOS), enabling faster booting and wide-area network (WAN) applications for
the JavaStation. In a typical scenario, a JavaStation computer would boot JavaOS
from its flash RAM and then access the network over a low-bandwidth dialup
Point-to-Point Protocol (PPP) connection.

� Autosensing 10/100Base-T networking – Tower JavaStation computers also integrate
full autosensing 10/100Base-T Ethernet.

� Standby switch – A soft touch press-on-press-off standby switch cycles JavaStation
power and provides audio and tactile feedback.

JavaStation Model Comparison
As shown in the table below, the first-generation “brick” JavaStation computer must
download JavaOS from a boot server over Ethernet. These computers are appropriate
for local-area network (LAN) deployment where 10Base-T Ethernet networking is
available.

The second generation “tower” JavaStation computers are ideal for remote or Wide
Area Network (WAN) environments in addition to local 10Base-T and 100Base-T
LAN environments. The integrated flash RAM enables these JavaStation computers
to be installed remotely and deployed across a WAN or corporate extranet.

Planning the JavaStation Environment 5

TABLE 1–1 JavaStation Comparison for LAN and WAN Environments

Category Brick Model JavaStation Tower Model JavaStation

Target
Environment

LAN � LAN
� WAN

Booting Network boot � Network boot
� Flash RAM

Networking 10Base-T � 10/100Base-T
� PPP over telephone line

Network Services
This section gives an overview of the network services required to administer
JavaStation computers. Although all of these services can be configured at the Solaris
command line, the Netra j web-based administration interface provides a simpler
way to configure them. For information on the Netra j software, visit
http://www.sun.com/netra-j or peruse the Netra j 3.0
Administrator’s Guide .

The JavaStation computer requires the following network services for boot
information and software.

TABLE 1–2 JavaStation Network Services

Service What It Does

DHCP
(Dynamic Host
Configuration
Protocol)

Delivers configuration information to the JavaStation computer, including
the JavaStation computer’s IP address and the addresses of the other
servers it requires.

TFTP (Trivial
File Transfer
Protocol)

Delivers the boot file to the JavaStation computer. May deliver JavaOS to
the JavaStation computer.

NFS
TM

Provides access to the user’s home directory on a server. May deliver
JavaOS to the JavaStation computer.

DNS (Domain
Name System)

Provides address resolution for systems throughout the Internet.

6 JavaStation Client Software Guide ♦ September 1998, Revision A

TABLE 1–2 JavaStation Network Services (continued)

Service What It Does

NIS (Name
Information
Service)

Provides lookup for user names, home directory location, and print
servers.

RAP (Remote
Authentication
Protocol)

Provides lookup for user names and home directory location.

HTTP
(HyperText
Transfer
Protocol)

May deliver the user application to the JavaStation computer. Delivers
web pages and Java applets to the JavaStation computer.

The figure at the beginning of this chapter shows a simple network configuration,
whereby all the services required by the JavaStation clients reside on a single server.
In contrast, a JavaStation network with distributed services might look something
like the figure below.

Planning the JavaStation Environment 7

Figure 1–3 JavaStation Network With Distributed Services

Legend:

1. Internet or intranet

2. HTTP (web) server

3. NFS server

4. DNS/NIS server

5. DHCP/TFTP server

6. JavaStation computers

The following sections give an overview of each service required to administer
JavaStation computers. For detailed descriptions of these services, see “JavaStation
Boot Sequence” on page 13.

DHCP
DHCP is used to pass IP addresses and configuration information to diverse host
systems on a TCP/IP network. When a JavaStation computer is powered on, it

8 JavaStation Client Software Guide ♦ September 1998, Revision A

receives initial boot information from a DHCP server that is configured to deliver
specific parameters to JavaStation computers. The same DHCP server may also be
configured to deliver different information to other systems on the subnet.

One server on the JavaStation subnet must be configured with DHCP services or
configured to relay these services. If all JavaStation clients reside on the same subnet,
and if there are no other DHCP servers on the subnet, no other configuration is
needed.

TFTP
TFTP is used along with NFS during the network boot sequence to download a
“booter” and (optionally) JavaOS over the network to the JavaStation computer.
There is no need to guard against conflict with other TFTP servers on the network.

NFS
Strictly speaking, NFS is only required by the JavaStation computer to access and save
user data and preferences information. Once a user’s home directory has been
determined via the NIS automounter map (auto.home), it is mounted using NFS.
The default user applications provided with the JavaOS software (HotJava Browser,
HotJava Views) only use NFS to read and update preferences information. However,
many commercial applets may need to use NFS to access and save data files in the
user’s home directory.

NFS is also the default mechanism used to provide the JavaOS network boot
download for the JavaStation computer. It is important to note that the network boot
download can alternately be achieved with TFTP through DHCP directives, which
may be useful for JavaStation clients used as fixed-function devices (such as kiosks
or point-of-sale devices). However, NFS is much faster than TFTP for this purpose.

DNS
The JavaStation computer uses DNS to provide address resolution for host names.
Using DNS ensures that JavaStation applications and applets can access URLs either
on the corporate intranet or across the Internet.

DNS lookups from the JavaStation computer are rather infrequent, so the load on the
DNS server will be relatively small. The JavaStation boot server can be configured as
a DNS slave server if a central DNS server for the domain is busy or remotely
located.

Planning the JavaStation Environment 9

NIS
The JavaStation computer uses NIS for user authentication, file mapping, and printer
access as follows:

� passwd.byname – The JavaStation computer uses the passwd.byname map to
validate the user’s user name and password.

� auto.home – The auto.home NIS map is used to provide NFS access to a user’s
home directory.

� printers.conf.byname – Access to network printers is supplied via the
printers.conf.byname NIS map if one has been created.

NIS lookups are infrequent, and the performance impact is not likely to be significant.
When binding to NIS, a broadcast is sent to the local network. This implies that there
must be a NIS server connected to that network. If necessary, the JavaStation boot
server can be set up as a NIS slave server or master server. You can also specify the
NIS server’s IP address in the DHCP parameters delivered to JavaStation computers.

RAP
The JavaStation computer can use RAP instead of NIS for user authentication if it
has been configured to do so and if a RAP server exists on the JavaStation network.
In return for the user name and password, RAP provides the following:

� User’s UNIX ID

� Group ID

� Name of the user’s home directory

With this information, JavaOS can mount the user’s home directory via NFS.

HTTP
HTTP can be used to deliver the main user application to the JavaStation clients.
HTTP is also used by the JavaStation clients to browse the corporate intranet and
sites on the Internet.

Proxy Cache
Most corporate intranets implement a secure HTTP proxy system comprising several
HTTP servers. The way the proxies are set up can have a significant impact on
JavaStation browser performance. If a single proxy server is used for a large number
of users, it can become a bottleneck and a single point of failure. If it is located at
another site or across a busy backbone network, it will greatly increase the response

10 JavaStation Client Software Guide ♦ September 1998, Revision A

time for network requests from the JavaStation computer. One solution to this
problem is to make the JavaStation boot server into a proxy cache for its clients.

Understanding the Boot Sequence
Most of the remaining chapters in this guide explain concepts and procedures related
to booting the JavaStation computer. Chapter 2 gives a basic overview of the entire
boot process, while the other chapters provide supporting information or specific
details on one or two procedures. Use the list below as a reference to all the booting
information in this guide.

� Chapter 2 explains the fundamentals of the boot process and describes how
JavaOS properties, static linking, and dynamic loading can be used.

� Chapter 3 describes the boot progress icon that appears on the JavaStation user’s
screen.

� Chapter 4 describes JavaOS properties, which can be used to configure the
behavior of the JavaOS operating system on the JavaStation computer.

� Chapter 5 explains how to set up the user application to be delivered to the
JavaStation computer after JavaOS boots.

� Chapter 6 explains how to link the user application to the JavaOS image so that it
is delivered to the JavaStation computers with JavaOS.

� Appendix B explains concepts and procedures for troubleshooting the boot
process.

Planning the JavaStation Environment 11

12 JavaStation Client Software Guide ♦ September 1998, Revision A

CHAPTER 2

JavaStation Boot Process: Theory of
Operations

This chapter describes the JavaStation boot sequence and the nature of JavaStation
boot services in the Solaris operating environment.

� “JavaStation Boot Sequence” on page 13

� “JavaStation Boot Services” on page 19

Note - Only experienced Solaris system administrators should set up boot services
for JavaStation computers using Solaris commands. Inexperienced Solaris users
should use the Netra j software. For information on Netra j, go to
http://www.sun.com/netra-j or refer to the Netra j 3.0
Administrator’s Guide .

JavaStation Boot Sequence
When the JavaStation computer is powered on, it initiates communication with
several different network services to obtain the information and software it requires
to operate on the network. The JavaStation boot sequence is accomplished by the
following network services:

� DHCP

� TFTP

� NFS
TM

� HTTP

13

These services need not reside on the same machine. A DNS service must also be
provided on the network for the JavaStation systems to operate correctly, but it is not
directly involved in the boot sequence.

The boot sequence can occur in a variety of ways. Essentially, it must accomplish the
following tasks:

1. Lease an IP address to the JavaStation computer. Each JavaStation system must lease
an IP address from an address pool managed by a DHCP server. The DHCP
server should assign addresses dynamically. The Solaris DHCP server can also
assign IP addresses permanently, but this method creates greater administration
overhead if many JavaStation computers reside on the network.

2. Deliver and boot the JavaOS software on the JavaStation computer. The JavaOS image is
booted from flash memory if the JavaStation computer has flash memory.
Otherwise, the JavaOS image is delivered to the JavaStation computer from a
network server via TFTP, NFS, or a combination of TFTP and NFS.

3. Deliver the main user application to the JavaStation computer. The main user
application is either linked directly to the JavaOS boot image or delivered
separately to the JavaStation computer via HTTP.

4. Update the JavaOS image stored in flash memory. This task applies only to JavaStation
clients with flash memory (“tower” models). After the JavaStation computer
boots, the JavaOS image stored in flash memory is updated if a newer copy of the
JavaOS image exists on the network and if flash updating is enabled. If the flash
memory is updated, the JavaStation computer immediately reboots with the
newer copy of JavaOS.

The following sections describe the JavaStation computer’s power-on and boot
sequence tasks in detail.

Power On
The JavaStation programmable read-only memory (PROM) includes TFTP, NFS, and
DHCP client implementations and is thus able to carry out the boot sequence. At
power on, the PROM checks to see if flash memory is present and valid. If so, the
PROM loads it into memory and transfers control to it. JavaOS initializes itself and
then completes Task 1, described below.

If the above tests fail, the JavaOS image is not loaded from flash into memory, and
the PROM proceeds to complete Task 1 itself.

Task 1: Lease an IP Address
Either the PROM or the JavaOS software leases an IP address from the DHCP server
by completing the following “handshake” with the JavaStation DHCP server. For

14 JavaStation Client Software Guide ♦ September 1998, Revision A

simplicity, the description below refers to the PROM or the JavaOS software as “the
DHCP client.”

1. The DHCP client broadcasts DHCPDISCOVER packets until a DHCPOFFER is
received. The DHCPDISCOVER packet includes the Client Class Identifier option,
which identifies the DHCP client as a JavaStation (see “Vendor-Specific Options”
on page 24). If the broadcast takes an unusually long time, a notice is displayed
on the JavaStation screen approximately every minute so the user knows if the
server is responding or not.

2. One or more DHCP servers respond with DHCPOFFER packets. The
DHCPOFFER(s) are examined by the DHCP client to determine whether they
contain the options required to boot JavaStation computers (see “DHCP” on page
19).

3. The DHCP client chooses the best DHCPOFFER it receives that contains the
required options. (The best offer is the DHCPOFFER with the most additional
options that are applicable to JavaStation computers.) The DHCP client
remembers the IP address of the server that sent the offer.

4. The DHCP client broadcasts a DHCPREQUEST packet. This packet contains the
IP address of the server chosen in the previous step. All other DHCP servers that
responded in the second step are thus informed that they have not been selected.

5. The selected server sends a DHCPACK packet back to the DHCP client.

At this point, the JavaStation has received all of its configuration information from
the DHCP server. The figure below illustrates the initial handshake.

JavaStation Boot Process: Theory of Operations 15

Figure 2–1 JavaStation Client – DHCP Server Handshake

Task 2: Deliver and Boot the JavaOS Software
Task 2 is to pass control of the JavaStation to the JavaOS software. If the JavaOS
image has not been loaded from flash memory, it must now be downloaded from the
network. The information required for the download was passed to the JavaStation
computer in the initial DHCP handshake. Specifically, this information consists of:

� The name of the boot protocol to be used for the download (NFS or TFTP)

� The IP address of the server where the initial boot file (a “booter” or JavaOS itself)
resides

The following table shows JavaOS boot information from the DHCP server and the
resulting actions taken by the PROM.

16 JavaStation Client Software Guide ♦ September 1998, Revision A

TABLE 2–1 DHCP Information for Booting JavaOS

If the boot
protocol is...

And the DHCP
server also
delivers...

The JavaOS software is downloaded and booted as
follows

Not set or TFTP The IP address
of a server that
contains an
initial boot
program (the
“booter”) in its
TFTP root
directory

The JavaStation PROM downloads the booter from the
server using TFTP, then transfers control to it.

When the booter begins execution, it checks the
PROM’s device tree for the name and location of the
JavaOS image and the name of a server that contains
this image in an NFS-exported directory. If the booter
does not find this information in the PROM, it obtains
it from the DHCP server. The booter mounts this
directory using NFS, copies the JavaOS image, and
transfers control to it.

Note that this method of delivery is deprecated in
favor of downloading JavaOS directly over NFS.

The IP address
of a server that
contains the
JavaOS image in
its TFTP root
directory

The JavaStation PROM downloads JavaOS from the
server using TFTP, then transfers control to it.

Note that this method of delivery is much slower than
downloading JavaOS over NFS.

NFS The IP address
of a server that
contains the
JavaOS image in
an exported
NFS directory

The JavaStation PROM downloads JavaOS from the
server using NFS, then transfers control to it.

The DHCP options used to deliver the above information are described in “The
DHCP Service Configuration Table ” on page 21.

Task 3: Deliver Main Application
The main application can be linked to the JavaOS binary into a single executable that
is stored in flash or delivered to the JavaStation computer using either method
described in the table above. The method of binding an application to the JavaOS
binary is called static linking and is described in Chapter 6.

Alternatively, a main application is delivered to the JavaStation by a web server
(HTTP server) on the network. The URL of the application zip file and other JavaOS
application-loading properties are passed to the DHCP client in the initial handshake

JavaStation Boot Process: Theory of Operations 17

through the DHCP Vendor-Specific Options, as described in “Vendor-Specific
Options” on page 24. For descriptions of the JavaOS application loading properties,
see Chapter 5.

Task 4: Update Flash Memory With New JavaOS
Image
Tower model computers may include flash memory to store the JavaOS image. After
the JavaOS software finishes its initialization, it determines whether it needs to
update the flash memory with a new JavaOS image based on the following criteria:

� The value of the JavaOS property javaos.alwaysUpdate

� Whether the JavaOS checksum value is different from the checksum of the JavaOS
image already in flash

Both the property and the checksum are delivered by DHCP as Vendor-Specific
Options. See “Vendor-Specific Options” on page 24.

The JavaOS checksum identifies the revision level of the JavaOS image. For more
information, see “Managing the JavaOS Checksum” on page 26.

The results of each possible set of conditions are shown in the table below.

TABLE 2–2 Conditions for Updating JavaStation Flash Memory

Conditions Results

javaos.alwaysUpdateChecksum

Not set different JavaOS software opens a Flash Update dialog box on
the JavaStation screen. The user has the option of
updating flash memory with the new JavaOS binary.

Not set same JavaOS software does not update the flash memory.

true different JavaOS software updates flash memory without
querying the user.

true same JavaOS software does not update the flash memory.

false different JavaOS software does not update the flash memory.

false same JavaOS software does not update the flash memory.

18 JavaStation Client Software Guide ♦ September 1998, Revision A

If the flash memory is updated, the JavaStation computer immediately reboots with
the newly updated JavaOS image.

Note that if any of the following conditions exist, flash memory is never updated:

� javaos.alwaysUpdate is set to false

� The checksum is set to zero

� The checksum is not delivered by the DHCP server

� There is no flash memory on the JavaStation computer

JavaStation Boot Services
This section describes how DHCP, TFTP, NFS, and HTTP services are used to
administer JavaStation computers on your network.

� “DHCP” on page 19

� “TFTP” on page 27

� “NFS” on page 29

� “HTTP” on page 29

DHCP
This section provides a description of DHCP configuration (in files) for JavaStation
clients. Complete instructions for setting up a Solaris DHCP server are provided in
Chapter 4 of the TCP/IP Data Communication Administration Guide, available at
http://docs.sun.com , and in the following Solaris man pages:

� dhcp(4)

� dhcptab(4)

� in.dhcpd(1M)

� dhtadm(1M)

� dhcp_network(4)

� dhcpconfig(1M)

� pntadm(1M)

JavaStation Boot Process: Theory of Operations 19

Note - Only experienced Solaris system administrators should set up boot services
for JavaStation computers using Solaris commands. Inexperienced Solaris users
should use the Netra j software. For information on Netra j, go to
http://www.sun.com/netra-j or refer to the Netra j 3.0
Administrator’s Guide .

The DHCP server manages a pool of IP addresses for a variety of systems on the
subnet, including JavaStation computers. During the boot sequence, the DHCP server
delivers to the JavaStation its IP address along with other options that enable the
JavaStation computer to operate on the network.

There are three types of configuration information for DHCP in the Solaris operating
environment:

� /etc/default/dhcp . A file that defines where the next two tables of
information are stored. They can be stored either in files or in NIS+ tables.

� DHCP network table. A table that maps IP addresses to all the clients on the subnet.
The table is updated dynamically as IP addresses are leased and then returned to
the pool. If the table is stored in a file, it is generally stored in /var/dhcp . Its
name is the IP address of the (sub)net being served by the DHCP server (for
example, 192_9_100_0).

� DHCP service configuration table (dhcptab). A table containing the DHCP options,
symbol definitions, and macros used in composing replies to clients. If this
information is stored in a file, the file name is dhcptab , and it is generally stored
in /var/dhcp .

The /etc/default/dhcp File
The /etc/default/dhcp file defines where DHCP configuration files are located.
The following is a sample dhcp file.

This file controls the defaults for datastore type and location
for the DHCP service. Two directives are currently supported,
RESOURCE and PATH. RESOURCE can be either ‘‘files’’ or ‘‘nisplus.’’
PATH can be a UNIX pathname for ‘‘files’’ resources, or a legal
NIS+ directory for ‘‘nisplus’’ resources.
#
RESOURCE=files
PATH=/var/dhcp

The DHCP Network Table
The DHCP network table contains a single entry for each client. Each entry contains
the client identifier, the client IP address, the lease time, and other information. The

20 JavaStation Client Software Guide ♦ September 1998, Revision A

DHCP server updates the network table dynamically as IP addresses are leased or
relinquished by the clients.

A full description of the DHCP network table is provided in the dhcp_network(4)
man page. The following is an example network table contained in a file named
/var/dhcp/192_9_100_0 .

/var/dhcp/192_9_100_0
#
Client ID|Flags|Client IP Addr|Server IP Addr|Lease Time|Macro
#
010800208E2091 00 192.9.100.10 129.144.205.69 876425811 elvis
010060972CF0D6 00 192.9.100.11 129.144.205.69 876432501 elvis
0108002087EC88 00 192.9.100.12 129.144.205.69 876507437 elvis
00 00 192.9.100.13 129.144.205.69 0 elvis
00 00 192.9.100.14 129.144.205.69 0 elvis

The DHCP Service Configuration Table
The DHCP Service Configuration Table contains groups of DHCP options that are
delivered to DHCP clients. For a complete description of this table, refer to the
dhcptab(4) man page. Throughout this section this table will be called the
dhcptab file.

The DHCP options that can be delivered to JavaStation computers are a subset of all
the options supported by the DHCP specification. Some DHCP options are required
for a successful JavaStation boot; others are optional.

Required DHCP Options
The following table lists the DHCP options required in dhcptab to boot JavaStation
computers. The left column gives the option number as defined in the DHCP
specification (RFC 2132), if it exists. The middle column gives the symbol name for
the option in the Solaris implementation of DHCP (the name used in dhcptab). See
“Sample dhcptab File ” on page 25 to see how these names are used.

JavaStation Boot Process: Theory of Operations 21

TABLE 2–3 DHCP Options Required to Boot JavaStation Computers

DHCP Option
Name
(Number)

Symbol Name
in Solaris
dhcptab File Definition

N/A (This
symbol is a
DHCP field, not
an option.)

BootSrvA The IP address of the server with the initial boot file
(either the booter or the JavaOS image). See Table 2–6
for more information.

IP Address
Lease Time (51)

LeaseTim The duration (in seconds) of the IP address lease. A
value of -1 indicates an infinite lease. After this
period of time has expired without being renewed, the
JavaOS software shuts down the networking port.

Subnet Mask (1) Subnet The subnet mask.

Domain Name
Server (6)

DNSserv The IP addresses of one or more DNS servers. The
JavaOS software queries additional DNS servers if the
primary server fails to respond.

DNS Domain
Name (40)

DNSdmain The DNS domain name.

Root Path (17) Rootpath The NFS-exported directory containing the JavaOS
image. This option is used by the booter to locate the
JavaOS binary and by the JavaOS software to locate a
newer image to update the flash. This option is
required if you are using the booter method or if flash
update is enabled. See Table 2–6 for more information.

The options DHCP Message Type (53) and Server Identifier (54) are also required in
every DHCP packet. However, these options are provided automatically by the
DHCP server and do not need to be specified in dhcptab .

Optional DHCP Options
The following table lists the DHCP options that can be interpreted by the DHCP
client during the JavaStation boot sequence but are not necessarily required for the
boot sequence.

22 JavaStation Client Software Guide ♦ September 1998, Revision A

TABLE 2–4 Optional DHCP Options for Booting JavaStation Computers

DHCP Option
Name
(Number)

Symbol Name
in Solaris
dhcptab File Definition

Bootfile Name
(67)

Bootfile The path name of the initial boot file, which can be a
“booter” file or the JavaOS software. The path name is
assumed to be relative to the TFTP root directory.

If this option is not provided, the name of the booter is
assumed to be the same as the Client Class Identifier
(SUNW.JDM1for a brick model; SUNW.JSIIep for a
tower model) and is assumed to be in the TFTP root
directory. See Table 2–6 for more information.

Broadcast
Address (28)

Broadcst The network broadcast address.

Router (3) Router The IP address of the router to be used by the
JavaStation clients. If not given, the JavaOS software
uses router discovery to locate a router.

Time Server (4) Timeserv The IP address of a server supporting the RFC 868
time protocol.

N/A
(Solaris-specific
flag)

LeaseNeg A boolean flag which by its presence tells the DHCP
server to renew the leases of clients requesting IP
address lease renewal.

NIS Servers (41) NISservs If the IP address of an NIS server is not given, the
JavaOS software broadcasts looking for NIS servers.
(This works only if the NIS server is on the same
subnet.)

NIS Domain
Name (40)

NISdmain The NIS domain name.

Vendor-Specific
Options (43)

Symbol names
are defined by
the user. By
convention, use
JOScmd1
through
JOScmd4,

JOSchksm, and
JSBproto

A list of vendor-specific options. See “Vendor-Specific
Options” on page 24.

JavaStation Boot Process: Theory of Operations 23

See “Sample dhcptab File ” on page 25 for examples of how these options are set in
dhcptab .

Vendor-Specific Options

The DHCP specification enables hardware and software vendors to create their own
DHCP options. These options are delivered through the use of the Client Class
Identifier option and the Vendor-Specific Options option. If a DHCP client identifies
itself as being of a certain class of client, and the DHCP server has been configured
to serve that class of clients, then the DHCP server can respond with a set of options
specific to that client type.

Vendor-Specific Options can be used to deliver the JavaOS checksum, JavaOS
property settings, and the JavaOS boot protocol to the JavaStation computer during
the boot sequence.

� The checksum identifies the JavaOS image that is available from a network server
and helps determine whether that image is updated in JavaStation flash memory,
as described in “Task 4: Update Flash Memory With New JavaOS Image ” on page
18. Also see “Managing the JavaOS Checksum” on page 26.

� JavaOS property settings determine the resources the JavaOS software uses and
other JavaOS attributes. For information on JavaOS properties, see Chapter 4.

� The JavaOS boot protocol is the protocol used to download JavaOS from a
network server to the JavaStation computer. Possible settings for the boot protocol
are tftp and nfs .

The delivery of Vendor-Specific Options to JavaStation clients works as follows. The
DHCP client on the JavaStation (the PROM or the JavaOS software) includes the
JavaStation hardware’s Client Class Identifier (DHCP Option #60) in every packet
sent to the DHCP server. When the DHCP server receives the Client Class Identifier,
it will deliver the JavaOS checksum, boot protocol, and/or property settings in the
Vendor-Specific Options if it has been configured to do so.

The JavaStation hardware’s Client Class Identifier is specified in the PROM. The
table below lists the Client Class Identifiers for each JavaStation model.

TABLE 2–5 JavaStation Client Class Identifiers

JavaStation Model Client Class Identifier

Brick model SUNW.JDM1

Tower model SUNW.JSIIep

24 JavaStation Client Software Guide ♦ September 1998, Revision A

Examine the sample dhcptab file below for examples of setting the JavaOS
checksum and JavaOS properties in dhcptab . Note, however, that JavaOS properties
can be delivered to the JavaOS software using methods other than the DHCP
Vendor-Specific Options. See Chapter 4 for more information.

Sample dhcptab File

The following sample dhcptab file supplies DHCP options to a variety of clients on
a network. Some options are common to all clients. Other options are specific to
clients attached to the server, to classes of JavaStation clients, or to specific
JavaStation machines. Note that dhcptab can serve many different clients, not just
JavaStation computers.

/var/dhcp/dhcptab
#
This file is a sample DHCP server configuration database for
JavaStation clients.
#
Refer to dhcptab(4) for details. This table is generated by
using the dhcpconfig(1M) command in conjunction with the
dhtadm(1M) command. It can be administered with the dhtadm
command.

The following are symbol definitions for the Vendor-Specific
Options. Symbol definitions are used to create dhcptab macros.
Refer to the dhcptab(4) man page for symbol definition syntax and
instructions on creating macros.

JOScmd1-4 are for JavaOS properties, JOSchksm is for the
JavaOS checksum, and JSBproto is for the JavaOS boot protocol.

JOScmd1 s Vendor=SUNW.JSIIep SUNW.JDM1,101,ASCII,1,0
JOScmd2 s Vendor=SUNW.JSIIep SUNW.JDM1,102,ASCII,1,0
JOScmd3 s Vendor=SUNW.JSIIep SUNW.JDM1,103,ASCII,1,0
JOScmd4 s Vendor=SUNW.JSIIep SUNW.JDM1,104,ASCII,1,0

JOSchksm s Vendor=SUNW.JSIIep,128,NUMBER,4,1

JSBproto s Vendor=SUNW.JSIIep,129,ASCII,1,0

Standard macros generated when configured with dhcpconfig(1M). # The first is the time offset from GMT (
applies to all clients serviced by this server, and the third
applies to all clients attached to one of the nets attached to
the server.

Locale m :UTCoffst=-25200:

gibson m :Include=Locale:Timeserv=10.146.103.191:\
:LeaseTim=259200:LeaseNeg:\
:DNSserv=10.146.1.151 10.146.1.152 10.144.1.57:\
:DNSdmain=foo.bar.com:

10.146.103.0 m :Broadcst=10.146.103.255:\
:Subnet=255.255.255.0:\
:MTU=1500:Router=10.146.103.1:\
:NISdmain=nis.foo.bar.com:\

JavaStation Boot Process: Theory of Operations 25

:NISservs=10.146.103.22:\
:BootSrvA=10.146.103.191:

These are macros used to configure specific classes of clients.
In this case the JavaStation tower and brick models respectively.

SUNW.JSIIep m :Rootpath="/export/root/javaos/JSIIep":\
:JOScmd1="-ihttp://gibson:8080/properties":\
:JOSchksm=0x13d624be:

SUNW.JDM1 m :Rootpath="/export/root/javaos/JDM1":\
:JOScmd1="-ihttp://gibson:8080/properties.JDM1":

The macros below contain individual DHCP options for the two
JavaStation computers whose client ID"s (derived from the
Ethernet address) match the keys. Here each JavaStation gets
its boot image from a boot server other than the DHCP server.
The first JavaStation uses NFS to directly download the
JavaOS image. The second JavaStation computer gets a different
properties file as well as empty vendor options that override
any previous default definitions.

0800208E0668 m :BootSrvA=10.146.103.11:\
:JOSchksm=0x13b74098:JSBproto=’’nfs’’:

08002087BED4 m :BootSrvA=10.146.103.114:\
:JOScmd1="-ihttp://redwings/properties":\
:JOScmd2="":JOScmd3="":JOScmd4="":\
:JOSchksm=0x13dd4e2d:

Managing the JavaOS Checksum
Each time you receive a new copy of the JavaOS software, you can configure the
DHCP server to deliver the new copy to JavaStation computers by following the first
set of instructions below. To disable JavaOS updating on the JavaStation computers,
follow the second set of instructions.

To Configure the DHCP Server for a New JavaOS
Binary

1. Determine the checksum.

The checksum is contained in the first 4 bytes of the last 12 bytes of the JavaOS
binary file.

% tail -12c javaos | od -X | nawk ’{print "0x" $2}’
14eb02a1

26 JavaStation Client Software Guide ♦ September 1998, Revision A

2. Use dhtadm to add the new checksum to the DHCP configuration.

% dhtadm -M -m SUNW.JSIIep -e JOSchksm=0x checksum

For example,

% dhtadm -M -m SUNW.JSIIep -e JOSchksm=0x14eb02a1

When each JavaStation computer boots, its flash memory is updated with the new
JavaOS binary and then is rebooted using the new JavaOS binary. This action may be
automatic or require user confirmation, depending on other options.

To Disable JavaOS Updating

1. Set the checksum to zero:

% dhtadm -M -m SUNW.JSIIep -e JOSchksm=0

or

1. Delete the checksum entirely from the DHCP configuration:

% dhtadm -M -m SUNW.JSIIep -e JOSchksm=

Note that there is nothing after the equal sign.

TFTP
If a TFTP server will be involved in the boot sequence, set it up using the
instructions below. For information on selecting TFTP to be used in the boot
sequence, see Table 2–1.

Note - Only experienced Solaris system administrators should set up boot services
for JavaStation computers using Solaris commands. Inexperienced Solaris users
should use the Netra j software. For information on Netra j, go to
http://www.sun.com/netra-j or refer to the Netra j 3.0
Administrator’s Guide .

JavaStation Boot Process: Theory of Operations 27

To Set Up a JavaStation TFTP Server

1. Follow the instructions in the TCP/IP and Data Communications
Administration Guide to configure a server on the network as a TFTP server.

This guide is available on the Web at http://docs.sun.com .

Also, refer to the inetd(1M) and in.tftpd(1M) man pages.

2. Use dhtadm to set the JavaStation boot protocol to TFTP.

Set the JSBproto vendor-specific option to tftp . See “Vendor-Specific Options”
on page 24 for more information.

3. Use dhtadm to add other TFTP boot information to the dhcptab file, as
described in the following table:

TABLE 2–6 DHCP Option Settings for TFTP

If the TFTP
server
delivers.. Set the following in dhcptab ...

Relative
Performance

The booter � Set Bootfile to the path name of the booter
file. The path name is assumed to be relative to
the TFTP root directory. (If Bootfile is not set,
the name of the booter file is assumed to be the
Client Class Identifier – SUNW.JDM1for a brick
model; SUNW.JSIIep for a tower model.)

� Set BootSrvA to the IP address of the TFTP
server.

� Set Rootpath to the directory on the NFS
server where the JavaOS image is located.

Fast

The JavaOS
image

� Set Bootfile to the path name of the JavaOS
image. The path name is assumed to be relative
to the TFTP root directory.

� Set BootSrvA to the IP address of the TFTP
server.

� To enable flash update after the boot, set
Rootpath to the directory on the NFS server
where the JavaOS image is located.

(A case using all three of the above settings would
be unusual. Typically, the JavaStation computer
boots straight from flash, not the network, before a
flash update.)

Slow

28 JavaStation Client Software Guide ♦ September 1998, Revision A

NFS
If an NFS server will be involved in the boot sequence, set it up using the
instructions below. For information on selecting NFS to be used in the boot sequence,
see Table 2–1. Using NFS as the boot protocol is the fastest method for delivering
JavaOS software to the JavaStation computers.

Note - Only experienced Solaris system administrators should set up boot services
for JavaStation computers using Solaris commands. Inexperienced Solaris users
should use the Netra j software. For information on Netra j, go to
http://www.sun.com/netra- j or refer to the Netra j 3.0
Administrator’s Guide .

To Set Up a JavaStation NFS Server

1. Follow the instructions in the NFS Administration Guide to configure a server
on the network as an NFS server.

This guide is available on the Web at http://docs.sun.com .

2. If a booter file will not be used in the boot process, use dhtadm to set the
JavaStation boot protocol to NFS.

Setting the JSBproto vendor-specific option to nfs . See “Vendor-Specific
Options” on page 24 for more information.

3. Use dhtadm to set Rootpath to the directory on the NFS server where the
JavaOS image is located.

4. Use dhtadm to set BootSrvA to the directory on the NFS server where the
JavaOS image is located.

HTTP
The HTTP (web) server can deliver the user’s main application to the JavaStation.

Note - The user’s main application can also be linked to the JavaOS image. For
instructions, see Chapter 6.

JavaStation Boot Process: Theory of Operations 29

Note - Only experienced Solaris system administrators should set up boot services
for JavaStation computers using Solaris commands. Inexperienced Solaris users
should use the Netra j software. For information on Netra j, go to
http://www.sun.com/netra- j or refer to the Netra j 3.0
Administrator’s Guide .

To Set Up a JavaStation Web Server

1. Follow the vendor’s instructions for setting up the web server.

2. Prepare the application to be delivered to the JavaStation computers.

See Chapter 5 for instructions.

3. Set JavaOS application loading properties.

See Chapter 5 for instructions.

30 JavaStation Client Software Guide ♦ September 1998, Revision A

CHAPTER 3

Boot Progress Indicators

At power on, a series of steps is executed to boot the JavaStation computer, as
described in Chapter 2. During this process, the JavaStation screen displays graphics
and text to indicate the progress of the boot sequence. Your JavaStation computer
will use one of the two progress indication methods described in this chapter.

� “Text and Logo Progress Indicators” on page 31

� “Java
TM

Coffee Cup Progress Indicator” on page 33

Text and Logo Progress Indicators
Some JavaStation computers display a combination of text and logos to indicate the
progress of the boot sequence, as follows:

1. Initialize boot devices – At power on, the JavaStation PROM initializes boot devices
on the JavaStation computer. On the JavaStation screen, hardware and firmware
information is displayed next to the Java Coffee Cup logo, as shown in the
following figure.

Figure 3–1 Initializing Boot Devices

31

If any boot device initialization fails, an image similar to the following appears.

Figure 3–2 Boot Device Initialization Failure

2. Perform network communication – If a copy of JavaOS is stored in flash memory
(available only on the tower model) and is valid, this copy of JavaOS initializes
itself and executes the network communication required for the boot. If not, the
JavaStation PROM executes the network communication. In either case, a new
copy of JavaOS is downloaded from a network server. During this process, the
JavaStation screen displays the logo in the following figure, the Sun logo, and the
Java Coffee Cup logo.

Figure 3–3 Network Communication

3. Boot JavaOS – JavaOS takes 10-15 seconds to boot. If the booted copy of JavaOS
was obtained from flash (and was not updated by the network), the JavaStation
screen displays the background shown in the preceding figure. If the booted copy
of JavaOS was downloaded from the network, the JavaStation screen displays a
Coffee Cup “wallpaper” background.

4. Log In – Once JavaOS has booted, the user login window is displayed.

32 JavaStation Client Software Guide ♦ September 1998, Revision A

Figure 3–4 JavaStation Login Window

Java
TM

Coffee Cup Progress Indicator
Some JavaStation computers use the Java Coffee Cup icon as a progress indicator of
the boot process, as follows:

1. Power on – After basic hardware initialization, the JavaStation logo and its shadow
image appear on the JavaStation screen, as shown in the following figure.

Boot Progress Indicators 33

Figure 3–5 Boot Screen at Power-On

2. Initialize devices – To start the boot process, the JavaStation PROM initializes a boot
device. First it checks for on-board flash memory. If a copy of JavaOS is stored in
the flash and is valid, control is passed to this copy of JavaOS. If not, control stays
with the PROM. Next, the JavaStation Ethernet port is tried. If the port is
connected, the PROM (or JavaOS) will proceed with the network boot sequence.
During this initialization of boot devices, the saucer of the Coffee Cup icon
appears next to the JavaStation logo.

Figure 3–6 Initializing Boot Devices

3. Locate network servers – The PROM or JavaOS locates the DHCP server and the
boot server on the network. During this step, a cup is added to the saucer.

4. Download JavaOS – If the boot server is located, a copy of JavaOS is downloaded
from the network, and steam appears in the cup.

34 JavaStation Client Software Guide ♦ September 1998, Revision A

Figure 3–7 Downloading JavaOS From Network Server

After JavaOS is downloaded, the shadow image of the JavaStation logo
disappears, as in the following figure.

Figure 3–8 JavaOS Is Downloaded

5. Boot JavaOS – JavaOS takes 10-15 seconds to boot. If the booted copy of JavaOS
was obtained from flash (and was not updated by the network), the JavaStation
screen displays the background shown above. If the booted copy of JavaOS was
downloaded from the network, the JavaStation screen displays a Coffee Cup
“wallpaper” background.

6. Log In – Once JavaOS has booted, the user login window is displayed.

Boot Progress Indicators 35

Figure 3–9 JavaStation Login Window

If at any time an error occurs, an image similar to the following appears.

Figure 3–10 Boot Error Message

The list of boot devices below the above image shows how far the boot progressed. If
there was a problem with:

� the flash

36 JavaStation Client Software Guide ♦ September 1998, Revision A

� or Ethernet

the last device tried is represented by the last icon on the boot source line.

A question mark (?) in the error image indicates that the problem is recoverable: if
you correct the problem, the boot sequence will continue. For example, if the
Ethernet cable is disconnected, you can connect it and the boot sequence will
proceed from that point as if nothing had happened. An exclamation point (!) in the
error image indicates an unrecoverable error.

Troubleshooting Key Chords
JavaStation computers that boot using the Java Coffee Cup progress indicator also
support key chords that can be pressed at the JavaStation keyboard to diagnose boot
problems. You must press the chord within four seconds after power on. It may be
helpful to press and hold the chord while powering on the JavaStation computer.

TABLE 3–1 Troubleshooting Key Chords

Key Chord Purpose Effect When Pressed At Power-On

Alt+b Debug network
boot process

Displays debugging information on booting over the
network.

Alt+w Display system
information

Displays total memory, Ethernet address, and
firmware information (the display is similar to the
error image above).

Alt+d Run diagnostics Runs PROM-resident diagnostics and POST.

Alt+t Try flash
booting last

Re-orders the default boot order to try booting in the
following sequence: Ethernet, flash.

Alt+h Show all key
chords

Displays all available key chord combinations.

Boot Progress Indicators 37

38 JavaStation Client Software Guide ♦ September 1998, Revision A

CHAPTER 4

JavaOS Properties

JavaOS properties are settings that control the behavior of the JavaOS operating
system on the JavaStation computer. JavaOS properties are delivered to the
JavaStation computer at bootup; they can be delivered by the DHCP server or in a
file referenced by the DHCP server.

Two kinds of properties control JavaOS behavior: system properties and JavaOS
properties. Generally, system properties control the operation of applets or of any
Java applications built into the JavaOS image (such as a browser). JavaOS properties
determine the resources used by the JavaOS software, such as the language and fonts
of the interface and the printers available to the JavaStation.

This chapter lists the JavaOS and system properties by functional group and explains
how to set properties.

� “JavaOS and System Properties” on page 39

� “Setting Properties” on page 52

JavaOS and System Properties
The tables below list all JavaOS and system properties. The properties are grouped
by function. Each table includes the name of the property, its default value, and a
description of what the property controls. All properties are JavaOS properties unless
marked as system properties.

Property setting examples use the JavaOS property flags, such as -d . These property
flags are described in Table 4–7.

39

General Properties
The following table lists general properties for setting up the JavaOS environment.

TABLE 4–1 JavaOS General Properties

Property Name Default Value Description

javaos.mountlist null A semicolon-separated list of pairs
of network paths and local paths.
After the user logs into the
JavaStation, each remote file
system is mounted onto the local
file system. The syntax of each pair
is: server: remote_path| local_path

For example, to enable localized
keyboards, mount /REMOTEfrom
the server and file system that has
the JavaOS executable image, as
follows:

-
djavaos.mountlist=myserver:/
export/root/javaos/
classes|/REMOTE

See “Setting Mount Directories ”
on page 84 for more details.

javaos.snmpSysContact null This property sets the value that
will be returned in the system
Management Information Base
(MIB) for the system contact field.
It can be set with a string of your
choice, which should be enclosed
in quotes. Example: -
djavaos.snmpSysContact="Bob"

javaos.snmpSysLocation null This property sets the value that
will be returned in the system MIB
for the system Location field. It can
be set with a string of your choice,
which should be enclosed in
quotes. Example: -
djavaos.snmpSysLocation="Sun
MPK14"

40 JavaStation Client Software Guide ♦ September 1998, Revision A

TABLE 4–1 JavaOS General Properties (continued)

Property Name Default Value Description

javaos.consoleHotKey
VK_PRINTSCREENThis property sets the keyboard

hotkey that activates the
JavaStation console, which displays
debugging information. The value
of the property is the JDK

TM

virtual
keycode name for the hotkey. The
following codes are valid:
� VK_F1
� VK_F2
� VK_F3
� VK_F4
� VK_F5
� VK_F6
� VK_F7
� VK_F8
� VK_F9
� VK_F10
� VK_F11
� VK_F12
� VK_PRINTSCREEN
� VK_UNDEFINED(to disable the

console)
The value of this property is not
case-sensitive; VK_PRINTSCREEN
and vk_PrInTSCreen are
equivalent.

javaos.login true If true , the JavaOS software
displays a login screen after
booting and before starting the
initial application.

If false , the JavaOS software runs
the main application as soon as it
boots, without displaying a login
screen. This means there is no user
home directory, and no system
properties are read from a
properties file.

JavaOS Properties 41

TABLE 4–1 JavaOS General Properties (continued)

Property Name Default Value Description

javaos.homedir null This property specifies the NFS
path JavaOS should mount if NIS
is not used to find the path based
on the user name. The NFS path is
specified as hostname:/ path.

This property is most often used to
determine the directory to use for
the properties file that is read by
HotJava at startup. If the
javaos.login property is set to
false, javaos.homedir is not
used.

javaos.alwaysUpdate null This property specifies that JavaOS
is always or never updated in the
JavaStation computer’s flash
memory, regardless of the value of
the JavaOS checksum. It is useful
for public kiosks or other systems
where user input is not expected.
For more information, see Table
2–2.

javaos.allowGuest false If true, the login screen (if
displayed at all) will contain a
guest login button. Guest login
requires no username or password,
and no user directories are
mounted.

javaos.dns true When set to true, host
name-to-address and
address-to-host name resolution
are performed using the DNS
protocol. See also javaos.nis . If
lookup using NIS is enabled also,
NIS is attempted first, and DNS is
attempted only if NIS lookup fails.
See also javaos.hostaddrmap
and javaos.hostnamemap .

javaos.hostnamemap host. byname The name of the NIS map used to
perform host name-to-address
resolution.

42 JavaStation Client Software Guide ♦ September 1998, Revision A

TABLE 4–1 JavaOS General Properties (continued)

Property Name Default Value Description

javaos.hostaddrmap host. byaddr The name of the NIS map used to
perform address-to-host name
resolution.

javaos.homedirmap auto.home (sought
first),

auto_home

If NIS is enabled, this property is
used to set the name of the NIS
map used by the JavaOS software
to determine a user"s home
directory.

javaos.nis true When set to true , login
authentication, host
name-to-address resolution and
address-to-host name resolution
are performed using the NIS
protocol. See also javaos.dns . If
lookup using DNS is also enabled,
NIS is attempted first, and DNS is
attempted only if NIS fails.

javaos.rap false If set to true , the JavaOS software
uses Remote Authentication
Protocol (RAP) instead of NIS for
login authentication.

javaos.rap.server null Set to the IP address of the RAP
server. This property is ignored
unless javaos.rap is set to true .

Application Loading Properties
The properties listed below control selection and loading of the main application on
the JavaStation after the user logs in. For instructions on using these properties, see
Chapter 5.

JavaOS Properties 43

TABLE 4–2 JavaOS Application Loading Properties

Property Name Default Value Description

javaos.apps null If defined, the JavaOS software launches a simple
point-and-click Application Launcher window. This
property should be set to the URL of an HTML
document that lists the applications to display.

javaos.mainProgramsun.applet.

AppletViewer

Set to the name of the application’s main class.

javaos.mainHomepropappletviewer Set to the name of the property specifying the
application’s root directory. For example, HotJava
Views uses the hotjava.home property to specify its
root directory. Other applications may have different
property names. When the virtual file system is
created, this property is set to enable the application
to find its files. See “To Deliver a Single Application ”
on page 60 for more information.

javaos.mainZip null Set to the name of the archive containing the
application files.

Video Resolution Properties
The table below lists properties that control video resolution on the JavaStation user’s
screen.

44 JavaStation Client Software Guide ♦ September 1998, Revision A

TABLE 4–3 JavaOS Video Resolution Properties

Property Name Default Value Description

javaos.fbDimensions null Specifies a new frame buffer
resolution to be set at boot time.
The syntax of resolution parameters
is widthxheightxdepth@vfreq, where
depth is optional. Currently, only
8-bit depth is supported. For
example,

-
djavaos.fbDimensions=800x600x8@60

javaos.fbDimensionsPrompt true If javaos.fbDimensions is
specified, the user will be prompted
by a Video Mode Confirmation
dialog. If the user selects OK, the
video mode is set to the newly
specified mode. The user must
then accept the new video mode by
selecting YES. If they fail to select
YES within a 10-second period or if
they select NO, the video mode
reverts to its original mode.

If this property is set to false , the
confirmation window is disabled.

User Properties
The table below lists miscellaneous user properties that affect JavaOS operation.
Most are related to localization. Certain settings cause other settings to be assumed.
For example, setting user.region to ja causes the system to assume the JST time
zone, even if user.timezone is not defined.

JavaOS Properties 45

TABLE 4–4 JavaOS User Properties

Property Name
Default
ValueDescription

user.timezone nullThis system property tells the Java date and time API the time zone
in which the JavaStation system is located. Example:
-Duser.timezone=PST . Valid time zones are as follows (this list is
from java.util.TimeZone .) The default time zone is GMT.
� GMT– Greenwich Mean Time
� ECT– European Central Time
� EET – Eastern European Time
� ART– (Arabic) Egypt Standard Time
� EAT – Eastern African Time
� MET– Middle East Time
� NET– Near East Time
� PLT – Pakistan Lahore Time
� IST – India Standard Time
� BST – Bangladesh Standard Time
� VST – Vietnam Standard Time
� CTT – China Taiwan Time
� JST – Japan Standard Time
� ACT– Australia Central Time
� AET – Australia Eastern Time
� SST – Solomon Standard Time
� NST– New Zealand Standard Time
� MIT – Midway Islands Time
� HST– Hawaii Standard Time
� AST – Alaska Standard Time
� PST – Pacific Standard Time
� PNT– Phoenix Standard Time
� MST– Mountain Standard Time
� CST– Central Standard Time
� EST – Eastern Standard Time
� IET – Indiana Eastern Standard Time
� PRT– Puerto Rico and US Virgin Islands Time
� CNT– Canada Newfoundland Time
� AGT– Argentina Standard Time
� BET – Brazil Eastern Time
� CAT– Central African Time

user.language en This system property must be set to a valid, lowercase, ISO-639
Language Code. Exceptions to this rule are to use cs for Czech and
iw for Hebrew, as the current Language Codes havebeen updated
since the JDK1.1 was implemented. Valid codes are described in
Table 10–2. Example: -Duser.language=en

user.country nullThis system property must be set to a valid ISO-3166 Country Code.
Valid codes are described in Table 10–3. Example:
-Duser.country=US

46 JavaStation Client Software Guide ♦ September 1998, Revision A

Printing Properties
The table below lists properties related to printing. Instructions for using these
properties are in Chapter 9.

Note - Due to space constraints, property names may take up two or more lines in
the table below. However, they should be typed on one line only. For example, the
second property below is javaos.printservice.lpd.printers .

TABLE 4–5 JavaOS Printing Properties

Property Name Default Value Description

javaos.printservice.NIS.mapname printers.
conf. byname

The name of the NIS map used to
locate network printers.

javaos.printservice.lpd.
printers

null A semicolon-separated list of
printers available for use by the
lpd printing client. The format of
each entry is printer@server.

javaos.printdialog.
alwaysShowPrinters

null A semicolon-separated list of all
the printers available from this
host. This property enables
administrators to add access to the
printer nearest a given JavaStation.
The syntax of the printer name is
print_service:printer@server.
Example:

-
djavaos.printdialog.alwaysShowPrinters
=lpd:raw@kona;lpd:ps@kona;
NIS:droid@fred

javaos.printers.selected null A semicolon-separated list of the
printers the user has selected to
appear in print dialogs. The format
is the same as for
alwaysShowPrinters . This is a
system property. Example: -
Djavaos.printers.selected =raw@kona;
ps@kona;droid@fred

JavaOS Properties 47

TABLE 4–5 JavaOS Printing Properties (continued)

Property Name Default Value Description

javaos.printservice.

local.params.serial- port
null This property sets the

communications parameters for the
serial port.

The port portion of this property is
the name of a serial port, which
can be:
� SerialA or SerialB for an

on-board JavaStation serial port
(Serial B is not available on
any JavaStation model at this
writing)

� One of SerialP1 through
SerialP8 for a virtual serial
port enabled by the multiport
serial card (MPSC), which is
not available on any JavaStation
model at this writing

The syntax of the communication
parameters is
baud_rate:data_bits:stop_bit: parity:
flow_control. For example: -
djavaos.printservice.local.params.
serial-
SerialA=57600:8:1:none:hh

Valid values for each parameter are
as follows:
� baud_rate: 1200, 2400, 4800,

9600, 19200, 38400, 57600,
115200

� data_bits: 5, 6, 7, 8
� stop_bits: 1, 1.5, 2
� parity: none, odd, even
� flow_control: none, {s,h}{s,h} You

can disable flow control by
specifying none. Otherwise,
specify an {input}{output} pair
by selecting from Xon/Xoff (s)
or RTS/CTS (h) for input and
output.

javaos.printservice.

local.params.parallel- port
false The port portion of this property is

the name of a parallel port. A
parallel port is not available on any
JavaStation model at this writing.

When set to true, this property
enables the parallel port. For
example:

-djavaos.printservice.local.params.
parallel-LPT1=true48 JavaStation Client Software Guide ♦ September 1998, Revision A

TABLE 4–5 JavaOS Printing Properties (continued)

Localization Properties
The table below lists properties strictly related to localization.

Note - The User Properties in Table 4–4 and javaos.mountlist in Table 4–1 are
also required for localization.

TABLE 4–6 JavaOS Localization Properties

Property Name
Default
Value Description

javaos.font.properties.home /FONTS The local path name of a directory that
contains a lib subdirectory. The
font.properties files are read from this
lib directory. The javaos.mountlist
property is typically used to associate some
server path with the /FONTS directory to
enable the JavaOS software to load and use
fonts from a server. For more information,
see “Setting Mount Directories ” on page 84.

javaos.im.compose.deadkeys false This property changes the following keys
into accent

keys: "(single quote) "(double quote) (` grave
accent) and

^(circumflex). Use this property if your
keyboard is a

U.S. keyboard, you are not setting the
javaos.kbd property, and you want to
produce accented characters

for ISO Latin locales. If set to true , the
above keys do not produce a value of their
own, but cause the next key pressed to be an
accented character. For example, pressing ‘
plus “a” produces á. If this property is false,
these keys generate their expected values.
For more information on this and the
following three properties, see “Enabling
Special Characters on the U.S. Keyboard” on
page 94.

JavaOS Properties 49

TABLE 4–6 JavaOS Localization Properties (continued)

Property Name
Default
Value Description

javaos.im.compose_ar ISO8859_6 Enables the U.S. keyboard to produce Arabic
input. The Ctrl-t key sequence toggles the
keyboard state between Arabic and U.S.
ASCII modes. A status window displays the
current mode.

javaos.im.compose_iw ISO8859_8 Enables the U.S. keyboard to produce
Hebrew input. The Ctrl-t key sequence
toggles the keyboard state between Hebrew
and U.S. ASCII modes. A status window
displays the current mode.

javaos.im.compose_th TIS620 Enables the U.S. keyboard to produce Thai
input. The Ctrl-t key sequence toggles the
keyboard state between Thai and U.S. ASCII
modes. A status window displays the
current mode.

javaos.im.url null A semicolon-delimited list of the Solaris
machines running the language engines to be
used by JavaStation computers. A Microsoft
Windows95 or Microsoft NT system can also
be used if an Internet/Intranet Input Method
Protocol (IIIMP) server from Sun for the PC
server is installed on it. Set as follows:

iiimp:// hostname: port; hostname: port...

where:
� hostname is a system running a language

engine
� port is the port at which the engine is

located. By default, JavaStation
computers use port 9010 . For more
information, see “Setting the Input
Method ” on page 96.

50 JavaStation Client Software Guide ♦ September 1998, Revision A

TABLE 4–6 JavaOS Localization Properties (continued)

Property Name
Default
Value Description

javaos.loginLocaleList en_US A semicolon-separated list of the locales to
be presented as choices to the user at login.
A locale is defined using one of the ISO-639
standard two-letter codes that define
user.language followed by an underscore
character "_" and one of the ISO-3166
standard two-letter codes that define
user.country . For example:

-djavaos.loginLocaleList=\
en_US;fr_FR;ja_JP;zh_CN;zh_TW

For more information, see “Modifying the
Languages Displayed at Login” on page 87.

javaos.kbd null By default, the JavaOS software assumes the
keyboard is a U.S. keyboard. To enable a
different keyboard, use the syntax
javaos.kbd= keyboard. Possible values for
keyboard are provided in “Adding a
Keyboard” on page 92.

javaos.im.lookup.button false This property controls how the JavaStation
user selects characters when using a Korean,
Japanese, or Chinese input method. If
false , when the list of candidate characters
is displayed, letters are used to indicate each
choice, and the user selects a choice by
typing the letter. If true , letters are replaced
with buttons so that the user clicks on a
button to pick a choice. Note that enabling
this option will negatively impact user input
performance. For more information, see
“Setting the Input Method ” on page 96.

javaos.im.status.fixpopup false Setting this property to true enables a
pop-up window with input method status
information. For more information, see
“Setting the Input Method ” on page 96.

JavaOS Properties 51

TABLE 4–6 JavaOS Localization Properties (continued)

Property Name
Default
Value Description

file.encoding 8859_1 This system property sets the character set to
be used when files are saved. By default it is
set to the 8859-1 character set (Roman
alphabet). Supported character sets are listed
in Table 10–5.

doc.url null This system property enables JavaStation
users to access HotJava Browser
documentation. It should be set as follows:

-Ddoc.url=file:/REMOTE/hotjava

HotJava Browser automatically locates the
document translation for the current locale.

This property is not applicable for any
JavaStation application other than HotJava
Browser.

Setting Properties
Note - Only experienced Solaris system administrators should set JavaOS properties
using the following methods. Inexperienced Solaris users should use the Netra j
software. For information on Netra j, go to http://www.sun.com/netra-j or
refer to the Netra j 3.0 Administrator’s Guide .

You can set the properties that control JavaOS operation on the JavaStation in two
places:

� In the DHCP Vendor Options (see Chapter 2).

� In a text file referenced in the DHCP Vendor Options.

The second option is preferable because the total length of DHCP Vendor Options is
limited to 255 characters. If you exceed this length, the remaining text is lost and the
JavaStation computer will not receive all of the options. No errors are reported by
the dhcp daemon, but incorrect behavior is viewed on the JavaStation computer.

In contrast, the text file can have any length.

If you set a property in the DHCP options and in a text file, the value set in the text
file will be used because it was the last value delivered to the JavaStation computer.

52 JavaStation Client Software Guide ♦ September 1998, Revision A

Syntax
Each property setting must use one of the flags in the table below. There is no space
between each flag and its value. Note that certain flags are used only for JavaOS
properties, while others are used only for system properties.

TABLE 4–7 Property Flags

FlagSyntax Definition

-
d
-
dJavaOS_property=value

Used to define a JavaOS property. The property name and value are
stored in the JavaOS properties object. The names of properties set
with this option always begin with javaos . Example:
-djavaos.kbd=UKPS2

-
D
-
Dsystem_property=value

Used to define a system property. The system property and value are
stored in the global system properties object. Example:
-Duser.timezone=PST .

-
a
-
aJavaOS_property=value

The JavaOS property is set to the given value if it has never been set
before. If the property already has a value, then its current value is
appended with a semicolon and the value. Example:
-ajavaos.printservice.lpd.printer=printer2

This example sets the property
javaos.printservice.lpd.printer to printer2 if the
property has no current value. If the property already has a value
(say, printer1), the new value is appended
(printer1;printer2).

This flag is useful if you are building the value of a property from
multiple places using the -i option below. Note that this property
can itself be a semicolon-separated list of values; the entire list is
added or appended as described above.

-
A
-
Asystem_property=value

This works just like the -a option, except that it sets system
properties.

Note that -a and -A are equivalent to -d and -D , except for the
append behavior.

-
u
-u JavaOS_property Used to undefine a JavaOS property.

JavaOS Properties 53

TABLE 4–7 Property Flags (continued)

FlagSyntax Definition

-
U
-U system_property Used to undefine a system property.

-
i
-i HTTP_URL The HTTP URL is expanded and the file referenced by the URL is

itself evaluated as if it were a JavaOS command line. Properties are
stored one per line in this file. One file can use -i to include another
file. There is currently no check on infinite recursion.

Properties will be interpreted as the JavaOS command line, which is a formatted text
string of any length that is interpreted when the JavaOS software boots. The
command line can include:

� JavaOS and system properties

� Arguments to be used by the JavaOS software or an application launched by the
JavaOS software

The syntax of the command line is as follows:

prop_setting1 prop_setting2... prop_settingn – arg1 arg2... argn

where prop_setting is a JavaOS property setting and arg is an argument. Property
settings and arguments are separated by two contiguous hyphens.

Referencing a Properties File in the DHCP Vendor
Options
This is the preferred method for setting JavaOS properties because dhcptab entries
are limited to 255 characters.

Use the -i flag described in the preceding table in a dhcptab macro (see Chapter 2).
The relevant line of the macro should have the following syntax:

JOScmd1=’’-ihttp:// hostname[: port_number]/ filename’’

The text file should be located in the web server root directory. It should contain
property settings using the flags described in the preceding table. It can also include
arguments. Each property setting and argument should be typed on a separate line,
with the separator hyphens mentioned above on their own line, as follows:

-Duser.timezone=PST
-djavaos.login=false
--

54 JavaStation Client Software Guide ♦ September 1998, Revision A

http://www.sun.com

The following is a sample properties text file.

Sample text file of JavaOS properties
###
General setup
##

Define the key that brings up the screen console (PRINTSCREEN
is the default)
-djavaos.consoleHotKey=VK_PRINTSCREEN

Set up values that will be returned by SNMP in the System MIB
-djavaos.snmpSysContact=JavaOS group, js_team@ignacio
-djavaos.snmpSysLocation=JavaSoft

###
Locale-specific settings
###

Set Server for /REMOTE file system
-ajavaos.mountlist=fred:/export/root/javaos/classes|/REMOTE
We"re all on the US West Coast...
-Duser.timezone=PST

Set list of countries we support, English first
(The order doesn"t matter, but the Login window shows them
in the order in which they appear in the property list.)
-djavaos.loginLocaleList=en_US

Add the European Locales
-ajavaos.loginLocaleList=fr_FR;de_DE;it_IT;sv_SE;es_ES

Add the Asian Locales
-ajavaos.loginLocaleList=ja_JP;ko_KR;zh_CN;zh_TW
###
FONT-specific settings
##

Set the server location for where to find fonts for the
/FONTS directory
-ajavaos.mountlist=fred:/export/root/javaos/fonts|/FONTS

###
Printing properties
##

Always show these printers
-djavaos.printdialog.alwaysShowPrinters=NIS:dirk@fred;
NIS:rita@scorpio

The name of the NIS map for printers (this is the default, so it"s
not really necessary)

-djavaos.printservice.NIS.mapname=printers.conf

JavaOS Properties 55

Set up the hardware parameters for locally connected printers
-djavaos.printservice.local.params.serial-Serial=57600:8:1:none:hh

###
set doc.url
This allows us to read the HotJava Browser User’s Guide from
a server.
##
-Ddoc.url=http://fred.eng/JavaOS/LunaApps/

56 JavaStation Client Software Guide ♦ September 1998, Revision A

CHAPTER 5

Dynamically Loading Applications

The JavaOS software supports dynamic delivery of the user’s main application to the
JavaStation computer by a web (HTTP) server after the initial boot of the JavaOS
software. This chapter describes how to set up an application to be dynamically
delivered.

� “Overview” on page 57

� “Setting Up Dynamic Delivery of an Application ” on page 58

For more information on the JavaStation boot sequence, see Chapter 2.

Note - Dynamic delivery of a single application can be set up quickly using Netra j.
For information on Netra j, go to http://www.sun.com/netra-j or refer to the
Netra j 3.0 Administrator’s Guide .

Overview
Once the JavaOS software is invoked on the JavaStation computer, it can download
the user application from an HTTP server on the network. This method of
application delivery, called “dynamic loading,” is distinct from static linking (see
Chapter 6) in that the application is not bound to the JavaOS binary but is accessed
by the JavaOS software after it boots.

An application that will be dynamically delivered must be bundled as an
“application archive,” which can be a Java archive (JAR) or zip file. The JavaOS
software references the application archive by its URL, which enables the application
archive to reside anywhere on the network accessible to the web server.

57

JavaOS Properties
To set up an application to be delivered dynamically, you must set one or more of
the following JavaOS properties:

� javaos.apps

� javaos.mainProgram

� javaos.mainHomeprop

� javaos.mainZip

This chapter describes each property in detail and explains their possible settings.
For complete instructions on setting JavaOS properties, see Chapter 4.

Setting Up Dynamic Delivery of an
Application
This section describes the procedures for setting up an application to be delivered
dynamically to JavaStation computers at bootup.

You can configure dynamic delivery in two ways:

� A single, “fixed” application is launched automatically when the JavaOS software
boots.

� The user is presented with a list of applications to choose from in the JavaStation
AppLoader window, shown below.

58 JavaStation Client Software Guide ♦ September 1998, Revision A

Figure 5–1 AppLoader Window on the JavaStation Screen

Note - Dynamic delivery does not provide an environment to enable multiple
applications to run on a single virtual machine. Only one application can run at a
time.

To Create an Archive

1. Verify that your project directory contains both a classes and a lib directory
and that all application classes reside in the classes directory.

Applications typically comprise class, text, graphics, HTML, and property files.
Many application hierarchies are organized so that all the class files are in the

Dynamically Loading Applications 59

classes directory and everything else is in the lib directory. This policy is
enforced for dynamic loading to ensure the application classes can be found and
added to the system CLASSPATH.

2. Remove any unnecessary files from the classes and lib directories.

It is important to conserve memory on the JavaStation system.

3. Create a JAR file containing the classes and lib directories.

The JAR utility is provided in the Java Developer’s Kit
TM

(JDK
TM

). Use the
following syntax:

jar -cf archive_name classes lib

For example, to create a JAR file of the HotJava Views application:

% jar -cf hotjava.jar classes lib

Note - You can also use the zip utility (not provided in the JDK) to create archives.

4. Place the archive in a directory that is accessible to the HTTP server.

To Set Up Dynamic Delivery

1. Create an archive of the application.

An application archive can be a zip or JAR file. See “To Create an Archive” on
page 59.

2. Determine whether you will deliver a single “fixed” application or a dialog
with a list from which the user can select an application.

� For the first option, see “To Deliver a Single Application ” on page 60.

� For the second option, see “To Set Up AppLoader With a List of Applications ” on
page 62.

To Deliver a Single Application

1. Create the application archive.

See “To Create an Archive” on page 59.

60 JavaStation Client Software Guide ♦ September 1998, Revision A

2. Determine how your application will access ancillary files as it runs on the
JavaStation computer, and set the javaos.mainHomeprop property if needed.

Many applications need to access ancillary files at runtime (such as images and
configuration files). Typically, applications access these files relative to their
installation directory. For example, when HotJava Browser runs on Solaris, it
determines the environment variable HOTJAVA_HOMEand then sets the
hotjava.home property to that value. HotJava then uses this property to locate
the additional files it needs at runtime.

In the JavaOS environment an application is installed in the ROM file system at
boot time, and there is no startup script to determine where the application
resides. To prevent you from having to hard-code the location into your
application, the JavaOS software sets a property of your choosing to this location.
You provide the name of the property in the JavaOS property
javaos.mainHomeprop . Thus, for HotJava Browser, the property is the
hotjava.home property and it is specified as follows:

-djavaos.mainHomeprop=hotjava.home

At boot time, the JavaOS software sets this property (hotjava.home) to where
the application is “installed” in the ROM file system. Internally your application
may use this property to determine the location of a data file. For example,
HotJava Browser could use the hotjava.home property to locate an image file
(error checking removed for brevity):

String imagePath = System.getProperty("hotjava.home") +File.separator + "image.gif";

As you set up an application for dynamic delivery, determine whether you will
need to use the javaos.mainHomeprop mechanism at all – maybe your
application does not have ancillary files, or maybe you can use
Class.getResource() to find resources. If you do use this mechanism, pick
the property name for the JavaOS software to set, and use that property internally.

3. Set the JavaOS properties listed in the following table.

TABLE 5–1 JavaOS Properties Required to Load a Single Application

Property Description

javaos.mainProgram The name of the application’s main class.

javaos.mainZip The name of the application archive. The archive
name is absolute. Example: http://amber.eng/
javaos/hotjava. jar.

Dynamically Loading Applications 61

In the following example, the JavaOS properties listed in the preceding table and
javaos.mainHomeprop are set to launch HotJava Views. In this example,
amber.eng/javaos are the host and directory names.

-djavaos.mainProgram=sunw.hotjava.Main
-djavaos.mainZip=http://amber.eng/javaos/hotjava.zip
-djavaos.mainHomeprop=hotjava.home

JavaOS properties are delivered to the JavaStation in the DHCP options or in a
file referenced in the DHCP options. For complete instructions on setting JavaOS
properties, see Chapter 4.

To Set Up AppLoader With a List of Applications

1. Create an archive for each application.

See “To Create an Archive” on page 59.

2. Create an application tag file.

The application tag file is an HTML file containing application “tags,” which are
sets of information on each application. AppLoader parses the application tag file
and presents a window displaying a list of applications for the user to select from.

Each application tag must contain the attributes listed in the following table.

TABLE 5–2 Application Tag Attributes

Attribute Description

code The name of the application’s main class.

name The name to be displayed in the Application Launcher list window.
This attribute is optional. By default, AppLoader displays the path to
the archived zip file.

archive The name of the application archive. The archive name can be either
relative (hotjava.jar) to the directory containing the application tag
file or absolute (http://amber.eng/javaos/hotjava. jar).

An application tag can also have the parameters listed below.

62 JavaStation Client Software Guide ♦ September 1998, Revision A

TABLE 5–3 Application Tag Parameters (Optional)

Parameter Description

homeprop The name of the property specifying the application’s root directory.
This parameter sets the javaos.mainHomeprop property. See “To
Deliver a Single Application ” on page 60 for more information.

args Enables you to pass an arbitrary list of arguments to the main() of
your application. Within the list, items are separated with a space, just
as on the command line.

The following is a sample application tag file.

<DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">
<html>

<head>
<title>Applications</title>

</head>
<body>

<h1>Applications</h1>

<application code="sunw.hotjava.Main" name="HotJava Browser" archive="hotjava.jar">
<param name="homeprop" value="hotjava.home">
<param name="args" value="http://java.sun.com/">
</application>

<application code="sunw.hotjava.Main" name="HotJava Views" archive=jdt/html/classes/Selector.jar>
<param name="homeprop" value="hotjava.home">
<param name="args" value="http://http_server/apps/selector.init">
</application>

<application code="sunw.applet.AppletViewer" name="AppletViewer" archive="appletviewer.zip">
<param name="args" value="http://http_server/taos/taos.html">
</application>

</body>
</html>

3. Place the application tag file in your HTTP server"s document root directory or
a subdirectory under it.

4. Use the JavaOS property javaos.apps to specify the location of the
application tag file.

For example:

-djavaos.apps=http://amber.eng/javaos/applauncher.html

Dynamically Loading Applications 63

64 JavaStation Client Software Guide ♦ September 1998, Revision A

CHAPTER 6

Statically Linking an Application to the
JavaOS Image

This chapter describes how to use the Static Linking Kit (SLK) to bind your
application to the JavaOS image delivered to JavaStation clients at bootup. The SLK
is included in the JavaStation client software.

� “Static Link Overview” on page 65

� “Using SLK” on page 65

Static Link Overview
The SLK is a special JavaOS image to which you can link your own application files.
When the re-linked JavaOS is delivered to the JavaStation clients, the user
application is started automatically.

Using the SLK ensures a faster, simpler boot process and trivial application
configuration. The SLK is also required for booting tower model JavaStation
computers over a PPP/modem connection.

Using SLK
To use the SLK, you must prepare a directory tree containing JavaOS files and
application files and then run the link_javaos utility to create a new JavaOS
version incorporating the application files. This procedure is described in the
following section.

65

To Statically Link a Custom Application to the
JavaOS Image

1. Run pkginfo to make sure the required Solaris packages are installed on your
Solaris system:

% pkginfo SUNWarc SUNWbtool SUNWcsu SUNWlibm SUNWsprot SUNWtoo
system SUNWarc Archive Libraries
system SUNWbtool CCS tools bundled with SunOS
system SUNWcsu Core Solaris, (Usr)
system SUNWlibm Sun WorkShop Bundled libm
system SUNWsprot Solaris Bundled tools
system SUNWtoo Programming Tools

If these packages are not available, install them from your Solaris CD-ROM or
contact a Sun sales representative.

2. Untar the file /opt/SUNWjsos/lib/ hardware_type.tar in a new working
directory.

The SLK tar files are installed with the JavaStation client software. hardware_type
refers to the JavaStation model and can be one of the following:

TABLE 6–1 JavaStation Hardware Types

Model Hardware Type

Brick model JDM1

Tower model JSIIep

The following example and the remainder of this procedure use JSIIep as the
hardware type.

% mkdir work
% cd work
% tar xvf /opt/SUNWjsos/lib/lib.JSIIep.tar .

3. Create the directories classes and lib under the directory
work/lib.JSIIep.

% cd work/lib.JSIIep
% mkdir classes lib

66 JavaStation Client Software Guide ♦ September 1998, Revision A

4. Copy your application class files and other required resources to the classes
and lib directories.

Copy all CLASSPATH-loadable files to the classes directory and all non-class
files to the lib directory.

For example:

% cp -r CLASSPATH_loadable_files classes/.
% cp -r non_class_files lib/.

Alternatively, you can create symbolic links to the application build area.

5. Create a file called javaos.properties in the lib directory that contains
JavaOS properties and other properties to be set before the application executes.

At minimum, this file should include the property javaos.mainProgram ,
which points to the class containing the main entry point of your application.
This property is set as follows:

javaos.mainProgram= main_class

For example:

javaos.mainProgram=Orion.main

For a description of all JavaOS properties, refer to Chapter 4.

6. Use link_javaos to link your application to the JavaOS image.

Usage for link_javaos is as follows.

./link_javaos [-sun | -gnu]

where:

� -sun (default) uses the Solaris assembler/linker tools found in /usr/ccs/bin

� -gnu uses GNU tools, which must be installed in /opt/gnu

In some cases this step can take a very long time, up to 20 minutes.

The link_javaos utility does several verifications and then builds a new javaos
binary file that incorporates your application files. The table below shows error
messages that may be displayed during each step in the process.

Statically Linking an Application to the JavaOS Image 67

TABLE 6–2 Error Messages During the link_javaos Process

javaos_link Action Error Messages

Verifies your host system is
running Solaris 2.5 or 2.6

If your system is running a different version of Solaris,
the following message is displayed.

Error: Linking "JavaOS" requires Solaris
2.5 or 2.6

Verifies the specified tools have
been properly installed

If -sun was selected (or left default) and the required
tools directory is not found, the following message is
displayed:

Error: The required tools directory (/usr/
ccs) was not found

If -gnu was selected and the GNU tools directory is
not found, the following message is displayed:

Error: The required tools directory (/opt/
gnu) was not found

The GNU tools can be obtained from www.gnu.org .
The minimum GNU packages required are binutils ,
make, and gcc .

Note that the SLK build scripts will always look in /
opt/gnu for the GNU tools. Some systems have the
GNU compiler and tools installed in the directory /
usr/local .

Verifies the available Java compiler
is version 1.1 or later

If it is not available, the following message is
displayed.

Error: Java version 1.1 or greater is
required

Verifies the file
javaos.properties exists

If not found, the following message is displayed:

Error: ’./lib/javaos.properties’ was not
found.

This file is required to specify the
javaos.mainProgram property.

Creates resource ROM files No specific printed errors.

Creates application mclass No specific printed errors.

Creates ROM versions of all classes No specific printed errors.

Adds new ROM data to archive No specific printed errors.

68 JavaStation Client Software Guide ♦ September 1998, Revision A

TABLE 6–2 Error Messages During the link_javaos Process (continued)

javaos_link Action Error Messages

Links javaos binary file If the following message appears:

Error: ‘javaos’ was not properly created
due to previous errors.

it probably indicates unresolved external references
from missing libraries to missing Java classes.

Compresses javaos binary file If the compression succeeds, the following message is
displayed:

...Compressed "javaos" successfully
created.

If the compression fails, the following message is
displayed:

...*Uncompressed* "javaos" created.

Unable to produce compressed "javaos"
image.

Note: While your JavaStation may be able to
boot with ‘javaos’, it may not be suitable
for loading into flash memory.

A successful link_javaos build yields a single compressed javaos file that
incorporates your application.

You can now set up javaos to be delivered to JavaStation computers during the
boot sequence as described in Chapter 2.

Below is an example of output from a successful link_javaos build.

$ link_javaos
Static-Linking-Kit:

(1) Verifying SLK build environment ...
Building with Solaris tools (as/ld/ar) ...
Statically linking "JavaOS" on a 2.5 system ...

(2) Creating resource ROM files ...
Creating "classes.ROM.o" ...
Creating "others.ROM.o" ...

(3) Creating application ’mclass’ ...

(4) ROMizing all classes ...

(5) Assembling ROMizer output ...

Statically Linking an Application to the JavaOS Image 69

(6) Adding the new ROMizer data to archive ...

(7) Linking "./javaos" binary ...

(8) Compressing "./javaos" binary ...

(9) ... Compressed "./javaos" successfully created.

$

70 JavaStation Client Software Guide ♦ September 1998, Revision A

CHAPTER 7

HotJava Browser and HotJava Views

This chapter describes the default JavaStation user applications included with the
JavaStation client software.

� “HotJava Browser” on page 71

� “HotJava Views ” on page 71

Netra j, the web-based JavaStation boot solution, includes a module for easy
configuration of HotJava Views. For information on Netra j, go to
http://www.sun.com/netra-j .

HotJava Browser
HotJava Browser is a highly customizable, modular browser written entirely in the
Java programming language. HotJava Browser’s small footprint makes it an ideal
scalable solution for JavaStation deployment.

HotJava Browser can be deployed to the JavaStation computers via static linking
(Chapter 6) or dynamic loading (Chapter 5).

HotJava Views
HotJava Views includes the browser and a set of office productivity tools. HotJava
Views offers the following integrated components:

� Selector - An environment manager with a pushbutton interface for switching
between applications.

71

� MailView - An IMAP4 mail client for composing, sending, and saving messages
and handling a variety of attachments.

� CalendarView - A calendar client for managing personal and group calendars

� NameView - An enterprise name directory service client that retrieves and displays
a configurable set of fields and enables contact via email, URLs, and calendar data

� WebView - An HTML 3.2-capable web browser (URL access can be restricted by the
system administrator)

Like HotJava Browser, HotJava Views can be deployed to the JavaStation computers
via static linking (Chapter 6) or dynamic loading (Chapter 5).

HotJava Views Model
HotJava Views enables the zero client-administration network computer and also
attempts to minimize server-side administration. Users are organized into groups,
and each group has its own profile, or set of properties.

Through HotJava Views Administration in Netra j, you can define groups of users
that share client properties, specify applets to appear in the Selector, specify any
sliding panels that appear from the edges of the screen, administer other properties
that affect the user"s desktop, and specify properties for particular network
computers.

When the JavaStation client boots, a URL is passed to the Selector. The URL points to
an initial configuration file. Once the Selector locates the web server, it loads HotJava
Views’ set of property files.

Properties
HotJava Views is controlled by a set of eight property files at the group, user, and
client levels.

� User properties - User properties are stored in the user’s home directory. Initial
group properties are overridden by the user’s individual property file.

� Group properties - Each user is normally a member of a group and inherits the
group properties. Group properties are usually the main source of the final
properties. Users who are not members of a group inherit the group properties of
the group currently designated as the “default” group. There are both initial and
final group property files.

� Client properties - Client properties are specific to a given network computer. They
typically control a few items, such as the default printer, that are specific to the
physical location of the JavaStation.

72 JavaStation Client Software Guide ♦ September 1998, Revision A

CHAPTER 8

JavaStation PPP-Modem Dialup

This chapter describes how to set up JavaStation computers to boot over a modem
connection.

� “PPP-Modem Overview” on page 73

� “PPP-Modem Requirements ” on page 73

PPP-Modem Overview
Tower model computers contain enough flash random-access memory (RAM) to hold
a bootable copy of the JavaOS binary file. On these JavaStation models, support for
Point-to-Point Protocol (PPP) and a modem dialer is included to enable the
JavaStation computers to be deployed in a wide-area network (WAN) environment.
PPP is not supported on brick model JavaStation computers because they have no
flash RAM and must download the JavaOS software across the network each time
they boot.

PPP-Modem Requirements
In order for the JavaStation computer to boot over PPP, the following must be true:

� A valid copy of the JavaOS image must exist in flash RAM.

� The user application must be statically linked to the JavaOS image (see Chapter 6).

� The JavaStation computer’s Ethernet connection must be disconnected.

� An external serial modem must be configured.

73

As the JavaStation computer boots, it checks to see if it has a valid copy of the
JavaOS image in its flash RAM and then checks to see if an Ethernet cable is present.
If the JavaOS image in flash RAM is valid and no Ethernet cable is plugged into the
system, the JavaStation computer will open a dialog window enabling the user to
initiate the dialup/PPP process.

Figure 8–1 JavaOS PPP Dialer Window

The JavaStation user can open several windows from the PPP Dialer Window to set
up the PPP configuration. The entire set of windows is described in Appendix A.

Once a connection has been made and the JavaStation computer is configured as a
PPP client, operation proceeds as if the JavaStation computer were configured on a
local area network. The JavaOS software leases an IP address and (potentially)
downloads a Java user application over the PPP connection.

74 JavaStation Client Software Guide ♦ September 1998, Revision A

CHAPTER 9

JavaStation Peripherals

This chapter describes how to enable peripheral devices such as printers and touch
screens for the JavaStation computer.

� “Configuring Printers” on page 75

� “Configuring a Touch Screen ” on page 79

Note - JavaStation printers can be set up quickly using Netra j. For information on
Netra j, go to http://www.sun.com/netra-j or refer to the Netra j 3.0
Administrator’s Guide .

Configuring Printers
The JavaStation computer is able to access:

� Serial and parallel printers that are directly attached to the JavaStation

� Printers located on the network

Printer access is configured using JavaOS properties. The JavaOS properties used to
set up each type of printer are listed below.

75

TABLE 9–1 JavaOS Properties Used to Set Up JavaStation Printers

Printer Type JavaOS Properties

NIS network printer � javaos.printers.selected
� (Optional)

javaos.printservice.NIS.mapname

lpd network printer � javaos.printers.selected
� javaos.printservice.lpd.printers

Local serial printer javaos.printservice.local.params.serial-port

Local parallel printer javaos.printservice.local.params.parallel-port

This chapter describes the properties in the preceding table in detail and explains
their possible settings. For complete instructions on setting JavaOS properties, see
“Setting Properties” on page 52.

NIS Network Printers
The JavaOS software receives NIS printer names in a JavaOS property and relies on
the NIS map printers.conf.byname for printer addresses. To set up NIS printer
access for the JavaStation computer, use the following procedure.

To Set Up NIS Printer Access

1. Use the javaos.printers.selected property to set printer names.

This property is a semicolon-separated list of entries with the syntax
print_service:printer@server. For example:

-djavaos.printers.selected=NIS:mde@mde-host;NIS:mdecolor@mde-host

The above example specifies that mde and mdecolor are NIS printers available
to the JavaStation computer, and that mde-host is their server.

2. Set up an NIS printer map.

The printers.conf.byname NIS map is the default NIS map for printers for
the JavaStation computer.

� If printers.conf.byname already exists, you do not need to do anything.

� If the name of the NIS printer map is something other than
printers.conf.byname , you can configure the JavaOS software to use the

76 JavaStation Client Software Guide ♦ September 1998, Revision A

new map name by setting the javaos.printservice.NIS.mapname
property. For example:

-djavaos.printservice.NIS.mapname=js.nismap

� Whenever you add or remove printers, follow the procedure below to update
the NIS map (must be done every time).

To Create an NIS Printer Map

1. On the NIS server, use Admintool to set up the printers.

Refer to the chapter titled “Managing Printing Services” in the Solaris 2.6 System
Administrator Guide.

2. On the NIS server, become root and type the following commands to push the
map out.

cd /var/yp
/usr/ccs/bin/make -f /var/yp/Makefile -f /usr/lib/print/Makefile.yp \
printers.conf.byname

lpd Network Printers
You can use two different properties to specify lpd printer names to the JavaOS
software.

To Set Up lpd Printer Access

1. Use either javaos.printers.selected or
javaos.printservice.lpd.printers to list the lpd printers accessible to
the JavaStation computer.

� The javaos.printers.selected property is a semicolon-separated list of
entries with the syntax print_service:printer@server. It is a system property that
must be set using the -D flag. For example:

-Djavaos.printers.selected=lpd:raw@konaprint

The javaos.printers.selected property can list both NIS and lpd
printers. For example:

JavaStation Peripherals 77

-Djavaos.printers.selected=NIS:mde@mde-host;lpd:raw@konaprint

� Alternatively, you can use the javaos.printservice.lpd.printers
property to specify lpd printers. The syntax for each printer is printer@server.
For example:

-djavaos.printservice.lpd.printers=SPARCprinter@chaco

Local Printers
All JavaStation models support local printing over a serial port. Future JavaStation
models will also support local printing over a parallel port. (However, this feature is
not available at this writing).

To Set Up a Local Serial Printer

1. Use the javaos.printservice.local.params.serial- port property to set
serial port transmission parameters.

The port portion of this property is the name of a serial port, which can be:

� SerialA or SerialB for an on-board JavaStation serial port (SerialB is not
available on any JavaStation model at this writing)

� One of SerialP1 - SerialP8 for a serial port enabled by the multiport serial
card (MPSC), which is not available on any JavaStation model at this writing

The syntax of the parameters is baud_rate:data_bits:stop_bit: parity: flow_control. For
example:

-djavaos.printservice.local.params.serialSerialA=57600:8:1:none:hh

The serial parameters supported are listed under “Printing Properties” on page 47.

An application running on the JavaStation computer must use the CommPort API to
communicate with the JavaStation serial port. To view the CommPort API, go to
http://www.sun.com/javastation .

To Set Up a Local Parallel Printer

1. Use the javaos.printservice.local.params.parallel -port property to
enable the parallel port.

78 JavaStation Client Software Guide ♦ September 1998, Revision A

The port portion of this property is the name of the parallel port. At this writing,
a parallel port is not available on any JavaStation model. To enable the parallel
port, you would set this property to true as follows:

-djavaos.printservice.local.params.parallel-LPT1=true

An application running on the JavaStation computer must use the CommPort API to
communicate with the JavaStation parallel port. To view the CommPort API, go to
http://www.sun.com/javastation .

Configuring a Touch Screen
A touch screen can be connected to the JavaStation serial port for user input when
the JavaStation computer is implemented as a kiosk.

Since the touch screen functions as a mouse, a facility outside the JavaOS software is
needed to generate mouse events. A handler applet or application must be written,
using the CommPort API and the MouseInput class, to move the cursor and generate
button press events. To view the CommPort API and the MouseInput class, go to
http://www.sun.com/javastation .

To Set Up a Touch Screen

1. Use the javaos.printservice.local.params.serial- port property to set
serial port transmission parameters.

For instructions on setting this property to enable the serial port, see “To Set Up a
Local Serial Printer ” on page 78.

JavaStation Peripherals 79

80 JavaStation Client Software Guide ♦ September 1998, Revision A

CHAPTER 10

Setting Locales and Adding Fonts

This chapter explains how to configure JavaStation computers that will be used in
different languages.

� “What You Must Configure” on page 81

� “Overview and Examples” on page 83

� “Setting Mount Directories ” on page 84

� “Setting the Locale” on page 85

� “Adding Fonts” on page 87

� “Adding a Keyboard” on page 92

� “Setting the Input Method ” on page 96

� “Changing the File Encoding Setting ” on page 98

Note - Most language settings can be configured quickly using Netra j. For
information on Netra j, go to http://www.sun.com/netra-j or refer to the
Netra j 3.0 Administrator’s Guide .

What You Must Configure
You must configure some or all of following features for JavaStation computers that
will be operated in languages other than the default language, U.S. English.

81

TABLE 10–1 Localization Features

Feature Description
Configuration
Procedure

Mount
Directories

Contain the resources required by the JavaOS software
to support alternate locales. “Setting Mount

Directories ” on
page 84

Locale Controls the language and font that appears in the
user interface, help text, and error messages “To Change the

Locale Setting ”
on page 86

Keyboard Controls the mechanical input of each character when
it is typed by the user “To Add a

Localized
Keyboard” on
page 93

Font Controls the appearance of characters typed by the
user “To Install and

Configure
Fonts” on page
88

Input Method Controls how the user composes characters; must be
configured for Chinese, Japanese, and Korean
languages only; requires a localized version of Solaris

“To Set the
Input Method”
on page 97

File Encoding Controls the character set used in files that are saved
and the default character set for web pages displayed
in a browser

“To Change the
File Encoding
Setting ” on
page 98

Document URL Provides access to documentation for the HotJava
Browser running on the JavaStation (not applicable if
another application is used).

“Setting the
HotJava
Browser
Document
URL” on page
99

82 JavaStation Client Software Guide ♦ September 1998, Revision A

Overview and Examples
Localization configurations are set using JavaOS properties, which are delivered to
the JavaStation computer when it boots. The following sections describe the JavaOS
properties used for localization. For complete instructions on setting JavaOS
properties, see Chapter 4.

JavaOS Properties for All Locales
The following JavaOS properties are required for all locales:

� javaos.mountlist

� user.language

� javaos.loginLocaleList

The following property is required for all locales except West European locales:

� -Dfile.encoding

The following property is required for all Asian locales:

� -djavaos.im.url

The following property is required if you are running HotJava Browser on the
JavaStation computers:

� -Ddoc.url=file:/REMOTE/hotjava

Other properties may also be required for the locale you intend to support. Each
feature description in this chapter indicates the associated property settings and the
locales that require them.

Example Configurations
This section shows some sample locale configurations.

To enable localization for a French-speaking Swiss user:

-djavaos.loginLocaleList=fr;de;it
-Duser.language=fr
-Dfile.encoding=8859_1
-djavaos.kbd=SwissFrenchPS2
-djavaos.im.compose.deadkeys=false
-ajavaos.mountlist=server:/export/root/javaos/classes|/REMOTE

To enable localization for a Czech user:

Setting Locales and Adding Fonts 83

-Duser.language=cs
-Dfile.encoding=8859_2
-djavaos.kbd=CzechPS2
-djavaos.im.compose.deadkeys=false
-ajavaos.mountlist=server:/export/root/javaos/classes|/REMOTE

To enable localization for a Korean user:

-Duser.language=ko
-Dfile.encoding=KSC5601
-djavaos.kbd=KoreanPS2
-djavaos.im.compose.deadkeys=false
-ajavaos.mountlist=server:/export/root/javaos/classes|/REMOTE;
server:/export/root/javaos/fonts|/FONTS
-ajavaos.im.url=iiimp://server:9010

To enable localization for a Thai user who enters text at a U.S. keyboard:

-Duser.language=th
-Dfile.encoding=TIS620
-djavaos.im.compose_th=TIS620
-djavaos.im.compose.deadkeys=false
-ajavaos.mountlist=server:/export/root/javaos/classes|/REMOTE; server:/export/root/javaos/fonts|/FONTS

Setting Mount Directories
You must set at least one mount directory to enable support for a locale other than
U.S. English on the JavaStation computer.

When the JavaOS software boots on the JavaStation computer, it can mount some or
all of the following directories on a server to obtain localization resources:

� Translations and localized property files are in
/export/root/javaos/classes . This directory is mounted by the JavaStation
computer as /REMOTE.

� Keyboard classes are in /export/root/javaos/classes/sun/javaos . If the
/REMOTEdirectory above is mounted, then the JavaStation computer can access
the keyboard class files also.

� Fonts for Asian localizations are in /export/root/javaos/fonts . This
directory is mounted by the JavaStation computer as /FONTS.

84 JavaStation Client Software Guide ♦ September 1998, Revision A

To Set Mount Directories

1. Use the javaos.mountlist property to tell the JavaStation computer to
mount the /REMOTEand /FONTS directories, as in this example:

-ajavaos.mountlist=myserver:/export/root/javaos/fonts|/FONTS;
myserver:/export/root/javaos/classes|/REMOTE

Note - javaos.mountlist should be set using the -a (append) flag so that no
previous settings for this property will be overridden.

Setting the Locale
A locale setting is required to enable a language other than U.S. English to be used
in the JavaStation user interface, help text, and error messages.

The JavaOS software supports the locales listed in the table below.

TABLE 10–2 JavaStation Locale Settings

Language Locale Setting

Arabic ar

Catalan ca

Chinese zh

Czech cs

English en

French fr

German de

Hebrew iw

Hungarian hu

Setting Locales and Adding Fonts 85

TABLE 10–2 JavaStation Locale Settings (continued)

Language Locale Setting

Italian it

Japanese ja

Korean ko

Polish pl

Portuguese pt

Russian ru

Spanish es

Swedish sv

Thai th

The JavaOS software also supports the language variants shown in the table below.

TABLE 10–3 JavaStation Country Settings

Country Country Setting

Israel IL

Republic of China TW

Thailand TH

United States US

To Change the Locale Setting

1. Set the user.language property:

-Duser.language= locale

where locale is one of the JavaStation locale settings listed in the first table above.

86 JavaStation Client Software Guide ♦ September 1998, Revision A

2. If needed, set the user.country property:

-Duser.country= country

where country is one of the JavaStation country settings listed in the second table
above.

For complete instructions on setting JavaOS properties, see Chapter 4.

Modifying the Languages Displayed at Login
The localized version of the JavaStation software supports all the locales described in
“Setting the Locale” on page 85. At login, the user is asked to choose one of these
locales.

If you want to restrict or add to the locales presented at login, especially if you will
be running an application that is localized for a language not listed in “Setting the
Locale” on page 85, you must modify the javaos.loginLocaleList property.

To Modify the Languages Displayed at Login

1. Set the following JavaOS property:

-djavaos.loginLocaleList= locale-1;locale-2; ... ;locale-n

where each locale is defined using one of the two-letter codes that define
user.language followed by (in some cases) an underscore character and one of the
two-letter codes that define user.country .

The default value of this property is:

-djavaos.loginLocaleList=en_US

Thus by default U.S. English is the only language choice available at login.

Adding Fonts
Font support is automatic in JavaOS for all the languages in Table 10–2 except the
following:

� Arabic

Setting Locales and Adding Fonts 87

� Chinese Simplified

� Chinese Traditional

� Hebrew

� Japanese

� Korean

� Thai

Font sets for the above languages are provided in the JavaStation client software. To
make any of these font sets available to JavaStation computers, you must set the
javaos.mountlist property, as described in “To Make Fonts Available to
JavaStation Computers ” on page 92.

You do not need to install new fonts for any of the locales supported on the
JavaStation computer, unless you would like to change the look of characters typed
by the user. To install new fonts, use the procedure described in this section.

Note - The Arabic, Hebrew, and Thai locales also require keyboard support. The
Chinese (Simplified and Traditional), Japanese, and Korean locales require keyboard
and input method support. See “Overview and Examples” on page 83, “Adding a
Keyboard” on page 92, and “Setting the Input Method ” on page 96.

Overview
Font sets must reside on a network directory that is accessible to the JavaOS software
via NFS. By default, this directory is /export/root/javaos/fonts . To install a
font, you will go to the fonts directory and do the following:

� Add the font files (.ttf files). You can install any TrueType or
TrueType-compliant font.

� Modify the file FONTS.LST, which maps font names recognized by the JavaOS
software to the font file names on the server.

� Modify font property files in the subdirectory lib .

You then must make the font available to the JavaStation computers by setting the
javaos.mountlist property to enable the JavaOS software to mount the fonts
directory during boot-up.

To Install and Configure Fonts

1. Install the font files in the fonts directory.

By default, this directory is /export/root/javaos/fonts on the fonts server.

88 JavaStation Client Software Guide ♦ September 1998, Revision A

Follow the instructions that accompany the font package.

2. Modify the FONTS.LST file, which maps font names recognized by the JavaOS
software to the font file names you have installed.

FONTS.LST contains a list of one-line entries, each of which contains:

font_name style truetype file_name

where:

font_name is the alias that the JavaOS software uses for the font. style is one of
PLAIN , BOLD, ITALIC , and BOLDITALIC . file_name is the font file you have
installed.

Example:

hggothicb
PLAIN truetype HG-GothicB.ttf
heiseimin PLAIN truetype HeiseiMin-W3H.ttf
hgminchol PLAIN truetype HG-MinchoL.ttf

In this example, three TrueType fonts have been installed. They are all of style
PLAIN. The font file names in the font_dir directory are aliased to the names for
use by the JavaOS software, as shown in the following table:

TABLE 10–4 Font Name-to-JavaOS Alias Mapping in Above Example

Font Name Name for Use by JavaOS Software

HG-GothicB.ttf hggothicb

HeiseiMin-W3H.ttf heiseimin

HG-MinchoL.ttf hgminchol

Note - font_name is not case-sensitive. The JavaOS software recognizes
HGGothicB , hggothicb , and HggothicB as the same name.

3. In the lib subdirectory, modify the font.properties. locale file.

locale is the locale that the font properties file is relevant for. For the English
locale, the name font.properties (without a locale specification) is used.

The font properties file has four sections.

Setting Locales and Adding Fonts 89

� Section 1 defines where the new fonts are to be used in place of default system
fonts.

The server provides five default system fonts to JavaStation computers: serif,
sansserif, monospaced, dialog, and dialoginput. Section 1 contains up to one
line for each default system font, where each line uses the following syntax:

system_font. suffix=JavaOS_font_name

This line specifies that the font is available to JavaOS. If you want a new font
(identified by its JavaOS font name) to override the system font, set suffix to 0.
If you want the new font to be available in addition to the system font, set
suffix to any other number (1 is a good choice).

The following example makes the hgminchol font available in addition to the
serif font:

serif.1=hgminchol

The serif font will be used for all English characters. The hgminchol font will
be used for all Kana and Kanji characters.

� Section 2 makes each new font name available to the JavaOS software.

Section 2 makes it possible for the JavaOS software to recognize the new font
by its name, so that the font can be identified and used. Section 2 contains up
to one line for each new font, where each line uses the following syntax:

JavaOS_font_name.0= JavaOS_font_name

The following example makes the hgminchol font name available to the
JavaOS software:

hgminchol.0=hgminchol

� Section 3 (optional) enables you to further alias the new font names.

Section 3 contains up to one line for each new font, where each line uses the
following syntax:

alias. new_name=JavaOS_font_name

The following example aliases the hgminchol font to the name “mincho.”

alias.mincho=hgminchol

� Section 4 specifies the character set encoding of each font. Supported encodings
are listed in the table below.

90 JavaStation Client Software Guide ♦ September 1998, Revision A

TABLE 10–5 Character Set Encodings Supported by the JavaOS Software

Encoding Locales

8859_1 West European locales

8859_2 East European locales

8859_5 Russian

8859_6 Arabic

8859_8 Hebrew

GB2312 Chinese (PRC)

CNS11643 Chinese (Taiwan)

BIG5 Chinese (Taiwan)

Ja-EUC Japanese

EUCJIS Japanese

KSC5601 Korean

TIS620 Thai

Unicode Large, universal character set

For each font, you must add a line with the following syntax:

fontcharset. font.1=sun.io.CharToByte encoding

Where encoding is one of the values in the table below.

The following example is for the monospaced font that is Unicode-encoded:

fontcharset.monospaced.1=sun.io.CharToByteUnicode

The following is an example font properties file for a server that has two new
Unicode-encoded Japanese fonts. The new fonts will be available to the JavaOS
software in addition to the system fonts. Thus both English and Japanese can be
used on the JavaStation.

Copyright (c) 1994-1996 by Sun Microsystems, Inc.
#
AWT Font Properties for handling Japanese in the JavaOS
environment using disk-based fonts

Setting Locales and Adding Fonts 91

serif.1=hgminchol
sansserif.1=hggothicb
monospaced.1=hggothicb
dialog.1=hggothicb
dialoginput.1=hggothicb

hgminchol.0=hgminchol
hggothicb.0=hggothicb

alias.mincho=hgminchol
alias.gothic=hggothicb

fontcharset.serif.1=sun.io.CharToByteUnicode
fontcharset.sansserif.1=sun.io.CharToByteUnicode
fontcharset.monospaced.1=sun.io.CharToByteUnicode
fontcharset.dialog.1=sun.io.CharToByteUnicode
fontcharset.dialoginput.1=sun.io.CharToByteUnicode

To Make Fonts Available to JavaStation Computers

1. Set the javaos.mountlist property.

This property setting tells the JavaOS software to mount the fonts directory at
startup:

-ajavaos.mountlist= host:font_dir
|/FONTS

The default fonts directory is /export/root/javaos/fonts . To mount this
directory on a server called sunroom , you would type:

-ajavaos.mountlist=sunroom:/export/root/javaos/fonts|/FONTS

2. Reboot JavaStation computers that need access to the new fonts.

To reboot a JavaStation computer, turn it off and then on.

Adding a Keyboard
The JavaOS software supports a number of PS/2 keyboards that may not have been
supplied with your JavaStation computers. To support most locales, you must
configure a new keyboard to replace the default keyboard, USPS2. As an exception,
Latin accent characters and Arabic, Hebrew, and Thai characters can be typed at any

92 JavaStation Client Software Guide ♦ September 1998, Revision A

supported keyboard if one of the javaos.im.compose properties has been set. This
document refers to the U.S. keyboard. See “Enabling Special Characters on the U.S.
Keyboard” on page 94.

Note - The Arabic, Hebrew, and Thai locales also require font support. The Chinese
(Simplified and Traditional), Japanese, and Korean locales require font and input
method support. See “Overview and Examples” on page 83, “Adding Fonts” on page
87, and “Setting the Input Method ” on page 96.

JavaOS supports the following keyboards:

� Arabic
� Belgian
� Bulgarian
� CanadianBi
� CanadianFr
� Chinese ROC
� Czech
� Danish
� Estonian
� French
� German
� Greek

� Hebrew
� Hungarian
� Italian
� Japanese
� Korean
� Latvian
� Lithuanian
� Netherlands
� Norwegian
� Polish
� Portugese

� Russian
� Slovakian
� Spanish
� SpanishLatin
� Swedish
� Swiss
� Thai
� Turkish
� UK
� US
� USInternatl

To Add a Localized Keyboard

1. Connect the keyboard to the JavaStation.

2. Set the javaos.mountlist property.

This property setting tells the JavaOS software to mount the locale directory at
startup.

-ajavaos.mountlist= host:localization_top_dir
|/REMOTE

By default, the locale directory is /export/root/javaos/classes . If you set
javaos.mountlist as follows:

-ajavaos.mountlist=sunroom:/export/root/javaos/classes|/REMOTE

The JavaOS software mounts the directory
/export/root/javaos/classes/sun/javaos . Note that if you are

Setting Locales and Adding Fonts 93

specifying a FONTSdirectory as well as a REMOTEdirectory, the
javaos.mountlist property is a list delimited by semicolons. For example:

-ajavaos.mountlist=sunroom:/export/root/javaos/fonts|/FONTS;
sunroom:/export/root/javaos/classes|/REMOTE

3. Set the javaos.kbd property.

This property setting tells the JavaOS software the name of the keyboard file,
which contains the keyboard mapping table. Keyboard files for all of the countries
listed on the previous page are included in the JavaStation client software.

-djavaos.kbd= keyboard

The syntax of keyboard is namePS2, where name is one of the countries in the
preceding list. For example, to add the Swedish keyboard:

-djavaos.kbd=SwedishPS2

Enabling Special Characters on the U.S. Keyboard
Four javaos.im.compose properties enable you to modify the characters typed at
the U.S. English keyboard. You can enable input of Latin accent characters or Arabic,
Hebrew, or Thai characters.

� Latin accent characters – When the javaos.im.compose.deadkeys property is
set to true, the following keys can be typed in combination with other keys to
produce Latin accent characters.

� ‘ (single quote)

� ‘ (back single quote)

� “ (double quote)

� ^ (circumflex)

For example, pressing the ‘ key plus the “a” key produces an á. This feature is
commonly used in European locales.

Pressing one of the above keys twice produces its normal value.

� Arabic, Hebrew, or Thai – The following properties enable Arabic, Hebrew, or Thai
characters to be produced at the U.S. English keyboard:

� javaos.im.compose_ar =ISO8859_6

� javaos.im.compose_iw =ISO8859_8

� javaos.im.compose_th =TIS620

94 JavaStation Client Software Guide ♦ September 1998, Revision A

These properties also enable a status window on the JavaStation screen that shows
the current direction of text input (right-to-left or left- to-right).

You can use one of these properties and also use the javaos.kbd property to set
up a native keyboard. For example, you can set -djavaos.kbd=ArabicPS2 to
enable the Arabic keyboard and also set the -djavaos.im.compose_ar property
to enable Arabic characters to be typed at a U.S. keyboard. If the javaos.kbd
property is set, the Alt-Graph key sequence is used to toggle the input direction. If
the compose property is set, the Ctrl-t key sequence is used to toggle the input
direction. If both properties are set, both key sequences are enabled.

Note - The Arabic, Hebrew, and Thai locales also require font support. See
“Overview and Examples” on page 83 and “Adding Fonts” on page 87 for more
information.

To Enable Latin Accent Characters on the U.S.
Keyboard

1. Set the following JavaOS property:

-djavaos.im.compose.deadkeys=true

To Enable Arabic Characters on the U.S. Keyboard

1. Set the following JavaOS property:

-djavaos.im.compose_ar=ISO8859_6

ISO8859_6 is the code for the Arabic character set. Once this property is set, the Ctrl-t
key sequences toggles the JavaStation keyboard between U.S. and Arabic modes.

To Enable Hebrew Characters on the U.S.
Keyboard

1. Set the following JavaOS property:

-djavaos.im.compose_iw=ISO8859_8

Setting Locales and Adding Fonts 95

ISO8859_8 is the code for the Hebrew character set. Once this property is set, the
Ctrl-t key sequences toggles the JavaStation keyboard between U.S. and Hebrew
modes.

To Enable Thai Characters on the U.S. Keyboard

1. Set the following JavaOS property:

-djavaos.im.compose_th=TIS620

TIS620 is the code for the Thai character set. Once this property is set, the Ctrl-t key
sequences toggles the JavaStation keyboard between U.S. and Thai modes.

Setting the Input Method
An input method controls how JavaStation users in Chinese (Simplified and
Traditional), Japanese, and Korean locales will compose characters at the keyboard.
The input method is administered by a language engine running on a Solaris system
in the JavaStation network. Localized versions of Solaris offer language engines to
support the input methods listed below.

Note - To fully support one of the preceding locales, you must also set up keyboard
and font support. See “What You Must Configure” on page 81, “Adding Fonts” on
page 87 and “Adding a Keyboard” on page 92 for more information.

96 JavaStation Client Software Guide ♦ September 1998, Revision A

TABLE 10–6 Input Methods by Language

Language Input Methods

Chinese
Simplified

� Location
� Double Pinyin
� Stroke
� Full Pinyin
� Golden Input
� Intelligent Pinyin
� Chinese Symbol

Chinese
Traditional

� TsangChieh
� ChuYin
� I-Tien
� Telecode
� ChienI
� NeiMa
� ChuanHsing

Korean � 2-Bulsik
� Hanja Input
� Special Character
� Code Value

Japanese � CS00
� Wnn6 (Solaris 2.6 only)

Note - Arabic, Hebrew, and Thai characters are also composed using an input
method. However, support for these input methods is automatic in the JavaOS
software and does not require additional configuration.

To Set the Input Method

1. Set the javaos.im.url property.

This property enables JavaStation computers to access to the Solaris machine
running the language engine for the input method. To support multiple input
methods for all the JavaStation computers in your network, use a
semicolon-delimited list of Solaris machines. Set this property as follows:

-djavaos.im.url=iiimp:// hostname: port; hostname: port...

where:

hostname is the Solaris host running the language engine. port is the port at which
the engine is located. By default, the JavaStation computers use port 9010.

Setting Locales and Adding Fonts 97

Note - To make an input method server accessible to only a subset of the
JavaStation computers in your network, you will need to create a unique macro
for these computers in the dhcptab file. See “Sample dhcptab File ” on page 25.

2. (Optional) Set the javaos.im.status.fixpopup property.

Setting this property to true, as follows, enables a pop-up window with input
method status information to appear on the JavaStation monitor.

-djavaos.im.status.fixpopup=true

3. (Optional) Set the javaos.im.lookup.button property.

This property controls how the JavaStation user selects characters when using an
input method. If false, when the list of candidate characters is displayed, letters
are used to indicate each choice. If true, letters are replaced with buttons so that
the user must click on a button to pick a choice. Note that enabling this option
degrades the performance of user input.

-djavaos.im.lookup.button=true

4. Reboot the JavaStation computer.

To reboot a JavaStation computer, turn it off and then on.

Changing the File Encoding Setting
If the locale you have chosen does not use the 8859_1 character set (Roman alphabet),
you must change the file.encoding property to describe which character set will
be used when files are saved. Supported character sets are listed in Table 10–5.

To Change the File Encoding Setting

1. Set the following JavaOS system property:

-Dfile.encoding= encoding

98 JavaStation Client Software Guide ♦ September 1998, Revision A

where encoding is one of the settings listed in Table 10–5.

Setting the HotJava Browser Document
URL
If Sun’s HotJava Browser will run on the JavaStation computers, you must set the
doc.url property to make HotJava Browser documentation accessible to JavaStation
users.

To Set the Document URL

1. Set the following JavaOS system property:

-Ddoc.url=file:/REMOTE/hotjava

HotJava Browser documentation is translated for all locales. If the doc.url property
is set exactly as above, HotJava Browser automatically locates the translation for the
current locale.

Setting Locales and Adding Fonts 99

100 JavaStation Client Software Guide ♦ September 1998, Revision A

APPENDIX A

JavaStation User Setup Forms

This appendix contains forms that show JavaStation users how to boot their
JavaStation computers. The first form shows how to boot using the traditional boot
sequence. The second form shows how to boot using Point-to-Point Protocol (PPP)
modem dialup.

Copy a form for each user and complete the required information. Be sure to add
contact information at the bottom of the form. Deliver the form to the user with the
JavaStation system.

101

102 JavaStation Client Software Guide ♦ September 1998, Revision A

JavaStation User Setup Forms 103

104 JavaStation Client Software Guide ♦ September 1998, Revision A

JavaStation User Setup Forms 105

106 JavaStation Client Software Guide ♦ September 1998, Revision A

JavaStation User Setup Forms 107

108 JavaStation Client Software Guide ♦ September 1998, Revision A

APPENDIX B

Troubleshooting the Boot Process

Troubleshooting the JavaStation software and network environment can be complex,
since everything the JavaStation computer “knows” comes from somewhere on the
network. This section describes how to access network information on the
JavaStation boot process and shows an example network trace of a JavaStation boot.

� “Troubleshooting Process” on page 109

� “Tower JavaStation Flash RAM Boot Trace” on page 110

Note - The Netra j software provides a GUI front end for viewing network boot
activity. For information on Netra j, go to http://www.sun.com/netra-j or refer
to the Netra j 3.0 Administrator’s Guide .

Troubleshooting Process
When troubleshooting the JavaStation computer, you need to first understand the
boot process and operating environment, and then gain visibility into the network.
You can retrieve JavaStation boot information in two ways:

� At the JavaOS Console – The JavaOS software provides a JavaOS console that prints
status and debugging information in a window on the JavaStation screen. To open
the JavaOS console, press the PrintScreen key anytime after the coffee cup
wallpaper or plain boot background is displayed (see Chapter 3 for a description
of these backgrounds). A scrollable list of status information is presented in a
window and is constantly updated.

� Using the UNIX snoop(1M) command – The UNIX snoop command is highly
useful for observing transactions being carried out between the JavaStation
computer and the providers of its various network services.

109

The following section is an example snoop trace of a JavaStation tower model.

Tower JavaStation Flash RAM Boot
Trace
This annotated network trace follows a flash RAM-equipped JavaStation tower
model through its JavaOS 1.1 boot sequence. JavaStation computers are extremely
flexible and can be booted a variety of different ways. This boot trace reflects default
behavior for a typical JavaStation installation.

This information is provided to assist in understanding the JavaStation boot process
and to aid with debugging problematic JavaStation deployments. Excessively
redundant information has been removed for brevity.

To obtain this boot trace, the UNIX snoop(1M) command was used with the
JavaStation computer’s Ethernet address. (In the snoop commands below, the user
typed Cntrl-c between the two commands to stop collecting snoop data.)

Note - snoop must be run as root.

snoop -o /tmp/trace.snoop 08:00:20:87:be:d6
snoop -i /tmp/trace.snoop

For convenience, the systems involved in this particular boot sequence are listed in
the following table along with their role in the network boot process.

TABLE B–1 Systems Involved in a Sample JavaStation Trace and Their Functions

System Host Name IP Address Ethernet Address Function

dilbert 129.153.59.151 8:0:20:87:be:d6 JavaStation computer

jsboot 129.153.59.150 8:0:20:1f:ad:1d Boot, Web, DNS, and
NIS Server

chaco 129.153.59.100 8:0:20:22:36:95 Home Directory

Server

110 JavaStation Client Software Guide ♦ September 1998, Revision A

Boot Trace
Because the JavaStation tower model boots the JavaOS software from flash RAM, it
needs to retrieve only its Java main application from the network. No network traffic
is generated while the JavaOS software boots from flash RAM.

Once the JavaOS software is booted, it performs DHCP, ARP, and NIS broadcasts to
locate and confirm its boot server (jsboot). Even though the JavaStation tower model
boots from flash RAM, it needs to know about its boot server for application
configuration information or to possibly download a new version of the JavaOS
image into flash RAM.

1 0.00000 OLD-BROADCAST -> BROADCAST DHCP/BOOTP BOOTREQUEST
2 2.02091 jsboot -> dilbert DHCP/BOOTP BOOTREPLY
3 0.01412 OLD-BROADCAST -> BROADCAST DHCP/BOOTP BOOTREQUEST
4 0.18294 jsboot -> dilbert DHCP/BOOTP BOOTREPLY
5 0.01362 OLD-BROADCAST -> (broadcast) ARP C Who is 129.153.59.151, dilbert ?
6 1.01707 dilbert -> BROADCAST ARP R 129.153.59.151, dilbert is 8:0:20:87:be:d6
7 0.00079 dilbert -> BROADCAST IP D=255.255.255.255 S=129.153.59.151 LEN=28, ID=3
8 0.00173 chaco -> dilbert IP D=129.153.59.151 S=129.153.59.100 LEN=36, ID=54101
9 0.02696 dilbert -> (broadcast) ARP C Who is 129.153.59.150, jsboot ?
10 0.00034 jsboot -> dilbert ARP R 129.153.59.150, jsboot is 8:0:20:1f:ad:1d
11 0.00110 dilbert -> jsboot PORTMAP C GETPORT prog=100004 (NIS) vers=2 proto=UDP
12 0.00446 jsboot -> dilbert PORTMAP R GETPORT port=768
13 0.01016 dilbert -> jsboot NIS C MATCH 129.153.59.151 in hosts.byaddr
14 0.00261 jsboot -> dilbert NIS R MATCH OK
15 0.01906 dilbert -> jsboot NIS C MATCH jsboot in hosts.byname
16 0.00250 jsboot -> dilbert NIS R MATCH OK

Next, the JavaStation computer downloads its configuration file via HTTP. The
configuration file is used to pass information to the JavaOS software such as locale,
network printer information, and which Java main application is to be downloaded,
as described in Chapter 4. The configuration file for this JavaStation computer is
located in http://jsboot/netra/dilbert .

17 0.00984 dilbert -> jsboot HTTP C port=49997
18 0.00036 jsboot -> dilbert HTTP R port=49997
19 0.01047 dilbert -> jsboot HTTP GET /netra/dilbert HTTP/1.0

20 0.00036 jsboot -> dilbert HTTP R port=49997
21 0.00849 jsboot -> dilbert HTTP HTTP/1.0 200 OK

22 0.02123 dilbert -> jsboot HTTP C port=49997
23 0.00033 jsboot -> dilbert HTTP R port=49997
24 0.00138 jsboot -> dilbert HTTP R port=49997
25 0.00133 dilbert -> jsboot HTTP C port=49997
26 0.01070 dilbert -> jsboot HTTP C port=34276
27 0.00038 jsboot -> dilbert HTTP R port=34276

The Java main application listed in the configuration file also has a configuration file.
In this case, http://jsboot/netra/browser holds the configuration file for the
HotJava Browser.

Troubleshooting the Boot Process 111

28 0.01025 dilbert -> jsboot HTTP GET /netra/browser HTTP/1.0
29 0.00037 jsboot -> dilbert HTTP R port=34276
30 0.00494 jsboot -> dilbert HTTP HTTP/1.0 200 OK
31 0.02189 dilbert -> jsboot HTTP C port=34276
32 0.00034 jsboot -> dilbert HTTP R port=34276
33 0.00128 jsboot -> dilbert HTTP R port=34276
34 0.00138 dilbert -> jsboot HTTP C port=34276

The JavaStation computer then attempts (unsuccessfully) to mount a font directory
and finally sets its clock by talking to its time server.

35 0.02130 dilbert -> jsboot PORTMAP C GETPORT prog=100004 (NIS) vers=2 proto=UDP
36 0.00367 jsboot -> dilbert PORTMAP R GETPORT port=768
37 0.35151 dilbert -> jsboot PORTMAP C GETPORT prog=100005 (MOUNT) vers=1 proto=UDP
38 0.00372 jsboot -> dilbert PORTMAP R GETPORT port=32795
39 0.00451 dilbert -> jsboot MOUNT1 C Mount /dirpath/fonts
40 0.00674 jsboot -> dilbert MOUNT1 R Mount No such file or directory
41 0.04961 dilbert -> jsboot TIME C port=1025
42 0.00339 jsboot -> dilbert TIME R port=1025

At this point the JavaOS software is completely booted and the user login prompt is
displayed on the JavaStation screen. The next step is to authenticate the user.

43 16.92166 dilbert -> jsboot NIS C MATCH eric in passwd.byname
44 0.00285 jsboot -> dilbert NIS R MATCH OK

Once the user has been authenticated, the JavaStation computer uses the
automounter NIS map to determine the user"s home directory. When the
automounter responds with the proper directory name, the JavaStation computer
performs an NFS mount to the home directory server (chaco in this case). The user"s
home directory is used by the HotJava Browser to access a number of configuration
and property files (/export/opt2/eric/.javaos/properties in this case).

45 0.21276 dilbert -> jsboot NIS C MATCH eric in auto.home
46 0.00248 jsboot -> dilbert NIS R MATCH OK
47 0.00350 dilbert -> jsboot NIS C MATCH chaco in hosts.byname
48 0.00385 jsboot -> dilbert NIS R MATCH OK
49 0.00531 dilbert -> (broadcast) ARP C Who is 129.153.59.100, chaco ?
50 0.00107 chaco -> dilbert ARP R 129.153.59.100, chaco is 8:0:20:22:36:95
51 0.00079 dilbert -> chaco PORTMAP C GETPORT prog=100005 (MOUNT) vers=1 proto=UDP
52 0.00360 chaco -> dilbert PORTMAP R GETPORT port=32786
53 0.00423 dilbert -> chaco MOUNT1 C Mount /export/opt2/eric
54 0.00701 chaco -> dilbert MOUNT1 R Mount OK FH=AC28
55 0.02975 dilbert -> chaco NFS C LOOKUP2 FH=AC28 .
56 0.00192 chaco -> dilbert NFS R LOOKUP2 OK FH=AC28
57 0.00213 dilbert -> chaco NFS C LOOKUP2 FH=AC28 .javaos
58 0.00149 chaco -> dilbert NFS R LOOKUP2 OK FH=2DF5
59 0.00308 dilbert -> chaco NFS C LOOKUP2 FH=AC28 .javaos
60 0.00147 chaco -> dilbert NFS R LOOKUP2 OK FH=2DF5
61 0.00211 dilbert -> chaco NFS C LOOKUP2 FH=2DF5 properties
62 0.00154 chaco -> dilbert NFS R LOOKUP2 OK FH=7D4B

112 JavaStation Client Software Guide ♦ September 1998, Revision A

63 0.00529 dilbert -> chaco NFS C LOOKUP2 FH=2DF5 properties
64 0.00154 chaco -> dilbert NFS R LOOKUP2 OK FH=7D4B
65 0.00261 dilbert -> chaco NFS C READ2 FH=7D4B at 0 for 2048
66 0.00244 chaco -> dilbert NFS R READ2 OK (578 bytes)
67 0.00225 dilbert -> chaco NFS C READ2 FH=7D4B at 578 for 1470
68 0.00149 chaco -> dilbert NFS R READ2 OK (0 bytes)
69 0.02084 dilbert -> chaco NFS C READ2 FH=7D4B at 578 for 2048
70 0.00152 chaco -> dilbert NFS R READ2 OK (0 bytes)
71 0.00369 dilbert -> jsboot NIS C MATCH dilbert in hosts.byname
72 0.00132 jsboot -> dilbert NIS R MATCH OK

Once the user has been authenticated, the JavaStation computer employs the
AppLoader in the JavaOS software to download the Java main application, as
described in Chapter 5. In this case, the JavaOS software will obtain the necessary
classes for the HotJava Browser by downloading
http://netra/hjb/hotjava.zip using HTTP (as directed by
http://jsboot/netra/browser).

73 0.25295 dilbert -> jsboot HTTP C port=57205
74 0.00037 jsboot -> dilbert HTTP R port=57205
75 0.01046 dilbert -> jsboot HTTP GET /netra/hjb/hotjava.zip HTTP/1.0
76 0.00036 jsboot -> dilbert HTTP R port=57205
77 0.08306 jsboot -> dilbert HTTP HTTP/1.0 200 OK
78 0.05637 dilbert -> jsboot HTTP C port=57205
79 0.00042 jsboot -> dilbert HTTP (body)
80 0.00033 jsboot -> dilbert HTTP (body)
81 0.00455 dilbert -> jsboot HTTP C port=57205
82 0.00042 jsboot -> dilbert HTTP (body)
83 0.00033 jsboot -> dilbert HTTP (body)
84 0.00033 jsboot -> dilbert HTTP (body)

[Lots of HTTP traffic deleted]

Once the JavaStation computer has loaded the Java main application, it once again
accesses the user"s home directory to obtain the user"s HotJava Browser preference
information, including security, hotlists, cookies, and default lists of URLs.

2103 0.95132 dilbert -> chaco NFS C LOOKUP2 FH=AC28 .hotjava
2104 0.00177 chaco -> dilbert NFS R LOOKUP2 OK FH=0A5D
2105 0.00210 dilbert -> chaco NFS C LOOKUP2 FH=0A5D properties
2106 0.00203 chaco -> dilbert NFS R LOOKUP2 OK FH=13C1
2107 0.00264 dilbert -> chaco NFS C READ2 FH=13C1 at 0 for 2048
2108 0.02274 chaco -> dilbert NFS R READ2 OK (889 bytes)
2109 0.00237 dilbert -> chaco NFS C READ2 FH=13C1 at 889 for 1159
2110 0.00165 chaco -> dilbert NFS R READ2 OK (0 bytes)
2111 0.03816 dilbert -> chaco NFS C READ2 FH=13C1 at 889 for 2048
2112 0.00152 chaco -> dilbert NFS R READ2 OK (0 bytes)
2113 0.00332 dilbert -> chaco NFS C LOOKUP2 FH=AC28 .
2114 0.00153 chaco -> dilbert NFS R LOOKUP2 OK FH=AC28
2115 0.00211 dilbert -> chaco NFS C LOOKUP2 FH=AC28 .hotjava
2116 0.00152 chaco -> dilbert NFS R LOOKUP2 OK FH=0A5D
2117 2.18165 dilbert -> chaco NFS C LOOKUP2 FH=AC28 .
2118 0.00144 chaco -> dilbert NFS R LOOKUP2 OK FH=AC28
2119 0.00505 dilbert -> chaco NFS C LOOKUP2 FH=AC28 .hotjava

Troubleshooting the Boot Process 113

2120 0.00150 chaco -> dilbert NFS R LOOKUP2 OK FH=0A5D
2121 0.00215 dilbert -> chaco NFS C LOOKUP2 FH=0A5D security1.1
2122 0.00217 chaco -> dilbert NFS R LOOKUP2 No such file or directory
2123 0.01459 dilbert -> chaco NFS C LOOKUP2 FH=AC28 .
2124 0.00151 chaco -> dilbert NFS R LOOKUP2 OK FH=AC28
2125 0.00333 dilbert -> chaco NFS C LOOKUP2 FH=AC28 .hotjava
2126 0.00154 chaco -> dilbert NFS R LOOKUP2 OK FH=0A5D
2127 0.00213 dilbert -> chaco NFS C LOOKUP2 FH=0A5D security1.1
2128 0.00217 chaco -> dilbert NFS R LOOKUP2 No such file or directory
2129 3.27535 dilbert -> chaco NFS C LOOKUP2 FH=AC28 .hotjava
2130 0.00149 chaco -> dilbert NFS R LOOKUP2 OK FH=0A5D
2131 0.00216 dilbert -> chaco NFS C LOOKUP2 FH=0A5D hotlist.html
2132 0.00154 chaco -> dilbert NFS R LOOKUP2 OK FH=E884
2133 0.70818 dilbert -> chaco NFS C LOOKUP2 FH=0A5D hotlist.html
2134 0.00150 chaco -> dilbert NFS R LOOKUP2 OK FH=E884
2135 0.20309 dilbert -> chaco NFS C LOOKUP2 FH=0A5D urlpool
2136 0.00155 chaco -> dilbert NFS R LOOKUP2 OK FH=B632
2137 0.01399 dilbert -> chaco NFS C READ2 FH=B632 at 0 for 2048

114 JavaStation Client Software Guide ♦ September 1998, Revision A

