
BEA
 WebLogic
Server™and
WebLogic
Express®

Administration Guide
Release 7.0
Document Revised: September 6, 2002

Copyright

Copyright © 2002 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the
law to copy the software except as specifically allowed in the agreement. This document may not, in whole or in part,
be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form
without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT
WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Manager, BEA WebLogic Commerce Server, BEA WebLogic
Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic Express, BEA WebLogic Integration, BEA
WebLogic Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic Server, BEA
WebLogic Workshop and How Business Becomes E-Business are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

Administration Guide

Part Number Date Software Version

N/A June 28, 2002 BEA WebLogic Server
Version 7.0

Contents

About This Document
Audience..xx

e-docs Web Site...xx

How to Print the Document... xxi

Contact Us! .. xxi

Documentation Conventions .. xxii

1. Overview of WebLogic System Administration
Introduction to System Administration ... 1-2

WebLogic Server Domains ... 1-2

System Administration Infrastructure ... 1-5

The Administration Server and Managed Servers... 1-6

Failover for the Administration Server .. 1-6

Failover for Managed Servers .. 1-7

Domain-Wide Administration Port .. 1-7

Service Packs and WebLogic Server Instances.. 1-8

System Administration Tools .. 1-8

Security Protections for System Administration Tools.............................. 1-8

System Administration Console... 1-9

Command-Line Interface ... 1-10

JMX.. 1-11

Configuration Wizard... 1-11

Java Utilities... 1-11

Node Manager .. 1-12

SNMP ... 1-12

Logs.. 1-12

Editing config.xml.. 1-13
Administration Guide iii

Resources You Can Manage in a WebLogic Server Domain.......................... 1-13

Servers .. 1-14

Clusters ... 1-14

Machines... 1-15

Network Channels .. 1-15

JDBC .. 1-15

JMS... 1-16

WebLogic Messaging Bridge ... 1-16

Web Servers and Web Components ... 1-17

Applications.. 1-17

Application Formats.. 1-17

Editing Deployment Descriptors Using the Administration Console1-18

Editing and Creating Deployment Descriptors with WebLogic Builder .
1-19

Startup and Shutdown Classes.. 1-19

JNDI ... 1-19

Transactions.. 1-20

XML ... 1-20

Security... 1-20

WebLogic Tuxedo Connector .. 1-21

Jolt .. 1-21

Mail... 1-22

Starting and Using the Administration Console .. 1-22

Browser Support for the Administration Console 1-22

Starting the Administration Console .. 1-22

Using the Administration Console ... 1-23

Navigating in the Administration Console.. 1-24

Configuring Objects or Resources .. 1-25

Using the Administration Console to Manage Multiple Domains.... 1-26

Monitoring a Domain Using the Administration Console 1-26

Monitoring Administration Console Tasks 1-26

Getting Help for Using the Administration Console......................... 1-26

Using WebLogic Server with Web Servers... 1-27

Monitoring ... 1-28

Licenses ... 1-29
iv Administration Guide

2. Starting and Stopping WebLogic Servers
The Server Lifecycle ... 2-1

Controlling the Server Lifecycle .. 2-4

Timeout Period for LifeCycle Operations .. 2-5

Providing Usernames and Passwords to Start a Server 2-6

Specifying an Initial Administrative Username ... 2-6

Bypassing the Prompt for Username and Password................................... 2-7

Creating a Boot Identity File... 2-8

Using a Boot Identity File ... 2-9

Removing a Boot Identity File After Startup...................................... 2-9

Alternate Method: Passing Identity Information on the Command Line..
2-10

Starting an Administration Server ... 2-10

Starting an Administration Server from the Windows Start Menu.......... 2-11

Starting an Administration Server Using a Script 2-12

Using the Configuration Wizard Scripts to Start an Administration
Server ... 2-12

Creating Your Own Script to Start an Administration Server 2-13

Using a Non-Default JVM with WebLogic Server........................... 2-15

Using the weblogic.Server Command.. 2-16

Setting the Classpath... 2-17

Command Syntax for weblogic.Server ... 2-17

Required Arguments ... 2-18

Frequently Used Optional Arguments .. 2-19

Other Optional Arguments.. 2-25

Development Mode vs. Production Mode .. 2-26

Startup Arguments for the Administration Port and the weblogic.Admin
Utility ... 2-27

A Server’s Root Directory .. 2-27

Using the Default Configuration to Start a Server 2-29

Starting a Managed Server .. 2-30

Adding a Managed Server to a Domain ... 2-31

Starting a Managed Server from the Windows Start Menu 2-32

Starting a Managed Server Using a Script ... 2-32

Using the Configuration Wizard Scripts to Start a Managed Server 2-33
Administration Guide v

Creating Your Own Script to Start a Managed Server...................... 2-34

Starting a Managed Server from the Command Line............................... 2-34

Configuring a Connection to the Administration Server.......................... 2-35

Specifying the Default Startup State .. 2-37

Starting a Remote Managed Server.. 2-37

Starting and Killing All WebLogic Servers in a Domain or Cluster........ 2-38

Starting All Managed Servers in a Domain 2-38

Starting All Managed Servers in a Cluster.. 2-39

Killing All Servers in a Domain.. 2-39

Killing All Servers in a Cluster ... 2-40

Shutting Down WebLogic Servers .. 2-40

Configuring Startup and Shutdown Classes .. 2-41

Setting Up a WebLogic Server as a Windows Service.................................... 2-42

Setting Up a Windows Service... 2-43

Using a Non-Default JVM with a Windows Service 2-46

Verifying the Setup... 2-46

Using the Control Panel to Stop or Restart the Service............................ 2-47

Removing a Server as a Windows Service... 2-47

Changing Startup Credentials for a Server Set Up as a Windows Service
2-49

The WebLogic Server Windows Service Program (beasvc.exe) 2-50

3. Protecting System Administration Operations
Operations Available to Each Role ... 3-2

Default Group Associations ... 3-3

Protected User Interfaces... 3-4

Overlapping Permissions for System Administration MBeans and Policies on
Resources.. 3-5

Resources and Policies ... 3-6

Working with Policies .. 3-7

Maintaining a Consistent Security Scheme.. 3-8

Permissions for Starting and Shutting Down a WebLogic Server 3-8

Permissions for Using the weblogic.Server Command.............................. 3-9

Permissions for Using the Node Manager.. 3-9

Shutting Down a WebLogic Server.. 3-10
vi Administration Guide

4. Using Log Messages to Manage WebLogic Server
WebLogic Server Log Messages... 4-2

Message Attributes... 4-2

Message Severity .. 4-3

Message Output.. 4-4

Exceptions and Stack Traces ... 4-4

WebLogic Server Log Files... 4-5

Local Log Files and Domain Log Files.. 4-6

Log File Names and Locations... 4-8

Log File Rotation ... 4-8

WebLogic Log File Viewer.. 4-9

Output to Standard Out.. 4-11

JVM Messages ... 4-11

Additional Log Files.. 4-12

5. Deploying Applications
Supported Formats for Deployment .. 5-1

Deploying a Web Application Using the (deprecated) weblogic.deploy Utility.....
5-2

Deployment Documentation.. 5-3

6. Configuring WebLogic Server Web Components
Overview ... 6-2

HTTP Parameters .. 6-2

Configuring the Listen Port ... 6-4

Web Applications .. 6-5

Web Applications and Clustering .. 6-6

Designating a Default Web Application .. 6-6

Configuring Virtual Hosting.. 6-7

Virtual Hosting and the Default Web Application..................................... 6-8

Setting Up a Virtual Host ... 6-9

How WebLogic Server Resolves HTTP Requests .. 6-10

Setting Up HTTP Access Logs.. 6-14

Log Rotation... 6-14

Common Log Format ... 6-14
Administration Guide vii

Setting Up HTTP Access Logs by Using Extended Log Format............. 6-15

Creating the Fields Directive... 6-16

Supported Field identifiers .. 6-16

Creating Custom Field Identifiers ... 6-18

Preventing POST Denial-of-Service Attacks .. 6-22

Setting Up WebLogic Server for HTTP Tunneling... 6-23

Configuring the HTTP Tunneling Connection... 6-23

Connecting to WebLogic Server from the Client..................................... 6-24

Using Native I/O for Serving Static Files (Windows Only)............................ 6-25

7. Managing Transactions
Overview of Transaction Management ... 7-1

Configuring Transactions .. 7-3

Configuring Domains for Inter-Domain Transactions 7-4

Inter-Domain Transactions for WebLogic Server 7.0 Domains 7-4

Inter-Domain Transactions Between WebLogic Server 7.0 and WebLogic
Server 6.x Domains ... 7-5

Monitoring and Logging Transactions .. 7-6

Transaction Monitoring .. 7-7

Transaction Log Files ... 7-7

Heuristic Log Files ... 7-9

Handling Heuristic Completions ... 7-9

Abandoning Transactions .. 7-11

Moving a Server to Another Machine ... 7-11

Transaction Recovery After a Server Fails.. 7-12

Transaction Recovery Service Actions After a Crash.............................. 7-13

Recovering Transactions for a Failed Non-Clustered Server................... 7-14

Recovering Transactions for a Failed Clustered Server 7-15

Limitations of Migrating the Transaction Recovery Service 7-16

Preparing to Migrate the Transaction Recovery Service 7-16

8. Managing JDBC Connectivity
Overview of JDBC Administration ... 8-1

About the Administration Console .. 8-2

About the Command-Line Interface... 8-2
viii Administration Guide

About the JDBC API.. 8-2

Related Information.. 8-3

Administration and Management.. 8-3

JDBC and WebLogic jDrivers .. 8-3

Transactions (JTA).. 8-3

JDBC Components—Connection Pools, Data Sources, and MultiPools 8-4

Connection Pools.. 8-5

Application-Scoped JDBC Connection Pools..................................... 8-6

MultiPools .. 8-7

Data Sources... 8-7

JDBC Data Source Factories... 8-8

Security for JDBC Connection Pools .. 8-8

Security for JDBC Connection Pools in Compatibility Mode 8-8

Configuring and Managing JDBC Connection Pools, MultiPools, and
DataSources Using the Administration Console...................................... 8-10

JDBC Configuration .. 8-11

Creating the JDBC Objects ... 8-11

Assigning the JDBC Objects... 8-11

Configuring JDBC Connectivity Using the Administration Console8-13

Database Passwords in Connection Pool Configuration................... 8-15

JDBC Configuration Tasks Using the Command-Line Interface 8-16

Managing and Monitoring Connectivity .. 8-17

JDBC Management Using the Administration Console 8-17

JDBC Management Using the Command-Line Interface 8-18

JDBC Configuration Guidelines for Connection Pools, MultiPools, and
DataSources.. 8-19

Overview of JDBC Configuration ... 8-19

When to Use a Tx Data Source ... 8-21

Drivers Supported for Local Transactions .. 8-21

Drivers Supported for Distributed Transactions Using XA.............. 8-22

Drivers Supported for Distributed Transactions without XA 8-22

Configuring a JDBC Connection Pool ... 8-22

Avoiding Server Lockup with the Correct Number of Connections 8-22

Configuring JDBC Drivers for Local Transactions 8-22

Configuring XA JDBC Drivers for Distributed Transactions 8-26
Administration Guide ix

WebLogic jDriver for Oracle/XA Data Source Properties 8-31

Additional XA Connection Pool Properties 8-33

Configuring Non-XA JDBC Drivers for Distributed Transactions .. 8-34

Increasing Performance with the Prepared Statement Cache 8-37

Usage Restrictions for the Prepared Statement Cache 8-38

Calling a Stored Prepared Statement After a Database Change May
Cause Errors... 8-38

Using setNull In a Prepared Statement ... 8-39

Prepared Statements in the Cache May Reserve Database Cursors.. 8-39

Determining the Proper Prepared Statement Cache Size 8-39

Using a Startup Class to Load the Prepared Statement Cache 8-40

9. Managing JMS
JMS and WebLogic Server.. 9-1

Configuring JMS ... 9-2

Starting WebLogic Server and Configuring JMS 9-3

Starting the Default WebLogic Server .. 9-3

Starting the Administration Console ... 9-4

Configuring a Basic JMS Implementation .. 9-4

Configuring JMS Servers ... 9-7

Configuring Connection Factories ... 9-8

Configuring Destinations.. 9-10

Configuring JMS Templates... 9-11

Configuring Destination Keys.. 9-12

Configuring Stores.. 9-13

About JMS JDBC Stores... 9-13

About JMS Store Table Prefixes... 9-15

Recommended JDBC Connection Pool Settings for JMS JDBC Stores..
9-16

Configuring Session Pools ... 9-16

Configuring Connection Consumers .. 9-17

Monitoring JMS... 9-17

Monitoring JMS Objects .. 9-18

Monitoring Durable Subscribers .. 9-18

Monitoring Distributed Destination System Subscriptions and Proxy Topic
Members.. 9-19
x Administration Guide

Tuning JMS ... 9-20

Persistent Stores ... 9-20

Configuring a Synchronous Write Policy for JMS File Stores 9-20

Using Message Paging ... 9-24

Configuring Paging ... 9-24

JMS Paging Attributes .. 9-29

Establishing Message Flow Control... 9-35

Configuring Flow Control... 9-35

Flow Control Thresholds .. 9-37

Tuning Distributed Destinations .. 9-38

Configuring Message Load Balancing.. 9-38

Configuring Server Affinity.. 9-39

Configuring Distributed Destinations.. 9-40

Steps for Configuring Distributed Destinations 9-41

Creating a Distributed Topic and Creating Members Automatically 9-41

Creating a Distributed Topic and Adding Existing Physical Topics as
Members Manually .. 9-44

Creating a Distributed Queue and Creating Members Automatically
9-46

Creating a Distributed Queue and Adding Existing Physical Queues as
Members Manually .. 9-48

Monitoring Distributed Destinations.. 9-50

Recovering from a WebLogic Server Failure ... 9-51

Programming Considerations... 9-51

Migrating JMS Data to a New Server .. 9-51

10. Using the WebLogic Messaging Bridge
What Is a Messaging Bridge?.. 10-2

Configuring a Messaging Bridge... 10-3

Using the Bridge Adapters ... 10-3

Deploying the Bridge Adapters... 10-5

Configuring the Bridge Destinations.. 10-6

Configuring a JMS Bridge Destination... 10-6

Configuring a General Bridge Destination 10-8

Configuring a Messaging Bridge ... 10-11

Bridge Interoperability Checklists... 10-17
Administration Guide xi

Bridging Different WebLogic Server Versions and Different Domains 10-17

Bridging from a WebLogic Server 7.0 Domain to a Version 6.1 Domain
or to Another Remote 7.0 Domain... 10-17

Bridging from WebLogic Server 7.0 to a Version 6.0 Domain 10-18

Bridging from WebLogic Server 7.0 to a Version 5.1 Domain 10-19

Bridging to a Third-Party Messaging Provider 10-20

Managing a Messaging Bridge .. 10-20

Stopping and Restarting a Messaging Bridge .. 10-21

Monitoring Messaging Bridges .. 10-21

Configuring the Execute Thread Pool Size .. 10-22

11. Managing JNDI
Overview of JNDI Management.. 11-1

What Do JNDI and Naming Services Do? ... 11-1

Viewing the JNDI Tree.. 11-2

Loading Objects in the JNDI Tree... 11-2

12. Managing the WebLogic J2EE Connector Architecture
Overview of WebLogic J2EE Connectors... 12-2

Configuring Resource Adapters (Connectors) for Deployment 12-2

Configuring a Connector to Display a Connection Profile.............................. 12-4

Deploying Resource Adapters (Connectors) ... 12-4

Viewing Deployed Resource Adapters (Connectors)...................................... 12-5

Undeploying Deployed Resource Adapters (Connectors)............................... 12-6

Updating Deployed Resource Adapters (Connectors)..................................... 12-6

Monitoring Connections .. 12-7

Getting Started.. 12-7

Viewing Leaked Connections... 12-8

Viewing Idle Connections .. 12-9

Deleting Connections ... 12-10

Deleting a Connector ... 12-10

Editing Resource Adapter Deployment Descriptors...................................... 12-11

13. Managing WebLogic Server Licenses
Installing a WebLogic Server License... 13-1

Updating a License .. 13-2
xii Administration Guide

A. Using the WebLogic Java Utilities
AppletArchiver... A-3

Syntax... A-3

CertGen .. A-4

Syntax... A-4

Example ... A-4

Conversion ... A-6

der2pem.. A-7

Syntax... A-7

Example ... A-7

dbping... A-8

Syntax... A-8

Example ... A-9

Deployer... A-11

Syntax... A-11

Actions (select one of the following) ... A-11

Options ... A-12

Examples .. A-14

EJBGen .. A-16

getProperty ... A-17

Syntax... A-17

Example ... A-17

ImportPrivateKey... A-18

Syntax... A-18

Example ... A-18

logToZip... A-20

Syntax... A-20

Examples .. A-20

MulticastTest.. A-21

Syntax... A-21

Example ... A-22

myip ... A-23

Syntax... A-23

Example ... A-23

pem2der.. A-24
Administration Guide xiii

Syntax... A-24

Example.. A-24

Schema ... A-25

Syntax... A-25

Example.. A-25

showLicenses ... A-26

Syntax... A-26

Example.. A-26

system... A-27

Syntax... A-27

Example.. A-27

t3dbping.. A-28

Syntax... A-28

verboseToZip .. A-29

Syntax... A-29

UNIX Example... A-29

NT Example ... A-29

version .. A-30

Syntax... A-30

Example.. A-30

writeLicense ... A-31

Syntax... A-31

Examples .. A-31

B. WebLogic Server Command-Line Interface Reference
About the Command-Line Interface... B-1

Before You Begin.. B-2

Using WebLogic Server Administration Commands....................................... B-3

Syntax... B-3

Arguments .. B-3

WebLogic Server Administration Command Reference.................................. B-4

CANCEL_SHUTDOWN... B-7

Syntax... B-7

Example.. B-7

CONNECT... B-8
xiv Administration Guide

Syntax..B-8

Example ..B-8

FORCESHUTDOWN...B-9

Syntax..B-9

Example ..B-9

GETSTATE ..B-11

Syntax..B-11

Example ..B-11

HELP...B-12

Syntax..B-12

Example ..B-12

LICENSES ..B-13

Syntax..B-13

Example ..B-13

LIST ..B-14

Syntax..B-14

Example ..B-14

LOCK..B-15

Syntax..B-15

Example ..B-15

MIGRATE ..B-16

Syntax..B-16

Examples ...B-17

PING ...B-18

Syntax..B-18

Example ..B-18

RESUME ..B-19

Syntax..B-19

Example ..B-19

SERVERLOG ...B-20

Syntax..B-20

Example ..B-20

SHUTDOWN..B-21

Syntax..B-21

Example ..B-22
Administration Guide xv

START ... B-23

Syntax... B-23

Example.. B-24

STARTINSTANDBY .. B-25

Syntax... B-25

Example.. B-26

THREAD_DUMP .. B-27

Syntax... B-27

UNLOCK ... B-28

Syntax... B-28

Example.. B-28

VERSION... B-29

Syntax... B-29

Example.. B-29

WebLogic Server Connection Pools Administration Command Reference... B-30

CREATE_POOL.. B-32

Syntax... B-32

Example.. B-33

DESTROY_POOL... B-35

Syntax... B-35

Example.. B-35

DISABLE_POOL... B-36

Syntax... B-36

Example.. B-36

ENABLE_POOL.. B-37

Syntax... B-37

Example.. B-37

EXISTS_POOL.. B-38

Syntax... B-38

Example.. B-38

RESET_POOL ... B-39

Syntax... B-39

Example.. B-39

MBean Management Command Reference.. B-40

Specifying MBean Types .. B-40
xvi Administration Guide

Specifying Servers..B-41

CREATE ...B-43

Syntax..B-43

Example ..B-44

DELETE..B-45

Syntax..B-45

Example ..B-45

GET...B-47

Syntax..B-47

Example ..B-48

INVOKE ...B-49

Syntax..B-49

Example ..B-49

SET..B-50

Syntax..B-50

Example ..B-51
Administration Guide xvii

xviii Administration Guide

Administration Guide xix

About This Document

This document explains the management subsystem provided for configuring and
monitoring your WebLogic Server implementation. It is organized as follows:

! Chapter 1, “Overview of WebLogic System Administration,” describes the
architecture of the WebLogic Server management subsystem.

! Chapter 2, “Starting and Stopping WebLogic Servers,” explains the procedures
for starting and stopping WebLogic Servers.

! Chapter 4, “Using Log Messages to Manage WebLogic Server,” describes the
use of the WebLogic Server local log and the domain-wide log for managing a
WebLogic Server domain.

! Chapter 5, “Deploying Applications,” describes installation of applications on
the WebLogic Server and the deploying of application components.

! Chapter 6, “Configuring WebLogic Server Web Components,” explains the use
of WebLogic Server as a Web Server.

! Chapter 7, “Managing Security Compatibility,” discusses WebLogic Server
security resources and how to manage them.

! Chapter 7, “Managing Transactions,” explains how to manage the Java
Transaction subsystem within a WebLogic Server domain.

! Chapter 8, “Managing JDBC Connectivity,” discusses the management of Java
Database Connectivity (JDBC) resources within a WebLogic Server domain.

! Chapter 9, “Managing JMS,” discusses the management of Java Message
Service within a WebLogic Server domain.

! Chapter 10, “Using the WebLogic Messaging Bridge,” discusses how to
configure a store and forward mechanism between any two JMS providers.

xx Administration Guide

! Chapter 11, “Managing JNDI,” discusses how to use the WebLogic JNDI
naming tree, including viewing and editing objects on the JNDI naming tree and
binding objects to the JNDI tree.

! Chapter 12, “Managing the WebLogic J2EE Connector Architecture,” describes
how extensions to the WebLogic J2EE platform that allow connections to other
Enterprise Information Systems are managed.

! Chapter 13, “Managing WebLogic Server Licenses,” describes how to update
your BEA license.

! Appendix A, “Using the WebLogic Java Utilities,” describes a number of
utilities that are provided for developers and system administrators.

! Appendix B, “WebLogic Server Command-Line Interface Reference,” describes
the syntax and usage of the command-line interface for managing a WebLogic
Server domain.

Audience

This document is intended mainly for system administrators who will be managing the
WebLogic Server application platform and its various subsystems.

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation.

Administration Guide xxi

How to Print the Document

You can print a copy of this document from a Web browser, one main topic at a time,
by using the File→Print option on your Web browser.

A PDF version of this document is available on the WebLogic Server documentation
Home page on the e-docs Web site (and also on the documentation CD). You can open
the PDF in Adobe Acrobat Reader and print the entire document (or a portion of it) in
book format. To access the PDFs, open the WebLogic Server documentation Home
page, click Download Documentation, and select the document you want to print.

Adobe Acrobat Reader is available at no charge from the Adobe Web site at
http://www.adobe.com.

Contact Us!

Your feedback on BEA documentation is important to us. Send us e-mail at
docsupport@bea.com if you have questions or comments. Your comments will be
reviewed directly by the BEA professionals who create and update the documentation.

In your e-mail message, please indicate the software name and version you are using,
as well as the title and document date of your documentation. If you have any questions
about this version of BEA WebLogic Server, or if you have problems installing and
running BEA WebLogic Server, contact BEA Customer Support through BEA
WebSupport at http://www.bea.com. You can also contact Customer Support by using
the contact information provided on the Customer Support Card, which is included in
the product package.

When contacting Customer Support, be prepared to provide the following information:

! Your name, e-mail address, phone number, and fax number

! Your company name and company address

! Your machine type and authorization codes

! The name and version of the product you are using

http://www.adobe.com
mailto:docsupport@bea.com
http://www.bea.com

xxii Administration Guide

! A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Usage

Ctrl+Tab Keys you press simultaneously.

italics Emphasis and book titles.

monospace
text

Code samples, commands and their options, Java classes, data types,
directories, and file names and their extensions. Monospace text also
indicates text that you enter from the keyboard.

Examples:

import java.util.Enumeration;

chmod u+w *

config/examples/applications

.java

config.xml

float

monospace
italic
text

Variables in code.

Example:

String CustomerName;

UPPERCASE
TEXT

Device names, environment variables, and logical operators.

Examples:

LPT1

BEA_HOME

OR

{ } A set of choices in a syntax line.

Administration Guide xxiii

[] Optional items in a syntax line. Example:

java utils.MulticastTest -n name -a address
[-p portnumber] [-t timeout] [-s send]

| Separates mutually exclusive choices in a syntax line. Example:

java weblogic.deploy [list|deploy|undeploy|update]
password {application} {source}

... Indicates one of the following in a command line:

! An argument can be repeated several times in the command line.

! The statement omits additional optional arguments.

! You can enter additional parameters, values, or other information

.

.

.

Indicates the omission of items from a code example or from a syntax line.

Convention Usage

xxiv Administration Guide

Administration Guide 1-1

CHAPTER

1 Overview of WebLogic
System Administration

The following sections provide an overview of system administration for WebLogic
Server:

! “Introduction to System Administration” on page 1-2

! “WebLogic Server Domains” on page 1-2

! “System Administration Infrastructure” on page 1-5

! “The Administration Server and Managed Servers” on page 1-6

! “System Administration Tools” on page 1-8

! “Resources You Can Manage in a WebLogic Server Domain” on page 1-13

! “Starting and Using the Administration Console” on page 1-22

! “Using WebLogic Server with Web Servers” on page 1-27

! “Monitoring” on page 1-28

! “Licenses” on page 1-29

1 Overview of WebLogic System Administration

1-2 Administration Guide

Introduction to System Administration

WebLogic Server system administration tools allow you to install, configure, monitor,
and manage one or more WebLogic Server installations. You also use the tools to
manage and monitor the applications hosted on WebLogic Server. A WebLogic Server
installation can consist of a single WebLogic Server instance or multiple instances,
each hosted on one or more physical machines.

Using the system administration tools, which include an Administration Console,
command line utilities, and an API, you manage services such as security, database
connections, messaging, and transaction processing. The tools also include capabilities
for monitoring the health of the WebLogic Server environment to ensure maximum
availability for your applications.

WebLogic Server Domains

The basic administrative unit for WebLogic Servers is called a domain. A domain is a
logically related group of WebLogic Server resources that are managed as a unit by a
WebLogic Server instance configured as the Administration Server. A domain
includes one or more WebLogic Servers and may also include WebLogic Server
clusters. Clusters are groups of WebLogic Servers that work together to provide
scalability and high-availability for applications. Applications are also deployed and
managed as part of a domain.

You can organize your domains based on criteria such as:

! Logical divisions of applications. For example, a domain devoted to end-user
functions such as shopping carts and another domain devoted to back-end
accounting applications.

! Physical location. Domains for different locations or branches of your business.

! Size. Domains into organized in small units that can be managed more
efficiently, perhaps by different system administration personnel.

WebLogic Server Domains

Administration Guide 1-3

Note: All WebLogic Server instances in a domain must run the same version of the
WebLogic Server software. The Administration Server must also have the
same or later service pack installed as the Managed Servers in its domain. For
example, the Administration Server could be running version 7.0, Service
Pack 1 while the Managed Servers are running version 7.0 without Service
Pack 1.

For more information about domains, see Creating and Configuring WebLogic Server
Domains at http://e-docs.bea.com/wls/docs70/admin_domain/index.html.

Figure 1-1 WebLogic Server Domain

http://e-docs.bea.com/wls/docs70/admin_domain/index.html
http://e-docs.bea.com/wls/docs70/admin_domain/index.html

1 Overview of WebLogic System Administration

1-4 Administration Guide

Figure 1-1 depicts a possible configuration of a WebLogic Server Domain—one of
many possible configurations.

In the depicted domain, there are three physical machines.

Machine A is dedicated as the Administration Server and hosts one instance of
WebLogic Server. The System Administration Tools communicate with the
Administration Server to perform configuration and monitoring of the servers and
applications in the domain. The Administration Server communicates with each of the
Managed Servers on behalf of the System Administration Tools. The configuration for
all the servers in the domain is stored in the configuration repository, the config.xml
file, which resides on the machine hosting the Administration Server.

Machines B and C each host two instances of WebLogic Server, WebLogic Servers 1
through 4. These instances are called Managed Servers. The Administration Server
communicates with an instance of Node Manager running on each machine to control
startup and shutdown of the Managed Servers.

WebLogic Servers 2 and 4 are part of a WebLogic Cluster (outlined in red). This
cluster is running an application that responds to HTTP requests routed to the cluster
from a hardware load balancer. (You could also use an instance of WebLogic Server
to provide load balancing.) The load balancer processes HTTP requests from the
Internet after they have passed through a firewall. The load balancer and firewall are
not part of the domain. A replicated copy of objects such as HTTP sessions is passed
between the two cluster members to provide failover capability.

WebLogic Server 1 runs an application that uses JDBC to access a database server
running on another physical machine that is not part of the WebLogic Domain.

Note: The pictured domain is only intended to illustrate the concepts of a WebLogic
Server domain and how you manage the domain. Many possible
configurations of servers, clusters, and applications are possible in a
WebLogic Server domain.

System Administration Infrastructure

Administration Guide 1-5

System Administration Infrastructure

System administration infrastructure in WebLogic Server is implemented using the
Java Management Extension (JMX) specification from Sun Microsystems. The JMX
API models system administration functions with Java objects called MBeans.
Knowledge of this implementation as described in this discussion of system
administration infrastructure is not necessary to manage a WebLogic Server domain.

There are three types of MBeans used to manage a WebLogic Server domain:
administration, configuration, and runtime Mbeans.

Administration Mbeans contain a set of attributes that define configuration parameters
for various management functions. All attributes for administration MBeans have
pre-set default values. When the Administration Server starts, it reads a file called
config.xml and overrides the default attribute values of the administration MBeans
with any attribute values found in the config.xml file.

The config.xml file, located on the machine that hosts the Administration Server,
provides persistent storage of Mbean attribute values. Every time you change an
attribute using the system administration tools, its value is stored in the appropriate
administration MBean and written to the config.xml file. Each WebLogic Server
domain has its own config.xml file.

If you set any configuration attributes on the command line when you start the
Administration Server using the -D arguments, these values override the values set by
the defaults or those read from the config.xml file. These overridden values are also
persisted to config.xml file by the Administration Server. For more information
about these command-line arguments, see “Using the weblogic.Server Command” on
page 2-16.

Configuration Mbeans are copies of Administration Mbeans that each Managed Server
uses to initialize its configuration. When you start a Managed Server, the server
receives a copy of the of all the administration MBeans from the Administration Server
and stores them in memory as configuration MBeans. If you override any
configuration attributes when starting a Managed Server, those values override the
values received from the Administration Server but are not written to the config.xml
file. For more information about starting a Managed Server, see “Starting a Managed
Server” on page 2-30.

1 Overview of WebLogic System Administration

1-6 Administration Guide

Runtime Mbeans contain sets of attributes consisting of runtime information for active
WebLogic Servers instances and applications. By retrieving the values of attributes in
these runtime MBeans, you can monitor the running status of a WebLogic Server
domain.

Mbeans may also contain operations used to execute management functions.

Although users with a knowledge of these Mbeans and the JMX API can create their
own customized management system, most users prefer to use the system
administration tools provided with WebLogic Server to perform these tasks. These
tools do not require knowledge of the JMX API. For more information, see “System
Administration Tools” on page 1-8.

The Administration Server and Managed
Servers

One instance of WebLogic Server in each domain is configured as an Administration
Server. The Administration Server provides a central point for managing a WebLogic
Server domain. All other WebLogic Server instances in a domain are called Managed
Servers. In a domain with only a single WebLogic Server instance, that server
functions both as Administration Server and Managed Server.

For a typical production system, BEA recommends that you deploy your applications
only on Managed Servers. This practice allows you to dedicate the Administration
Server to configuration and monitoring of the domain.

For more information, see “Starting and Stopping WebLogic Servers” on page 2-1.

Failover for the Administration Server

To prevent the Administration Server from becoming a single point of failure,
Managed Servers can always function without the presence an Administration Server,
but an Administration Server is required to manage and monitor the domain. By
maintaining backups of the config.xml file and certain other resources for a domain,
you can replace a failed Administration Server with a backup WebLogic Server

The Administration Server and Managed Servers

Administration Guide 1-7

instance that can assume the role of Administration Server. For more information, see
“Starting an Administration Server” on page 2-10 and Recovering Failed Servers at
http://e-docs.bea.com/wls/docs70/admin_domain/failures.html.

Failover for Managed Servers

When a Managed Server starts, it contacts the Administration Server to retrieve its
configuration information. If a Managed Server is unable to connect to the specified
Administration Server during startup, it can retrieve its configuration directly by
reading a configuration file and other files located on the Managed Server’s file
system.

A Managed Server that starts in this way is running in Managed Server Independence
mode. In this mode, a server uses cached application files to deploy the applications
that are targeted to the server. You cannot change a Managed Server's configuration
until it is able to restore communication with the Administration Server. For more
information, see Recovering Failed Servers at
http://e-docs.bea.com/wls/docs70/admin_domain/failures.html.

Domain-Wide Administration Port

You can enable an administration port for use with servers in a domain. The
administration port is optional, but it provides two important capabilities:

! It enables you to start a server in standby state. While in the standby state, the
administration port remains available to activate or administer the server.
However, the server’s other network connections are unavailable to accept client
connections. See Starting and Stopping WebLogic Server for more information
on the standby state.

! It enables you to separate administration traffic from application traffic in your
domain. In production environments, separating the two forms of traffic ensures
that critical administration operations (starting and stopping servers, changing a
server’s configuration, and deploying applications) do not compete with
high-volume application traffic on the same network connection.

For more information, see Configuring a Domain-Wide Administration Port in
Creating and Configuring WebLogic Server Domains at

http://e-docs.bea.com/wls/docs70/admin_domain/failures.html
http://e-docs.bea.com/wls/docs70/admin_domain/failures.html
http://e-docs.bea.com/wls/docs70/adminguide/startstop.html
http://e-docs.bea.com/wls/docs70/admin_domain/network.html#administration_port_and_administration_channel

1 Overview of WebLogic System Administration

1-8 Administration Guide

http://e-docs.bea.com/wls/docs70/admin_domain/network.html#admi
nistration_port_and_administration_channel.

Service Packs and WebLogic Server Instances

All WebLogic Server instances in a domain must run the same version of the
WebLogic Server software. The Administration Server must also have the same or
later service pack installed as the Managed Servers in its domain. For example, the
Administration Server could be running version 7.0, Service Pack 1 while the
Managed Servers are running version 7.0 without Service Pack 1.

System Administration Tools

Using JMX as the underlying architecture, system administration tools are provided
for a variety of management functions. An Administration Server must be running
when you use system administration tools to manage a domain.These tools are
discussed in the next sections.

Security Protections for System Administration Tools

All system administration operations are protected based on the user name used to
access a system administration tool. A user (or the group a user belongs to) must be a
member of one of four security roles. These roles grant or deny a user access to various
sets of system administration operations. The roles are Admin, Operator, Deployer,
and Monitor. You can also set a security policy on WebLogic Server instances in a
domain. For more information, see “Protecting System Administration Operations” on
page 3-1.

System Administration Tools

Administration Guide 1-9

System Administration Console

The Administration Console is a Java ServerPages (JSP)-based tool hosted by the
Administration Server. You can access the Administration Console using a Web
browser from any machine on the local network that can communicate with the
Administration Server (including a browser running on the same machine as the
Administration Server). The Administration Console allows you to manage a
WebLogic Server domain containing multiple WebLogic Server instances, clusters,
and applications. The management capabilities include:

! Configuration

! Stopping and starting servers

! Monitoring server health and performance

! Monitoring application performance

! Viewing server logs

! Editing deployment descriptors for Web Applications, EJBs, J2EE Connectors,
and Enterprise Applications.

Using the Administration Console, system administrators can easily perform all
WebLogic Server management tasks without having to learn the JMX API or the
underlying management architecture. The Administration Server persists changes to
attributes in the config.xml file for the domain you are managing.

For more information, see:

! “Starting and Using the Administration Console” on page 1-22

! Administration Console Online Help at
http://e-docs.bea.com/wls/docs70/ConsoleHelp/index.html. (The
online help is also available from the Administration Console by clicking on the
“?” icons.)

http://e-docs.bea.com/wls/docs70/ConsoleHelp/index.html

1 Overview of WebLogic System Administration

1-10 Administration Guide

Command-Line Interface

The command-line interface allows you to manage a WebLogic Servers domain when
using the Administration Console is not practical or desired—such as when you want
to use scripts to manage your domain, when you cannot use a Web browser to access
the Administration Console, or if you prefer using the command-line interface over a
graphical user interface. You can use only the command-line interface to manage your
domain, or you may use the command-line interface in combination with other system
administration tools such as the Administration Console to manage you domain.

The command line interface invokes a Java class called weblogic.Admin. Arguments
for this class provide the ability to perform many common management functions
without the need to learn the JMX API. For more information, see:

! “WebLogic Server Administration Command Reference” on page B-4

! WebLogic Server API Reference (Javadocs) at
http://e-docs.bea.com/wls/docs70/javadocs/index.html. (See the
weblogic.management packages.)

If you require more fine-grained control than the weblogic.Admin management
functions provide you can also use the command line interface to perform set or get
operations directly on Mbean attributes. This feature requires knowledge of the
WebLogic Server Mbean architecture. For more information, see the following
resources:

! “MBean Management Command Reference” on page B-40 provides a guide to
using the command-line interface

! Javadocs for WebLogic Server Classes at
http://e-docs.bea.com/wls/docs70/javadocs/index.html.

" Select the weblogic.management.configuration package for
configuration MBeans (to configure a WebLogic Domain)

" Select the weblogic.management.runtime package for runtime MBeans
(for monitoring).

! A reference of Mbeans and attributes is provided in the BEA WebLogic Server
Configuration Reference at
http://e-docs.bea.com/wls/docs70/config_xml/index.html. This
reference is correlated with the elements representing MBeans in the
config.xml file.

http://e-docs.bea.com/wls/docs70/javadocs/index.html
http://e-docs.bea.com/wls/docs70/javadocs/index.html
http://e-docs.bea.com/wls/docs70/config_xml/index.html
http://e-docs.bea.com/wls/docs70/config_xml/index.html

System Administration Tools

Administration Guide 1-11

JMX

Advanced Java programmers with knowledge of the JMX API from Sun Microsystems
Inc. and WebLogic Server Mbeans can write their own management components as a
Java class.

For more information, see:

! Programming WebLogic JMX Services at
http://e-docs.bea.com/wls/docs70/jmx/index.html.

! WebLogic Server API Reference (Javadocs) at
http://e-docs.bea.com/wls/docs70/javadocs/index.html. (See the
weblogic.management packages.)

Configuration Wizard

Use the Configuration Wizard to create a new WebLogic Server domain. This tool can
create domain configurations for stand-alone servers, Administration Servers with
Managed Servers, and clustered servers. The Configuration Wizard creates the
appropriate directory structure for your domain, a basic config.xml file, and scripts
you can use to start the servers in your domain.

You can run the Configuration Wizard either using a graphical user interface (GUI) or
in a text-based command line environment. You can invoke the wizard as an optional
part of the installation process or independently after installation. You can also create
user-defined domain templates for use by the Configuration Wizard.

For more information, see Creating New Domains Using the Configuration Wizard in
Creating and Configuring WebLogic Server Domains at
http://e-docs.bea.com/wls/docs70/admin_domain/configwiz.html.

Java Utilities

Utility programs are provided for common tasks such as deploying an application and
testing DBMS configurations. For more information, see “Using the WebLogic Java
Utilities” on page A-1.

http://e-docs.bea.com/wls/docs70/jmx/index.html
http://e-docs.bea.com/wls/docs70/javadocs/index.html
http://e-docs.bea.com/wls/docs70/admin_domain/configwiz.html

1 Overview of WebLogic System Administration

1-12 Administration Guide

Node Manager

Node Manager is a Java program provided with WebLogic Server that enables you to
start, shut down, restart, and monitor remote WebLogic Server instances. To enable
these capabilities, you run an instance of Node Manager on each physical machine in
your domain.

For more information, see Managing Server Availability with Node Manager at
http://e-docs.bea.com/wls/docs70/admin_domain/nodemgr.html.

SNMP

WebLogic Server includes the ability to communicate with enterprise-wide
management systems using Simple Network Management Protocol (SNMP). The
WebLogic Server SNMP capability enables you to integrate management of
WebLogic Servers into an SNMP-compliant management system that gives you a
single view of the various software and hardware resources of a complex, distributed
system.

For more information, see:

! WebLogic SNMP Management Guide at
http://e-docs.bea.com/wls/docs70/snmpman/index.html.

! WebLogic SNMP MIB Reference at
http://e-docs.bea.com/wls/docs70/snmp/index.html.

Logs

Many WebLogic Server operations generate logs of their activity. Each server has its
own log as well as a standard HTTP access log. These log files can be configured and
used in a variety of ways to monitor the health and activity of your servers and
applications.

For more information, see:

! “Using Log Messages to Manage WebLogic Server” on page 4-1

http://e-docs.bea.com/wls/docs70/admin_domain/nodemgr.html
http://e-docs.bea.com/wls/docs70/snmpman/index.html
http://e-docs.bea.com/wls/docs70/snmp/index.html

Resources You Can Manage in a WebLogic Server Domain

Administration Guide 1-13

! “Setting Up HTTP Access Logs” on page 6-14

! Using WebLogic Logging Services at
http://e-docs.bea.com/wls/docs70/logging/index.html.

You can also configure a special domain log that contains a definable subset of log
messages from all WebLogic Server instances in a domain. You can modify which
logged messages from a local server appear in the domain log using the system
administrating tools. You can view this domain log using the Administration Console
or a text editor/viewer.

For more information, see Domain Log Filters at
http://e-docs.bea.com/wls/docs70/ConsoleHelp/domain_log_filters.h

tml.

Editing config.xml

You can manage a WebLogic Server domain by manually editing the persistent store
for configuration, the config.xml. (Other system administration tools automatically
save the configuration to the config.xml file.) Because of the difficulty of correctly
editing the XML syntax required in this file, this method of configuration is not
recommended but may provide advantages in limited situations.

Note: Do not edit the config.xml file while the Administration Server is running.

For more information, see BEA WebLogic Server Configuration Reference at
http://e-docs.bea.com/wls/docs70/config_xml/index.html.

Resources You Can Manage in a WebLogic
Server Domain

This section discusses the domain resources you manage with the system
administration tools.

http://e-docs.bea.com/wls/docs70/logging/index.html
http://e-docs.bea.com/wls/docs70/ConsoleHelp/domain_log_filters.html
http://e-docs.bea.com/wls/docs70/config_xml/index.html

1 Overview of WebLogic System Administration

1-14 Administration Guide

Servers

The administrative concept of a server represents an instance of WebLogic Server in
your domain. Using the system administration tools you can:

! Start and stop servers. (To start and stop servers on a remote machine, you must
have Node Manager installed on the remote machine.) For more information see
“Node Manager” on page 1-12.

! Configure a server’s connections: ports, HTTP settings, jCom settings, and time
outs.

! Configure HTTP server functionality and Virtual Hosts

! Configure logging and view logs

! Deploy applications to specific servers

! Configure WebLogic Server resources active on the server, such as JDBC
Connection Pools and startup classes.

Clusters

WebLogic Server clusters allow you to distribute the work load of your application
across multiple WebLogic Server instances. Clusters can improve performance and
provide fail-over should a server instance become unavailable. For example, clusters
provide several ways to replicate objects used in your applications so that data is not
lost in the event of hardware failure.

You can architect combinations of clusters to distribute the work load in a way that
provides the best performance for your applications.

Some services that are hosted on a single instance of WebLogic Server can be migrated
from one server to another in the event of server failure. The system administration
tools allow you to control these migrations.

For more information, see Using WebLogic Server Clusters at
http://e-docs.bea.com/wls/docs70/cluster/index.html.

http://e-docs.bea.com/wls/docs70/cluster/index.html

Resources You Can Manage in a WebLogic Server Domain

Administration Guide 1-15

Machines

The administrative concept of a machine represents the physical machine that hosts an
instance of WebLogic Server. WebLogic Server uses machine names to determine the
optimum server in a cluster to which certain tasks, such as HTTP session replication,
are delegated.

Using the system administration tools you can define one or more machines, configure
Node Manger for those machines, and assign servers to the machines. For UNIX
machines, you can configure UID and GID information.

For more information, see Using WebLogic Server Clusters at
http://e-docs.bea.com/wls/docs70/cluster/setup.html.

Network Channels

Network channels are an optional feature that you can use to configure additional ports
with one or more WebLogic Server instances or clusters. All servers and clusters that
use a network channel inherit the basic port configuration of the channel itself. You
can also customize a channel's port settings on an individual server using channel
fine-tuning. This fine-tuning process creates an additional network resource called a
Network Access Point.

For more information, see Configuring Network Resources at
http://e-docs.bea.com/wls/docs70/admin_domain/network.html.

JDBC

Java Database Connectivity (JDBC) allows Java programs to interact with common
DBMSs such as Oracle, Microsoft SQL Server, Sybase, and others.

Using the System Administration tools you can manage and monitor connectivity
between WebLogic Server and your database management system. Connectivity is
usually established through connection pools.

For more information, see “Managing JDBC Connectivity” on page 8-1.

http://e-docs.bea.com/wls/docs70/cluster/setup.html
http://e-docs.bea.com/wls/docs70/admin_domain/network.html

1 Overview of WebLogic System Administration

1-16 Administration Guide

JMS

The Java Message Service (JMS) is a standard API for accessing enterprise messaging
systems that allow communication between applications.

Using the system administration tools, you can define configuration attributes to:

! Enable JMS

! Create JMS servers

! Create and/or customize values for JMS servers, connection factories,
destinations (physical queues and topics), distributed destinations (sets of
physical queue and topic members within a cluster), destination templates,
destination sort order (using destination keys), persistent stores, paging stores,
session pools, and connection consumers.

! Set up custom JMS applications.

! Define thresholds and quotas.

! Enable any desired JMS features, such as server clustering, concurrent message
processing, destination sort ordering, persistent messaging, message paging, flow
control, and load balancing for distributed destinations.

For more information, see “Managing JMS” on page 9-1.

WebLogic Messaging Bridge

A Messaging Bridge transfers messages between two messaging providers. The
providers may be another implementation of WebLogic JMS or a 3rd party JMS
provider.

For more information, see “Using the WebLogic Messaging Bridge” on page 10-1.

Resources You Can Manage in a WebLogic Server Domain

Administration Guide 1-17

Web Servers and Web Components

WebLogic Server can perform as a fully functional Web server. WebLogic Server can
server both static files such as HTML files and dynamic files such as Java servlets or
Java ServerPages (JSP). Virtual hosting is also supported.

For more information on managing Web server functionality in WebLogic Server, see
“Configuring WebLogic Server Web Components” on page 6-1.

Applications

Application deployment tools, including the Administration Console allow you to
deploy, manage, update, and monitor your applications. The application deployment
tools also allow you to deploy and update applications in a cluster of WebLogic
Servers.

WebLogic Server 7.0 includes a new, two-phase deployment model that gives you
more control over the deployment process. For more information, see WebLogic
Server Deployment at
http://e-docs.bea.com/wls/docs70/programming/deploying.html.

Using the system administration tools you can:

! Deploy applications to one or more WebLogic Servers or clusters in a domain.

! Configure runtime parameters for the applications.

! Monitor application performance

! Configure security parameters

! Protect access to an application based on security roles or a security policy. For
more information see Setting Protections for WebLogic Resources at
http://e-docs.bea.com/wls/docs70/ConsoleHelp/security_7x.html#s

ecuritypolicies.

Application Formats

You deploy applications in one or more of the following J2EE application formats:

http://e-docs.bea.com/wls/docs70/programming/deploying.html
http://e-docs.bea.com/wls/docs70/programming/deploying.html
http://e-docs.bea.com/wls/docs70/ConsoleHelp/security_7x.html#securitypolicies

1 Overview of WebLogic System Administration

1-18 Administration Guide

! Web Applications

! Enterprise JavaBeans (EJB)

! Enterprise Applications

! J2EE Connectors

! Web Services. Web services are deployed as a Web Application that includes a
special deployment descriptor that configures the Web Service.

For more information, see:

! WebLogic Server Deployment

! WebLogic Server Application Packaging

! Assembling and Configuring Web Applications

! “Deploying Applications” on page 5-1

! Developing WebLogic Server Applications

! Programming WebLogic Enterprise Java Beans

! Programming WebLogic J2EE Connectors

! Programming WebLogic Web Services

! Defining a Security Policy

! Setting Protections for WebLogic Resources

Editing Deployment Descriptors Using the Administration Console

You can use the Administration Console to edit the deployment descriptors for your
J2EE applications. For more information, see:

! Application Deployment Descriptor Editor at
http://e-docs.bea.com/wls/docs70/ConsoleHelp/application_dde.ht
ml

! Resource Adaptor Deployment Descriptor at
http://e-docs.bea.com/wls/docs70/ConsoleHelp/connector_dde.html

! EJB Deployment Descriptor Editor at
http://e-docs.bea.com/wls/docs70/ConsoleHelp/ejb_dde.html

http://e-docs.bea.com/wls/docs70/programming/deploying.html
http://e-docs.bea.com/wls/docs70/programming/packaging.html
http://e-docs.bea.com/wls/docs70/programming/packaging.html
http://e-docs.bea.com/wls/docs70/webapp/index.html
http://e-docs.bea.com/wls/docs70/programming/index.html
http://e-docs.bea.com/wls/docs70/ejb/index.html
http://e-docs.bea.com/wls/docs70/jconnector/index.html
http://e-docs.bea.com/wls/docs70/webserv/index.html
http://e-docs.bea.com/wls/docs70/ConsoleHelp/security_policy.html
http://e-docs.bea.com/wls/docs70/ConsoleHelp/security_7x.html#securitypolicies
http://e-docs.bea.com/wls/docs70/ConsoleHelp/application_dde.html
http://e-docs.bea.com/wls/docs70/ConsoleHelp/connector_dde.html
http://e-docs.bea.com/wls/docs70/ConsoleHelp/ejb_dde.html

Resources You Can Manage in a WebLogic Server Domain

Administration Guide 1-19

! Web Application Deployment Descriptor Editor at
http://e-docs.bea.com/wls/docs70/ConsoleHelp/web_application_dd
e.html

Editing and Creating Deployment Descriptors with WebLogic Builder

In addition to using the Administration Console to edit deployment descriptors you can
also use the more robust WebLogic Builder tool that is included with your WebLogic
Server distribution. WebLogic Builder is a stand-alone graphical tool for assembling a
J2EE application, creating and editing deployment descriptors, and deploying an
application on WebLogic Server. For more information, see WebLogic Builder Online
Help at http://e-docs.bea.com/wls/docs70/wlbuilder/index.html.

Startup and Shutdown Classes

A startup class is a Java program that is automatically loaded and executed when a
WebLogic Server is started or restarted and after other server initialization tasks have
completed. A shutdown class is automatically loaded and executed when a WebLogic
Server is shut down either from the Administration Console or using the
weblogic.Admin shutdown command.

You use the system administration tools to register and manage startup and shutdown
classes.

For more information, see “Starting and Stopping WebLogic Servers” on page 2-1.

JNDI

The Java Naming and Directory Interface (JNDI) API enables applications to look up
objects—such as Data Sources, EJBs, JMS, and MailSessions—by name. You can
view the JNDI tree through the Administration Console.

For additional information, see:

! “Managing JNDI” on page 11-1

! Programming WebLogic JNDI at
http://e-docs.bea.com/wls/docs70/jndi/index.html.

http://e-docs.bea.com/wls/docs70/ConsoleHelp/web_application_dde.html
http://e-docs.bea.com/wls/docs70/wlbuilder/index.html
http://e-docs.bea.com/wls/docs70/wlbuilder/index.html
http://e-docs.bea.com/wls/docs70/jndi/index.html

1 Overview of WebLogic System Administration

1-20 Administration Guide

Transactions

You use the system administration tools to configure and enable the WebLogic Server
Java Transaction API (JTA). The transaction configuration process involves
configuring:

! Transaction time outs and limits

! Transaction Manager behavior

For more information, see:

! “Managing Transactions” on page 7-1

! Programming WebLogic JTA

XML

The XML Registry is a facility for configuring and administering the XML resources
of an instance of WebLogic Server. XML resources in WebLogic Server include the
parser used by an application to parse XML data, the transformer used by an
application to transform XML data, external entity resolution, and caching of external
entities.

For more information, see Administering WebLogic Server XML at
http://e-docs.bea.com/wls/docs70/xml/xml_admin.html.

Security

Security functionality has been completely re-written for WebLogic Server version 7.
The new security system allows you to plug in third-party security solutions and also
provides out-of-the box implementations for many common security systems. You can
also create your own security solution and implement it in WebLogic Server.

For backwards compatibility, the security functionality available in version 6.0 and 6.1
of WebLogic Server is also supported when running in Compatibility Mode.

http://e-docs.bea.com/wls/docs70/jta/index.html
http://e-docs.bea.com/wls/docs70/xml/xml_admin.html

Resources You Can Manage in a WebLogic Server Domain

Administration Guide 1-21

Using the administration tools, you can define realms, users, groups, passwords, ACLs
and other security features.

For more information, see:

! Managing WebLogic Security at
http://e-docs.bea.com/wls/docs70/secmanage/index.html.

! Using Compatibility Security in Managing WebLogic Security at
http://e-docs.bea.com/wls/docs70/secmanage/security6.html.

! “Security” in the Administration Console Help at
http://e-docs.bea.com/wls/docs70/ConsoleHelp/security_7x.html.

! Security Index Page

WebLogic Tuxedo Connector

WebLogic Tuxedo Connector provides interoperability between WebLogic Server
applications and Tuxedo services. The connector allows WebLogic Server clients to
invoke Tuxedo services and Tuxedo clients to invoke WebLogic Server Enterprise
Java Beans (EJBs) in response to a service request.

For more information see WebLogic Tuxedo Connector at
http://e-docs.bea.com/wls/docs70/wtc.html.

Jolt

Jolt is a Java-based client API that manages requests to BEA Tuxedo services via a Jolt
Service Listener (JSL) running on a Tuxedo server.

For more information, see BEA Jolt at
http://e-docs.bea.com/tuxedo/tux80/interm/jolt.htm.

http://e-docs.bea.com/wls/docs70/secmanage/index.html
http://e-docs.bea.com/wls/docs70/secmanage/security6.html
http://e-docs.bea.com/wls/docs70/ConsoleHelp/security_7x.html
http://e-docs.bea.com/wls/docs70/security.html
http://e-docs.bea.com/wls/docs70/wtc.html
http://e-docs.bea.com/tuxedo/tux80/interm/jolt.htm

1 Overview of WebLogic System Administration

1-22 Administration Guide

Mail

WebLogic Server includes the JavaMail API version 1.1.3 reference implementation
from Sun Microsystems.

For more information, see “Using JavaMail with WebLogic Server Applications”
under Programming Topics at
http://e-docs.bea.com/wls/docs70/programming/topics.html.

Starting and Using the Administration
Console

This section contains instructions for starting and using the Administration Console.

Browser Support for the Administration Console

To run the Administration Console, use one of the following Web browsers:

! Microsoft Internet Explorer, version 5 on Windows

! Microsoft Internet Explorer, version 6 on Windows

! Netscape, version 4.7 on Windows or SunOS

! Netscape, version 6, on Windows or SunOS

If you use a Web browser that is not on the above list you may experience functional
or formatting problems.

Starting the Administration Console

1. Start a WebLogic Administration Server. For more information, see “Starting an
Administration Server” on page 2-10.

http://e-docs.bea.com/wls/docs70/programming/topics.html

Starting and Using the Administration Console

Administration Guide 1-23

2. Open one of the supported Web browsers and open the following URL:

http://hostname:port/console

Where hostname is the DNS name or IP address of the Administration Server
and port is the address of the port on which the Administration Server is
listening for requests (7001 by default). If you started the Administration Server
using Secure Socket Layer (SSL), you must add s after http as follows:

https://hostname:port/console

For more information about setting up SSL for system administration, see Server
--> Connections --> SSL Ports at
http://e-docs.bea.com/wls/docs70/ConsoleHelp/domain_server_conn

ections_ssl-ports.html.

3. When the login page appears, enter the user name and the password you used to
start the Administration Server (you may have specified this user name and
password during the installation process) or enter a user name that belongs to one
of the following security groups: Administrators, Operators, Deployers, or
Monitors. These groups provide various levels of access to system administration
functions in the Administration Console. For more information, see “Protecting
System Administration Operations” on page 3-1.

Using the security system, you can add or delete users to one of these groups to
provide controlled access to the console. For more information, see “Protecting
System Administration Operations” on page 3-1.

Note: If you have your browser configured to send HTTP requests to a proxy server,
then you may need to configure your browser to not send Administration
Server HTTP requests to the proxy. If the Administration Server is on the same
machine as the browser, then ensure that requests sent to localhost or
127.0.0.1 are not sent to the proxy.

Using the Administration Console

This section provides instructions for using the Administration Console to manage and
monitor a WebLogic Server domain.

http://e-docs.bea.com/wls/docs70/ConsoleHelp/domain_server_connections_ssl-ports.html
http://e-docs.bea.com/wls/docs70/ConsoleHelp/domain_server_connections_ssl-ports.html

1 Overview of WebLogic System Administration

1-24 Administration Guide

Navigating in the Administration Console

Figure 1-2 Administration Console

The left pane in the Administration Console contains a navigation tree that you use to
navigate to tables of data, configuration pages, monitoring pages, or log files. By
selecting (left-clicking) a node in the domain tree, you can display a table of data for a
resource or configuration and monitoring pages for a selected resource. If a node in the
tree is preceded by a plus sign, you can click on the plus sign to expand the tree to
access additional resources.

A variety of operations are also accessible by right clicking on a node.

Once you select a node from the navigation tree, in the right pane you will either see a
tabular listing of configured resources or objects or a tabbed interface.

Starting and Using the Administration Console

Administration Guide 1-25

When the data displayed is a table of data about resources or objects of a particular
type, you can customize the table by adding or subtracting columns. You can also sort
the data tables by clicking on the column headers. To customize a table, click on the
Customize this view link at the top of the table.

Figure 1-3 Administration Console Table Page

Configuring Objects or Resources

To configure the object or resource, click on its name. A tabbed screen will appear in
the right panel that you can use to navigate through configuration or monitoring
screens for the resource or object.

1 Overview of WebLogic System Administration

1-26 Administration Guide

To edit your configuration, change values of the fields displayed in the right pane.
After you edit the configuration, click the Apply button to execute the change and

persist it to the config.xml file. Fields labeled with the icon require you to
restart any servers affected by the change before the change goes into effect.

Using the Administration Console to Manage Multiple Domains

Because an Administration Server can manage only a single active domain, you can
access only that domain using the Administration Console. If you have separate
Administration Servers running, each with its own active domain, you can switch from
managing one domain to the other only by invoking the URL of the Administration
Console on the Administration Server that you want to access.

For more information, see About the Administration Console at
http://e-docs.bea.com/wls/docs70/ConsoleHelp/console.html.

Monitoring a Domain Using the Administration Console

To monitor a domain resource either right click on the resource in the navigation tree
and select a monitoring option, or navigate to the resource and select the monitoring
tab from the right pane. The data displayed represents the current state of the resource.

To update the information click the icon in the upper right section of the screen.
The data will refresh regularly until you click the icon again. The icon displays a
circular animation to indicate when auto-refresh is active. By default, the data
refreshes every 10 seconds. You can alter the refresh interval by selecting the Console
node and changing the value of Auto-refresh every field.

Monitoring Administration Console Tasks

You can monitor the progress of many operations you initiate from the console by
clicking the Tasks node in the navigation tree of the Administration Console.

Getting Help for Using the Administration Console

Online help containing overviews, procedures, and information about configuration
attributes is always available from the Administration Console. You can access the
online help by clicking one of the following icons:

http://e-docs.bea.com/wls/docs70/ConsoleHelp/console.html

Using WebLogic Server with Web Servers

Administration Guide 1-27

!Clicking this icon, located in the upper right corner of the console opens
another browser window containing information about the console page
you are viewing. You can also browse to other Administration Console

topics from this window.

! Clicking this icon, located next to a field, opens a small browser
window containing information about that field.

Using WebLogic Server with Web Servers

You can proxy requests from popular Web servers to an instance of WebLogic Server
or a cluster of WebLogic Servers by using one of the Web server plug-ins. Plug-ins are
available for the following Web servers:

! Netscape Enterprise Server or IPlanet

! Microsoft Internet Information Server

! Apache

Because these plug-ins operate in the native environment of the Web server,
management of the plug-ins is done using the administration facilities of that Web
server.

For more information, see Using WebLogic Server with Plug-ins at
http://e-docs.bea.com/wls/docs70/plugins/index.html.

Special servlets are also available to proxy requests from an instance of WebLogic
Server to another instance of WebLogic Server or to a cluster of WebLogic Servers.
For more information, see:

! Configure Proxy Plug-ins at
http://e-docs.bea.com/wls/docs70/plugins/http_proxy.html.

! Proxying Requests to a WebLogic Cluster at
http://e-docs.bea.com/wls/docs70/cluster/setup.html#proxyplugin

s.

http://e-docs.bea.com/wls/docs70/plugins/index.html
http://e-docs.bea.com/wls/docs70/plugins/http_proxy.html
http://e-docs.bea.com/wls/docs70/cluster/setup.html#proxyplugins

1 Overview of WebLogic System Administration

1-28 Administration Guide

Monitoring

The system administration tools contain extensive capabilities for monitoring
WebLogic Servers, domains, and resources. Using the tools you can monitor:

! Server health and performance:

" Execute Queues

" Connections

" Sockets

" Threads

" Throughput

" Memory Usage

! Security:

" Locked-out users

" Invalid Logins

" Login attempts

! Transactions:

" Committed transactions

" Rolledback transactions

! JMS connections and servers

! WebLogic Messaging Bridge

! Applications:

" Servlet sessions

" Connector connection pools

" EJB performance

! JDBC connections and connection pools

Licenses

Administration Guide 1-29

For more information, see Monitoring a WebLogic Server Domain at
http://e-docs.bea.com/wls/docs70/admin_domain/monitoring.html

Licenses

WebLogic Server requires a valid license to function.

An evaluation copy of WebLogic Server is enabled for 30 days so you can start using
WebLogic Server immediately. To use WebLogic Server beyond the 30-day
evaluation period, you will need to contact your salesperson about further evaluation
or purchasing a license for each IP address on which you intend to use WebLogic
Server. All WebLogic Server evaluation products are licensed for use on a single
server with access allowed from up to three unique client IP addresses.

If you downloaded WebLogic Server from the BEA Web site, your evaluation license
is included with the distribution. The WebLogic Server installation program allows
you to specify the location of the BEA home directory, and installs a BEA license file,
license.bea, in that directory.

For more information, see “Managing WebLogic Server Licenses” on page 13-1

http://e-docs.bea.com/wls/docs70/admin_domain/monitoring.html

1 Overview of WebLogic System Administration

1-30 Administration Guide

Administration Guide 2-1

CHAPTER

2 Starting and Stopping
WebLogic Servers

The following sections describe procedures for starting and stopping Administration
Servers and Managed Servers:

! The Server Lifecycle

! Providing Usernames and Passwords to Start a Server

! Starting an Administration Server

! Starting a Managed Server

! Shutting Down WebLogic Servers

! Configuring Startup and Shutdown Classes

! Setting Up a WebLogic Server as a Windows Service

The Server Lifecycle

A WebLogic Server can be in one of several states at any given time, and it follows a
set of rules that determine how and when it can transition between those states. The
series of states through which a server transitions is called the server lifecycle. (See
Figure 2-1.)

2 Starting and Stopping WebLogic Servers

2-2 Administration Guide

Figure 2-1 The Server Lifecycle

The most common pattern of transitions is as follows:

1. SHUTDOWN. In this state, the server is configured but inactive.

2. STARTING. When you start a server, it takes the following actions:

a. Retrieves its configuration data.

An Administration Server retrieves the configuration data (including security
configuration data) from the domain’s configuration files. A Managed Server
contacts the Administration Server for its configuration and security data. If
you set up SSL, a Managed Server uses its own set of certificate files, key

The Server Lifecycle

Administration Guide 2-3

files, and other SSL-related files and contacts the Administration Server for
the remaining configuration and security data.

b. Starts its kernel-level services, which include logging and timer services.

c. Initializes subsystem-level services with the configuration data that it retrieved
in step 2a. These services include the following:

d. If you have configured a server to use a separate administration port, the server
enables remote configuration and monitoring. For information about
administration ports, refer to Configuring a Domain-Wide Administration Port
in the Creating and Configuring WebLogic Server Domains Guide.

e. Deploys modules in the appropriate container and in the order that you specify
in the WebLogic Server Administration Console.

For any startup classes that are configured to load before application
deployments, the classes are loaded and run after the server deploys JDBC
connection pools and before it deploys Web applications and EJBs.

f. For any startup classes that are configured to load after application
deployments, the classes are loaded and run.

3. STANDBY. (Available only if you have configured an administration port.) You can
issue a command that starts a server and places it in this state. In this state, a
server has initialized all of its services and applications and can accept
administration commands and participate in cluster communication. It is not
accessible for requests that come from external clients.

A typical use of the STANDBY state is to keep a server available as a “hot”
backup, especially in a high-availability or mission-critical environment. When

! Security Service

! RMI Service

! Cluster Service

! IIOP Service

! Naming Service

! RMI Naming Service

! File Service

! JCA Container

! JDBC Container

! EJB Container

! Web Container

! Deployment Manager

! JMS Provider

! Remote Management

! Transaction Service

http://e-docs.bea.com/wls/docs70/admin_domain/network.html#administration_port_and_administration_channel

2 Starting and Stopping WebLogic Servers

2-4 Administration Guide

you need to use the backup server, you can quickly resume its ability to process
client requests.

4. RUNNING. In this state, a server offers its services to clients and can operate as a
full member of a cluster.

5. SHUTDOWN. You can move a server into this state either from the RUNNING state or
the STANDBY state. As it transitions to SHUTDOWN, a server goes through the
SHUTTING_DOWN state.

When you issue a graceful shutdown, the server invokes any shutdown classes
that you have configured. You can shut down a server gracefully only from the
RUNNING or STANDBY states.

When you issue a forceful shutdown, the server notifies all applications and
subsystems to drop all current work and release all resources. A forceful
shutdown could result in rolled back transactions and session loss for some
clients. You can shut down a server forcefully from any state.

A server can be in two additional states:

! FAILED. If one or more critical services become dysfunctional during the
lifetime of server, the server transitions to the FAILED state. Your only option to
recover from the FAILED state is to shut down the server. You can set up a server
to restart itself if critical services become dysfunctional. For information about
automatic restarts, refer to Server Self-Health Monitoring in the Configuring and
Managing Domains Guide.

! UNKNOWN. If a server cannot be contacted, it is considered to be in the UNKNOWN
state.

Controlling the Server Lifecycle

You can use any of the following interfaces to control a server’s lifecycle:

! The Administration Console provides the following ways to control a server’s
lifecycle:

" On the Server→Configuration→General tab, the Startup Mode field
determines whether a server starts in STANDBY or RUNNING by default.

" On the Server→Tuning tab, the Timeout for Server Lifecycle Operations field
determines the number of seconds a lifecycle operation waits before timing

http://e-docs.bea.com/wls/docs70/admin_domain/monitoring.html#server_self_health_monitoring

The Server Lifecycle

Administration Guide 2-5

out. For more information, refer to “Timeout Period for LifeCycle
Operations” on page 2-5.

" On the Server→Control→Start/Stop tab, a list of commands start, stop, and
resume servers. For more information, refer to server tasks in the
Administration Console Online Help.

! The weblogic.Server startup command includes an argument that overrides
the default startup state. For information about the
-Dweblogic.management.startupMode=STANDBY argument, refer to
“Frequently Used Optional Arguments” on page 2-19.

! The weblogic.Admin utility provides the following commands:

" START (requires the Node Manager)

" STARTINSTANDBY (requires the Node Manager)

" RESUME

" SHUTDOWN

" FORCESHUTDOWN

An additional command, GETSTATE, returns the current state of a server.

For information about using the weblogic.Admin utility, refer to Appendix B,
“WebLogic Server Command-Line Interface Reference,” or enter the following
command at a command line:

java weblogic.Admin HELP

For information about the Node Manager, refer to Managing Server Availability
with Node Manager in the Creating and Configuring WebLogic Server Domains
Guide.

Timeout Period for LifeCycle Operations

When you issue a lifecycle command, the server notifies subsystems and applications
of the requests and waits a number of seconds for the subsystems and application to
respond. If they do not respond in the specified number of seconds, the server times
out the lifecycle operation. The actions that it takes after the timeout depend on the
operation.

http://e-docs.bea.com/wls/docs70/ConsoleHelp/servers.html
http://e-docs.bea.com/wls/docs70/admin_domain/nodemgr.html
http://e-docs.bea.com/wls/docs70/admin_domain/nodemgr.html

2 Starting and Stopping WebLogic Servers

2-6 Administration Guide

This timeout period applies only to the SHUTDOWN and FORCESHUTDOWN
operations. If the operation does not complete within the configured period, one of the
following occurs:

! If the state of the server at that time was SHUTTING_DOWN or if the operation was
FORCESHUTDOWN, then the server shuts down automatically.

! Otherwise, a ServerLifecycleException will be thrown with a message
describing the timeout condition.

You can change the default timeout period on the Server→Tuning tab. For more
information, refer to Setting the Timeout Period for LifeCycle Operations in the
Administration Console Online Help.

Providing Usernames and Passwords to
Start a Server

By default, a WebLogic Server prompts you to enter a username and password in the
command shell that runs the server process. The username must belong to a role that
is permitted to start servers. For information on roles and permissions, refer to
“Protecting System Administration Operations” on page 3-1.

This section describes the following tasks:

! Specifying an Initial Administrative Username

! Bypassing the Prompt for Username and Password

Specifying an Initial Administrative Username

The Configuration Wizard prompts you to provide a username and password, which
becomes the initial administrative username for the myrealm security realm. A
security realm is a collection of components (providers) that authenticate usernames,

http://e-docs.bea.com/wls/docs70/ConsoleHelp/servers.html#setting_timeout_period_for_lifecycle_operations

Providing Usernames and Passwords to Start a Server

Administration Guide 2-7

determine the type of resources that the user can access, and provide other
security-related services for WebLogic resources. WebLogic Server installs the
myrealm security realm and uses it by default.

The first time you start a WebLogic Server, enter this initial administrative username
and password. If you did not use the Configuration Wizard, the WebLogic Server
prompts you to enter a initial username and password.

You can use the Administration Console to add users to myrealm. If you use an
Authentication provider other than the one that WebLogic Server installs, you must use
the provider’s administration tools to create at least one user with administrative
privileges. For information on granting administrative privileges, refer to “Protecting
System Administration Operations” on page 3-1.

Note: The guest user is no longer supplied by default in WebLogic Server version
7.0. To use the guest user, you must run in Compatibility mode or define the
guest user as a user in the Authentication provider for your security realm.
For information about Compatibility mode, refer to Using Compatibility
Security in the Managing WebLogic Security guide.

You can configure a WebLogic Server to use a different security realm. If you set up
different security realms, you must designate one of those realms as the default. During
its startup cycle, a WebLogic Server uses the default realm to authenticate the
username that you supply.

Bypassing the Prompt for Username and Password

If you want to bypass the prompt for username and password, we recommend that you
create and use a boot identify file, which contains your username and password in an
encrypted format.

This section contains the following subsections:

! Creating a Boot Identity File

! Using a Boot Identity File

! Removing a Boot Identity File After Startup

! Alternate Method: Passing Identity Information on the Command Line

http://e-docs.bea.com/wls/docs70/secmanage/security6.html
http://e-docs.bea.com/wls/docs70/secmanage/security6.html

2 Starting and Stopping WebLogic Servers

2-8 Administration Guide

Creating a Boot Identity File

This section describes two methods for creating a boot identity file:

! If you enter a server’s weblogic.Server startup command directly on the
command line (instead of placing the command in a script), use the following
argument in the startup command:

-Dweblogic.system.StoreBootIdentity=true

When you boot with this argument, the server creates a boot identity file that
contains an encrypted version of the username and password that you used to
start the server. The file that this argument creates is boot.properties and is
saved in the server’s root directory. For information about a server’s root
directory, refer to “A Server’s Root Directory” on page 2-27.

Do not specify this argument if you use the Node Manager to start a Managed
Server. Also, we recommend that you do not add this argument to a startup
script. Instead, use it only when you want to create a boot.properties file.

! Place the following two lines in a text file:

username=username

password=password

The username and password values must match an existing user account in the
Authentication provider for the default security realm and must belong to a role
that has permission to start a server. For information on roles and permissions,
refer to “Protecting System Administration Operations” on page 3-1.

If you save the file as boot.properties and locate it in the server’s root
directory, the server will automatically use this file during startup. For
information about specifying a server’s root directory, refer to the
-Dweblogic.RootDirectory argument in “Frequently Used Optional
Arguments” on page 2-19.

If you save the file under a different name or in a different location, you must
use an additional command-line argument. For more information, refer to the
next section, “Using a Boot Identity File.”

The first time you use this file to start a sever, the server reads the file and then
overwrites it with an encrypted version of the username and password.

Providing Usernames and Passwords to Start a Server

Administration Guide 2-9

Using a Boot Identity File

For a given server instance, use only the boot identity file that the instance has created.
For example, if you use ServerA to generate a boot identity file, use only that boot
identity file with ServerA. WebLogic Server does not support multiple server instance
sharing a single boot identity file.

If a server’s root directory contains a valid boot.properties, it uses this file by
default.

If you want to specify a different file (or if you do not want to store boot identity files
in a server’s root directory), you can include the following argument in the server’s
weblogic.Server startup command:

-Dweblogic.system.BootIdentityFile=filename

where filename is the fully qualified pathname of a valid boot identity file.

If you use the startWebLogic script, add
-Dweblogic.system.BootIdentityFile as a value of the JAVA_OPTIONS variable.
For example:
JAVA_OPTIONS=-Dweblogic.system.BootIdentityFile=C:\BEA\user_domai

ns\mydomain\myidentity.prop

For information on the startWebLogic, refer to “Starting an Administration Server
Using a Script” on page 2-12.

If a server is unable to access its boot identity file, it displays the username and
password prompt in its command shell and writes a message to the log file.

Boot Identity Files and Managed Server Independence

Managed Server Independence (MSI) enables Managed Servers to start even if the
Administration Server is not available. If you want to use a boot identity file for a
Managed Server that starts in MSI mode, you must copy it and other files to the root
directory of the Managed Server. For more information, refer to Starting a Managed
Server When the Administration Server Is Not Accessible in the Creating and
Configuring WebLogic Server Domains guide.

Removing a Boot Identity File After Startup

If you want to remove the boot identity file after a server starts, you can include the
following argument in the server’s weblogic.Server startup command:

http://e-docs.bea.com/wls/docs70/admin_domain/failures.html#starting_MS_when_AS_not_accessible
http://e-docs.bea.com/wls/docs70/admin_domain/failures.html#starting_MS_when_AS_not_accessible

2 Starting and Stopping WebLogic Servers

2-10 Administration Guide

-Dweblogic.system.RemoveBootIdentity=true

This argument removes only the file that the server used to start. For example, if you
specify -Dweblogic.system.BootIdentityFile=c:\secure\boot.MyServer,
only boot.MyServer is removed, even if the server’s root directory contains a file
named boot.properties.

Alternate Method: Passing Identity Information on the Command Line

Using a boot identity file is the most secure and convenient way to bypass the
interactive prompt. However, instead of using a boot identify file, you can add the
following arguments to the weblogic.Server startup command:

-Dweblogic.management.username=username

-Dweblogic.management.password=password

If you supply both of these arguments, you can bypass the interactive prompt.

Because the command to start a server can be long, typically you place most of the
startup command in a script. Unless you are in an environment in which security is not
a concern, we recommend that you do not save the
-Dweblogic.management.password=password argument in a startup script.

For more information about these arguments, refer to “Using the weblogic.Server
Command” on page 2-16.

Starting an Administration Server

A WebLogic Server runs as a process within a Java Virtual Machine (JVM). Each JVM
can host only one server process. To start a server, you initiate a JVM with a set of
arguments.

If a domain consists of only one WebLogic Server, that server is the Administration
Server. If a domain consists of multiple WebLogic Servers, you must start the
Administration Server before you start the Managed Servers.

The Administration Server and all Managed Servers in a domain must be the same
WebLogic Server version. The Administration Server must be either at the same
service-pack level or at a later service-pack level than the Managed Servers. For

Starting an Administration Server

Administration Guide 2-11

example, if the Managed Servers are at release 7.0, then the Administration Server can
be either release 7.0 or 7.0 SP1. However, if the Managed Servers are at SP1, then the
Administration Server must be at SP1. Each server within a domain must have a unique
name.

This section describes starting an Administration Server by completing any of the
following tasks from the local host:

! Starting an Administration Server from the Windows Start Menu

! Starting an Administration Server Using a Script

! Using the weblogic.Server Command

! Using the Default Configuration to Start a Server

For information on starting a server as a Windows service, refer to “Setting Up a
WebLogic Server as a Windows Service” on page 2-42.

Note: When starting WebLogic Server, JDK 1.3 may throw an OutOfMemory error
if you are trying to load a large number of classes. This error occurs even
though there appears to be plenty of memory available. If you encounter a
java.lang.OutOfMemory error exception when you start WebLogic Server,
increase the value of the following JVM option:

java -XX:MaxPermSize=<value>

where <value> is some number in kilobytes.

For JDK1.3.1, the default value for MaxPermSize is 64m, where m stands for
megabytes.

Starting an Administration Server from the Windows
Start Menu

If you use the Configuration Wizard to create Single Server, an Administration Server
with Managed Servers, or an Administration Server with Clustered Managed Servers
on a Windows computer, the wizard prompts you to install the domain in the Windows
Start Menu. If you choose yes, then you can do the following to start the Single Server
or Administration Server:

2 Starting and Stopping WebLogic Servers

2-12 Administration Guide

From the Windows desktop, click Start→Programs→BEA WebLogic Platform
7.0→User Projects→domain_name→Start Server.

The Start Server command opens a command window and calls the
domain_name\startWebLogic.cmd script, which is described in the next section of
this topic. When the server has successfully completed its startup process, it writes the
following message to the command window:

<Notice> <WebLogicServer> <000360> <Server started in RUNNING mode>

Starting an Administration Server Using a Script

Because the arguments needed to start a WebLogic Server from the command line can
be lengthy and prone to error, we recommend that you incorporate the command into
a script.

This section describes the following tasks:

! Using the Configuration Wizard Scripts to Start an Administration Server

! Creating Your Own Script to Start an Administration Server

! Using a Non-Default JVM with WebLogic Server

Using the Configuration Wizard Scripts to Start an Administration Server

When you use the Configuration Wizard to create a domain, the wizard also creates a
script that you can use to start an Administration Server for the domain. To use the
script, enter one of the following commands at a command prompt:

! domain_name\startWebLogic.cmd (Windows)

! domain_name\startWebLogic.sh (UNIX and Windows. On Windows, this
script supports the MKS and Cygnus BASH UNIX shell emulators.)

where domain_name is the directory in which you located your domain.

Starting an Administration Server

Administration Guide 2-13

The script sets values for some domain-specific variables and then calls the master
startup script, WL_HOME\server\bin\startWLS.cmd (startWLS.sh on UNIX),
where WL_HOME is the location in which you installed WebLogic Server. The master
startup script sets environment variables, such as the location of the JVM, and then
starts the JVM with WebLogic Server arguments.

Creating Your Own Script to Start an Administration Server

If you use some other means to create a domain (such as the Administration Console),
you can create your own startup script that does the following:

1. Sets the value of a variable named SERVER_NAME. All servers in a domain must be
named. For example,

set SERVER_NAME=myserver

In the domain’s config.xml file, the name of a server is specified as <Server
Name=serverName>. Make sure that the value for set SERVER_NAME refers to
the server name as specified in config.xml.

2. Sets values for any of the following optional variables:

Table 2-1 Optional variables

Variable Description

WLS_USER Variable for setting a cleartext user for server startup. Instead of using this variable, we
recommend that you use a boot identity file. For more information, refer to “Bypassing
the Prompt for Username and Password” on page 2-7.

WLS_PW Variable for setting a cleartext password for server startup. Instead of using this variable,
we recommend that you use a boot identity file. For more information, refer to
“Bypassing the Prompt for Username and Password” on page 2-7.

ADMIN_URL If you specify a URL for this variable, the server will start as a Managed Server and will
use the specified URL to contact its Administration Server.

For more information, refer to “The Administration Server and Managed Servers” on
page 1-6.

STARTMODE Determines whether the server runs in production mode or development mode. Specify
true for production mode servers or false for development mode.

For more information on using production and development modes refer to
“Development Mode vs. Production Mode” on page 2-26.

2 Starting and Stopping WebLogic Servers

2-14 Administration Guide

3. Calls the master startup script, WL_HOME\server\bin\startWLS.cmd
(startWLS.sh on UNIX).

The master startup script sets environment variables, such as the location of the
JVM, and then starts the JVM with WebLogic Server arguments. If you are not
using the JVM installed with WebLogic Server, you must edit the master start
script. For more information, refer to “Using a Non-Default JVM with
WebLogic Server” on page 2-15.

4. If you plan to locate your startup script outside of the domain’s root directory,
your script must include the following value for the JAVA_OPTIONS variable:

-Dweblogic.RootDirectory=path

where path specifies the location of the domain’s root directory.

For example,

JAVA_OPTIONS Java command-line options for running the server. The Java command-line options will
be passed to the JVM after JAVA_VM and MEM_ARGS are passed.
-Dweblogic.ListenAddress is an example of a Java option that you can call from
the domain start script. For more information about command-line options, refer to
“Using the weblogic.Server Command” on page 2-16.

If you are listing multiple options in a UNIX shell, put quotes around the entire set of
options and include spaces between each option. For example:

JAVA_OPTIONS="-Dweblogic.attribute=value
-Djava.attribute=value"

JAVA_VM Java argument that specifies the mode in which the virtual machine runs. Use one of the
following options:

! -server

! -client

! -hotspot (Windows only)

If you are using a JVM that does not support any of these operational modes, you must
edit the master script to prevent these arguments from being passed to the JVM. For more
information, refer to “Using a Non-Default JVM with WebLogic Server” on page 2-15.

MEM_ARGS Variable to override the default memory arguments passed to Java. In the master start
scripts, the options are set by default to -Xms200m and -Xmx200m.

Table 2-1 Optional variables

Variable Description

Starting an Administration Server

Administration Guide 2-15

JAVA_OPTIONS=-Dweblogic.RootDirectory=c:\serverRoot

Using a Non-Default JVM with WebLogic Server

If you are not using the JVM installed with WebLogic Server, you must edit the master
start script so that the JAVA_HOME variable specifies the correct location of the JVM on
your system. In addition, if the JVM does not support an option to run in a HotSpot
mode, then you must remove the %JAVA_VM% variable from the command that invokes
the JVM.

If you modify the WL_HOME\server\bin\startWLS.cmd (startWLS.sh on UNIX)
master script to specify a different JVM, then all of the startup scripts that refer to this
master script will use the non-default JVM.

To edit the master start script so that it uses a non-default JVM, do the following:

1. Create a backup copy of WL_HOME\server\bin\startWLS.cmd (startWLS.sh
on UNIX).

2. Open startWLS.cmd (startWLS.sh on UNIX) in a text editor.

3. Edit the set JAVA_HOME command to specify the home directory of your JVM.
For example, set JAVA_HOME=C:\JRockit\JRE\1.3.1

4. If the JVM does not support a HotSpot mode, remove %JAVA_VM% from the
command that invokes the JVM, which is the line near the end of the file. For
example, remove the bold text from the following command:
"%JAVA_HOME%\bin\java" %JAVA_VM% %MEM_ARGS% %JAVA_OPTIONS%
-Dweblogic.Name=%SERVER_NAME% -Dbea.home="C:\bea"
-Dweblogic.management.username=%WLS_USER%
-Dweblogic.management.password=%WLS_PW%
-Dweblogic.ProductionModeEnabled=%STARTMODE%
-Djava.security.policy="%WL_HOME%\server\lib\weblogic.policy"

weblogic.Server

2 Starting and Stopping WebLogic Servers

2-16 Administration Guide

Using the weblogic.Server Command

weblogic.Server is the command that starts a WebLogic Server on a local host. The
startup scripts described in previous sections are wrappers that send a consistent set of
options to this command. While we recommend that you incorporate this command
and its options into a startup script, for simple invocations you can enter the
weblogic.Server command directly on the command line.

For example, a simple invocation for starting the examples server on Windows is as
follows (you must enter this command from the
WL_HOME\samples\server\config\examples directory):

c:\bea\jdk131\bin\java
-hotspot -Xms200m -Xmx200m
-classpath "c:\bea\jdk131\lib\tools.jar;

c:\bea\weblogic700\server\lib\weblogic_sp.jar;
c:\bea\weblogic700\server\lib\weblogic.jar;"

-Dweblogic.Name=examplesServer
-Dbea.home="C:\bea"
-Djava.security.policy="c:\bea\weblogic700\server\lib\weblogic.policy"
weblogic.Server

This section describes the following:

! Setting the Classpath

! Command Syntax for weblogic.Server

! Required Arguments

! Frequently Used Optional Arguments

! Other Optional Arguments

! Development Mode vs. Production Mode

! Startup Arguments for the Administration Port and the weblogic.Admin Utility

! A Server’s Root Directory

For information about starting a Managed Server on a remote host, refer to Managing
Server Availability with Node Manager in the Creating and Configuring WebLogic
Server Domains Guide.

http://e-docs.bea.com/wls/docs70/admin_domain/nodemgr.html
http://e-docs.bea.com/wls/docs70/admin_domain/nodemgr.html

Starting an Administration Server

Administration Guide 2-17

Setting the Classpath

The Java Virtual Machine (JVM) uses a setting called classpath to locate essential files
and directories.

You can use the following command to set the classpath for a WebLogic Server:

WL_HOME\server\bin\setWLSEnv.cmd (on Windows)
WL_HOME/server/bin/setWLSEnv.sh (on UNIX)

Instead of using setWLSEnv, you can use an environment variable or a -classpath
argument in the startup command. Regardless of the method you choose, include the
following in the classpath for the JVM that runs your instances of WebLogic Server:

! WL_HOME/server/lib/weblogic_sp.jar

Depending on which WebLogic Server release, service pack, or patch that you
have installed, this file might not exist on your system. Regardless of whether
the file currently exists on your system, we recommend that you include
WL_HOME/server/lib/weblogic_sp.jar on your classpath to ensure
compatibility with any updates. You must add this file to the classpath before
you add weblogic.jar.

! WL_HOME/server/lib/weblogic.jar

! If you use the trial version of PointBase, an all-Java database management
system, then include the following files:

SAMPLES_HOME/server/eval/pointbase/server/lib/

pbserver41ev.jar and pbclient41ev.jar

where SAMPLES_HOME is WL_HOME/samples.

! If you use WebLogic Enterprise Connectivity, include the following files:

WL_HOME/server/lib/wlepool.jar

WL_HOME/server/lib/wleorb.jar

where WL_HOME is the directory where you installed WebLogic Server.

Command Syntax for weblogic.Server

The syntax for the weblogic.Server command is as follows:

java RequiredArguments [OptionalArguments] weblogic.Server

2 Starting and Stopping WebLogic Servers

2-18 Administration Guide

Required Arguments

The following table describes the required arguments for starting a WebLogic Server
from the java command line.

Table 2-2 Required Arguments for Starting a Server

Argument Description

-Xms and -Xmx Specify the minimum and maximum values (in megabytes) for Java
heap memory.

For example, you may want to start the server with a default
allocation of 200 megabytes of Java heap memory to the WebLogic
Server. To do so, you can start the server with the java -Xms200m
and -Xmx200m options.

For best performance it is recommended that the minimum and
maximum values be the same so that the JVM does not resize the
heap.

The values assigned to these parameters can dramatically affect the
performance of your WebLogic Server and are provided here only
as general defaults. In a production environment you should
carefully consider the correct memory heap size to use for your
applications and environment.

-classpath The minimum content for this option is described under “Setting the
Classpath” on page 2-17.

Note: This is optional if the classpath is set in the user
environment.

-Dweblogic.Name=
servername

Assigns a name to the server.

Server names must be unique within a domain. For example,
if you name a server instance ManagedServer1 in a domain
named DomainA, you cannot name another server instance
ManagedServer1 in DomainA.

-Dbea.home=bea_home Specifies the location of the BEA home directory, which contains
licensing and other essential information.

Starting an Administration Server

Administration Guide 2-19

Frequently Used Optional Arguments

The following table describes optional arguments that are frequently used. The
description of each argument indicates whether it can also be set through the
Administration Console or some other WebLogic Server command. Any argument
that sets an attribute for a Managed Bean (MBean) can also be set through the MBean’s
API. The next section, “Other Optional Arguments” on page 2-25, describes setting
MBean attributes.

Table 2-3 Frequently Used Optional Arguments

Argument Description

-Dweblogic.RootDirectory=path Specifies the server’s root directory. For more information, refer to
“A Server’s Root Directory” on page 2-27.

-Dweblogic.ConfigFile=
file_name

Specifies a configuration file for your domain. The file_name
value must refer to a valid XML file that conforms to the
config.dtd. The XML file must exist in the Administration
Server’s root directory, which is either the current directory or the
directory that you specify with -Dweblogic.RootDirectory.

The file_name value cannot contain a pathname component. For
example, the following value is invalid:

-Dweblogic.ConfigFile=c:\mydir\myfile.xml

Instead, use the following arguments:

-Dweblogic.RootDirectory=c:\mydir
-Dweblogic.ConfigFile=myfile.xml

For information about config.dtd, refer to BEA WebLogic
Server Configuration Reference.

If you do not specify this value, the default is config.xml.

-Dweblogic.management.
username=username

Specifies the username.

The username must belong to a role that has permission to start a
server. For information on roles and permissions, refer to
“Protecting System Administration Operations” on page 3-1.

Instead of using this argument, you can use a boot identity file. For
more information, refer to “Bypassing the Prompt for Username and
Password” on page 2-7.

http://e-docs.bea.com/wls/docs70/config_xml/index.html
http://e-docs.bea.com/wls/docs70/config_xml/index.html

2 Starting and Stopping WebLogic Servers

2-20 Administration Guide

-Dweblogic.management.
password=password

Specifies the user password.

Instead of using this argument, you can use a boot identity file. For
more information, refer to “Bypassing the Prompt for Username and
Password” on page 2-7.

-Dweblogic.ListenAddress=host Specifies a listen address for this server. The host value must be
either the DNS name or the IP address of the server.

This option sets the value of the listenAddress attribute in the
ServerMBean, which is also accessible from the Administration
Console under Server→Configuration→General→Listen Address.

If you do not specify a Listen Address, a server uses either the
machine’s DNS name or the IP address.

We recommend that you specify a known IP address or DNS name
and that you use the Administration Console instead of this
argument to do so.

For more information, refer to Configuring Network Resources.

-Dweblogic.ListenPort=
portnumber

Enables and specifies the plain-text (non-SSL) listen port for this
server.

The argument sets the value of the listenPort attribute in the
ServerMBean, which is also accessible from the Administration
Console under Server→Configuration→General→Listen Port.

If you do not specify a Listen Port, a server uses 7001 as the default.

For more information, refer to Configuring Network Resources.

-Dweblogic.ssl.ListenPort=
portnumber

Enables and specifies the port at which this WebLogic Server listens
for SSL connection requests.

The argument sets the value of the listenPort attribute in the
SSLMBean, which is also accessible from the Administration
Console under Server→Connections→SSL Ports→SSL Listen Port.

If you do not specify a Listen Port, a server uses 7002 as the default.

For more information, refer to Configuring Network Resources.

Table 2-3 Frequently Used Optional Arguments

Argument Description

http://e-docs.bea.com/wls/docs70/admin_domain/network.html
http://e-docs.bea.com/wls/docs70/admin_domain/network.html
http://e-docs.bea.com/wls/docs70/admin_domain/network.html

Starting an Administration Server

Administration Guide 2-21

-Dweblogic.system.
StoreBootIdentity=true

Creates a boot.properties in the server’s root directory. The
file contains the username and an encrypted version of the password
that you used to start the server.

For more information, refer to “Bypassing the Prompt for Username
and Password” on page 2-7.

-Dweblogic.system.
BootIdentityFile=filename

Specifies a boot identity file that contains a username and password.

The filename value must be the fully qualified pathname of a
valid boot identity file. For example:
-Dweblogic.system.BootIdentityFile=C:\BEA\
wlserver7.0\user_config\mydomain\myidentity.pr
op

If you do not specify a filename, a server uses the
boot.properties in the server’s root directory. If there is no
boot identity file, the server prompts you to enter a username and
password.

-Dweblogic.system.
RemoveBootIdentity=true

Removes the boot identity file after a server starts.

-Dweblogic.management.
pkpassword=pkpassword

Specifies the password for retrieving Secure Socket Layer (SSL)
private keys from an encrypted flat file.

Use this option if you store private keys in an encrypted flat file.

-Dweblogic.security.SSL.
trustedCAKeyStore=path

If you use SSL, you can use this argument to specify the certificate
authorities that the server or client trusts. The path value must be a
relative or qualified name to the Sun JKS keystore file (contains a
repository of keys and certificates).

If you do not specify this argument, the WebLogic Server or client
trusts all of the certificates that are specified in
JAVA_HOME\jre\lib\security\cacerts.

We recommend that you do not use the demonstration certificate
authorities in any type of production deployment.

Table 2-3 Frequently Used Optional Arguments

Argument Description

2 Starting and Stopping WebLogic Servers

2-22 Administration Guide

-Dweblogic.security.SSL.
ignoreHostnameVerification=
true

Disables host-name verification.

Include this argument if you want to use the demonstration digital
certificates that are shipped with WebLogic Server.

Note: BEA does not recommend using the demonstration digital
certificates or turning off host name verification in a
production deployment.

If you do not specify this argument, the Host Name Verifier in
WebLogic Server compares the SubjectDN of a digital certificate
with the host name of the server that initiated the SSL connection. If
the SubjectDN and the host name do not match, the SSL connection
is dropped.

-Dweblogic.security.SSL.
HostnameVerifier=
hostnameverifierimplmentation

Specifies the name of a custom Host Name Verifier class. The class
must implement the
weblogic.security.SSL.HostnameVerifier interface.

-Dweblogic.security.SSL.
sessionCache.size=
sessionCacheSize

-Dweblogic.security.SSL.
sessionCache.ttl=
sessionCacheTimeToLive

Modify the default server-session caching size and time-to-live for
SSL session caching.

The sessionCacheSize value specifies the number of items in
session cache and the sessionCacheTimeToLive value
specifies (in seconds) the session cache time-to-live.

For sessionCache.size:

! The minimum value is 1

! The maximum value is 65537

! The default value is 211

For sessionCache.ttl:

! The minimum value is 1

! The maximum value is Integer.MAX_VALUE

! The default value is 600

Table 2-3 Frequently Used Optional Arguments

Argument Description

Starting an Administration Server

Administration Guide 2-23

-Djava.security.manager

-Djava.security.policy=
filename

Enable the Java 2 security manager, which prevents untrusted code
from performing actions that are restricted by the policy file.

The -Djava.security.policy argument specifies a filename
(using a relative or fully-qualified pathname) that contains Java 2
security policies.

The WebLogic Server sample policy file, which you can edit and
use, is WL_HOME\server\lib\weblogic.policy. For more
information, refer to Modifying the weblogic.policy File for General
Use in the Managing WebLogic Security guide.

-Dweblogic.security.anonymous
UserName=guest

Enables support for the guest user account. If you start a
WebLogic Server instance with this argument, you must also add the
guest user to the Authentication provider in the default security
realm.

For more information, refer to Defining Users in the Managing
WebLogic Security guide.

-Dweblogic.management.
startupMode=STANDBY

Starts a server and places it in the STANDBY state. To use this startup
argument, you must configure a server to use a separate
administration port.

For information about administration ports, refer to Configuring a
Domain-Wide Administration Port in the Creating and Configuring
WebLogic Server Domains Guide.

This value overrides any startupMode value specified in the
Administration Console under Server→Configuration→General tab
for the current session only.

If you do not specify this value (either on the command line or in
config.xml), the default is to start in the RUNNING state.

-Dweblogic.ProductionModeEnab
led=
{true | false}

Determines whether a server starts in production mode.

A true value prevents a WebLogic Server from
automatically deploying and updating applications that are in
the domain_name/applications directory.

If you do not specify this option, the assumed value is false.

For more information, refer to “Development Mode vs. Production
Mode” on page 2-26.

Table 2-3 Frequently Used Optional Arguments

Argument Description

http://e-docs.bea.com/wls/docs70/secmanage/java.html#modifying_weblogic_policy_file
http://e-docs.bea.com/wls/docs70/secmanage/java.html#modifying_weblogic_policy_file
http://e-docs.bea.com/wls/docs70/secmanage/security7.html#users
http://e-docs.bea.com/wls/docs70/admin_domain/network.html#administration_port_and_administration_channel
http://e-docs.bea.com/wls/docs70/admin_domain/network.html#administration_port_and_administration_channel

2 Starting and Stopping WebLogic Servers

2-24 Administration Guide

-Dweblogic.management.
discover={true | false}

Determines whether an Administration Server recovers control of a
domain after the server fails and is restarted.

A true value causes an Administration Server to refer to its
running-managed-servers.xml file, which contains
information about the deployment state of deployable modules and
a list of all Managed Servers that are currently running. When the
Administration Server starts with this specified as true, it
communicates with the Managed Servers and informs them that it is
running.

A false value prevents an Administration Server from referring to
this file and thus prevents it from communicating with any
Managed Servers that are currently active in the domain.

Caution: Specify false for this option only in the
development environment of a single server.
Specifying false can cause server instances in
the domain to have an inconsistent set of
deployed modules.

If you do not specify this option, the assumed value is true.

-Dweblogic.Stdout="filename" Redirects the JVM’s standard output stream to a file. You can
specify a pathname that is fully qualified or relative to the WebLogic
Server root directory.

Use this option to keep a record of the messages from the JVM that
are not sent to a WebLogic Server log. For example, a JVM can print
verbosegc messages to standard out but not to the WebLogic
Server log. For more information, refer to “JVM Messages” on page
4-11.

-Dweblogic.Stderr="filename" Redirects the JVM’s standard error stream to a file. You can specify
a pathname that is fully qualified or relative to the WebLogic Server
root directory.

Use this option to keep a record of the error messages from the JVM
that are not sent to a WebLogic Server log. For more information,
refer to “JVM Messages” on page 4-11.

Table 2-3 Frequently Used Optional Arguments

Argument Description

Starting an Administration Server

Administration Guide 2-25

Other Optional Arguments

You can use arguments of the weblogic.Server startup command to set attributes of
the following MBeans:

! ServerMBean. Use the following syntax:
-Dweblogic.attribute-name=value

For example, to set the value of the listenPort attribute,
-Dweblogic.ListenPort=7010

! LogMBean. Use the following syntax:
-Dweblogic.log.attribute-name=value

For example, to set the value of the FileName attribute,
-Dweblogic.log.FileName="C:\logfiles\myServer.log"

! SSLMBean. Use the following syntax:
-Dweblogic.ssl.attribute-name=value

For example, to set the value of the Enable attribute to true,
-Dweblogic.ssl.Enable="true"

! ClusterMBean. Use the following syntax:
-Dweblogic.cluster.attribute-name=value

For example, to set the value of the multicastPort attribute,
-Dweblogic.cluster.MulticastPort="7201"

You can set any attribute that the MBean exposes as a setter method. In the above
syntax statements, attribute-name is the name of an MBean’s setter method without
the set prefix.

For example, the ServerMBean exposes its listen port attribute with the following
setter method:

! setListenPort()

To set the listen port value from the weblogic.Server command, use the following
syntax: -Dweblogic.ListenPort=portnumber

The command-line arguments override any settings currently in the MBean and they
are not persisted to the domain’s config.xml file.

2 Starting and Stopping WebLogic Servers

2-26 Administration Guide

Development Mode vs. Production Mode

You can run WebLogic Server in two different modes: development and production.
You use development mode to test your applications. Once they are ready for a
production environment, you deploy your applications on a server that is started in
production mode.

Development mode enables a WebLogic Server to automatically deploy and update
applications that are in the domain_name/applications directory (where
domain_name is the name of a WebLogic Server domain).

Production mode disables the auto-deployment feature. Instead, you must use the
WebLogic Server Administration Console or the weblogic.Deployer tool. For more
information on deployment, refer to WebLogic Server Deployment in the Developing
WebLogic Server Applications Guide.

By default, a WebLogic Server runs in development mode. To specify the mode for a
server, do one of the following:

! If you use the startWebLogic startup script, edit the script and set the
STARTMODE variable as follows:

" STARTMODE = false enables deployment mode

" STARTMODE = true enables production mode

For more information about startWebLogic, refer to “Starting an
Administration Server Using a Script” on page 2-12.

! If you start a server entering the weblogic.Server command directly on the
command line, use the -Dweblogic.ProductionModeEnabled option as
follows:

" -Dweblogic.ProductionModeEnabled=false enables deployment mode

" -Dweblogic.ProductionModeEnabled=true enables production mode

http://e-docs.bea.com/wls/docs70/programming/deploying.html

Starting an Administration Server

Administration Guide 2-27

Startup Arguments for the Administration Port and the weblogic.Admin Utility

An administration port is a separate port that you must set up if you want to start
server instances in the STANDBY state or if you want to separate administration traffic
from application traffic in your domain.

If you want to use an administration port to carry requests from the weblogic.Admin
utility, you must do the following:

1. Set up SSL and an administration port for all server instances in the domain as
described in "Configuring a Domain-Wide Administration Port" in the Creating
and Configuring WebLogic Server Domains guide.

2. Include the following startup arguments in the weblogic.Server command for
all server instances:
-Dweblogic.security.SSL.trustedCAKeystore=path

-Dweblogic.security.SSL.ignoreHostnameVerification=true

A Server’s Root Directory

All instances of WebLogic Server use a root directory to store runtime data and to
provide the context for any relative pathnames in the server’s configuration.

In addition, an Administration Server uses its root directory as a repository for the
domain’s configuration data (such as config.xml) and security resources (such as the
default, embedded LDAP server), while a Managed Server stores replicated
administrative data in is root directory. (See Figure 2-2.)

http://e-docs.bea.com/wls/docs70/admin_domain/network.html#administration_port_and_administration_channel

2 Starting and Stopping WebLogic Servers

2-28 Administration Guide

Figure 2-2 Root Directory for WebLogic Server Instances

Multiple instances of WebLogic Server can use the same root directory. However, if
your server instances share a root directory, make sure that all relative filenames are
unique. For example, if two servers share a directory and they both specify
.\MyLogFile, then each server instance will overwrite the other’s .\MyLogFile.

To determine the root directory for an Administration Server, WebLogic Server does
the following:

! If the server’s startup command includes the
-Dweblogic.RootDirectory=path option, then the value of path is the root
directory.

Managed Server

Administration Server

config.xml

context

context

Root Directory for
Administration Server

Root Directory for
Managed Server

Contact Administration Server for
security and configuration data

Runtime and

Runtime data

Security data

replicated data

Starting an Administration Server

Administration Guide 2-29

! If -Dweblogic.RootDirectory=path is not specified, and if the working
directory (that is, the directory from which you issue the startup command)
contains a config.xml file, then the working directory is the root directory.

! If neither of the previous statements is true, then the server looks for a
config.xml file in working-directory/config/domain-name. If it finds
config.xml in this directory, then
working-directory/config/domain-name is the root directory.

! If WebLogic Server cannot find a config.xml file, then it offers to create one,
as described in “Using the Default Configuration to Start a Server” on page 29.

To determine the root directory for a Managed Server, WebLogic Server does the
following:

! If the server’s startup command includes the
-Dweblogic.RootDirectory=path option, then the value of path is the root
directory.

! If -Dweblogic.RootDirectory=path is not specified, then the working
directory is the root directory. For example, if you run the weblogic.Server
command from c:\config\MyManagedServer, then
c:\config\MyManagedServer is the root directory.

To make it easier to maintain your domain configurations and applications across
upgrades of WebLogic Server software, it is recommended that the root directory not
be the same as the installation directory for the WebLogic Server software.

Using the Default Configuration to Start a Server

If you run into problems in your environments and want to boot a server with a clean
(default) configuration, you can start WebLogic Server in such a way that it generates
a new config.xml file.

This new config.xml file contains only the default settings, unless you use
command-line arguments to override the defaults. The username and password that
you supply when you start the server becomes the default administrative user.

Note that the server starts as an Administration Server in a new domain. There are no
other servers in this domain, nor are any of your deployments or third-party solutions
included. You can add them as you would add them to any WebLogic domain.

2 Starting and Stopping WebLogic Servers

2-30 Administration Guide

To cause WebLogic Server to generate a new config.xml file, start an Administration
Server using a server root directory that does not already contain a config.xml file.
For example, you can do the following:

1. Make a new directory for your default configuration.

2. Navigate to that directory, and in a command shell, enter the following command:
WL_HOME\server\bin\setWLSEnv.cmd (Windows)
WL_HOME/server/bin/setWLSEnv.sh (UNIX)

3. Enter the following command:

java weblogic.Server

4. When the server prompts you, enter a username and password. This will become
the default administrative user for the domain.

5. When the server prompts you to create a new default configuration, enter y.

The server prompts you to reenter your password. Then it starts a server with the new
configuration.

Starting a Managed Server

Before you can run a WebLogic Server as a Managed Server, you must do the
following:

! Start the domain’s Administration Server.

! Create an entry for that server in the configuration for the domain as described
in Adding a Managed Server to a Domain.

After describing how to add a Managed Server to a domain, this section describes
starting a Managed Sever by completing any of the following tasks:

! Starting a Managed Server from the Windows Start Menu

! Starting a Managed Server Using a Script

! Starting a Managed Server from the Command Line

! Configuring a Connection to the Administration Server

Starting a Managed Server

Administration Guide 2-31

! Specifying the Default Startup State

! Starting a Remote Managed Server

! Starting and Killing All WebLogic Servers in a Domain or Cluster

For information on starting Managed Servers when the Administration Server is
unavailable, refer to Starting a Managed Server When the Administration Server Is Not
Available in the Creating and Configuring WebLogic Server Domains Guide.

Adding a Managed Server to a Domain

To add a Managed Server to a domain, do the following:

1. Start the Administration Server for the domain.

2. Invoke the Administration Console by pointing your browser at
http://hostname:port/console, where hostname is the name of the
machine where the Administration Server is running and port is the listen port
number that you have configured for the Administration Server (default is 7001).

3. If the server runs on a machine that is different from the Administration Server’s
machine, do the following:

a. In the left pane of the Administration Console, click the Machines node.

b. In the right pane, click Configure a new Machine.

c. Enter a name and click Create.

4. In the left pane, click the Servers node.

5. On the right pane, click Configure a new Server and do the following:

a. Enter a name for the server.

Within a given domain, each server name must be unique.

b. If you created a machine, select it for this Managed Server.

c. Click Create.

http://e-docs.bea.com/wls/docs70/admin_domain/failures.html#starting_MS_when_AS_not_accessible
http://e-docs.bea.com/wls/docs70/admin_domain/failures.html#starting_MS_when_AS_not_accessible

2 Starting and Stopping WebLogic Servers

2-32 Administration Guide

6. If you want to set up an administration channel for this server, refer to Configuring
a Domain-Wide Administration Port in the Creating and Configuring WebLogic Server
Domains Guide.

Starting a Managed Server from the Windows Start
Menu

If you use the Configuration Wizard to create a Managed Server (with owning
Administration Server configuration) on a Windows computer, the wizard prompts
you to install the domain in the Windows Start Menu. If you choose yes, then you can
do the following to start the Managed Server:

From the Windows desktop, click Start→Programs→BEA WebLogic Platform
7.0→User Projects→domain_name→Start Server.

The Start Server command opens a command window and calls the
domain_name\startManagedWebLogic.cmd script, which is described in the next
section of this topic. When the server has successfully completed its startup process, it
writes the following message to the command window:

<Notice> <WebLogicServer> <000360> <Server started in RUNNING mode>

Starting a Managed Server Using a Script

Because the arguments needed to start a WebLogic Server from the command line can
be lengthy and prone to error, we recommend that you incorporate the command into
a script.

This section describes the following tasks:

! Using the Configuration Wizard Scripts to Start a Managed Server

! Creating Your Own Script to Start a Managed Server

If you are not using the JVM installed with WebLogic Server, refer to “Using a
Non-Default JVM with WebLogic Server” on page 2-15.

http://e-docs.bea.com/wls/docs70/admin_domain/network.html#administration_port_and_administration_channel
http://e-docs.bea.com/wls/docs70/admin_domain/network.html#administration_port_and_administration_channel

Starting a Managed Server

Administration Guide 2-33

Using the Configuration Wizard Scripts to Start a Managed Server

When you use the Configuration Wizard to create a domain, the wizard creates a script
that you can use to start a Managed Server:

! domain_name\startManagedWebLogic.cmd (Windows)

! domain_name/startManagedWebLogic.sh (UNIX and Windows. On
Windows, this script supports the MKS and Cygnus BASH UNIX shell
emulators.)

where domain_name is the directory in which you located your domain.

Similar to the script for starting an Administration Server, startManagedWebLogic
script sets values for some domain-specific variables. However,
startManagedWebLogic also specifies the listen address of the domain’s
Administration Server, which causes the server to run as a Managed Server and
retrieve its configuration from the Administration Server.

Before you use startManagedWebLogic, open the script in a text editor and make
sure that the SERVER_NAME variable is set to the name of the WebLogic Managed
Server that you wish to start. Also verify that the ADMIN_URL specifies the host (host
name or IP address) and port number where the Administration Server is listening for
requests (default is 7001). For example:

set SERVER_NAME=bigguy

set ADMIN_URL=peach:7001

Instead of opening and modifying startManagedWebLogic, you can enter either of
the following commands:

! domain_name\startWebLogic managed_server_name admin_url

By passing two parameters to the script that starts an Administration Server, you
can start a Managed Server.

! domain_name\startManagedWebLogic managed_server_name admin_url

The above syntax overrides the values of the SERVER_NAME and ADMIN_URL in
the startManagedWebLogic script.

For example, the following command uses startWebLogic.cmd to start a managed
server named myManagedServer using the Administration Server named peach that
listens on port 7001:

c:\user_domains\mydomain\startWebLogic.cmd myManagedServer http://peach:7001

2 Starting and Stopping WebLogic Servers

2-34 Administration Guide

For a complete description of the variables and Java options that can be specified in
startManagedWebLogic, see Table 2-1 under “Starting an Administration Server
Using a Script” on page 2-12.

For more information on configuring a connection to the Administration Server, refer
to “Configuring a Connection to the Administration Server” on page 2-35.

When the server has successfully completed its startup process, it writes the following
message to the command window:

<Notice> <WebLogicServer> <000360> <Server started in RUNNING mode>

Creating Your Own Script to Start a Managed Server

If you use some other means to create a domain (such as the Administration Console),
you can create your own startup script that starts a Managed Server in your domain.
The steps for creating such a script are the same as the steps described in “Creating
Your Own Script to Start an Administration Server” on page 2-13 with the following
addition:

You must set a value for a variable named ADMIN_URL. For information on configuring
a connection to the Administration Server, refer to “Configuring a Connection to the
Administration Server” on page 2-35.

When the server has successfully completed its startup process, it writes the following
message to the command window:

<Notice> <WebLogicServer> <000360> <Server started in RUNNING mode>

Starting a Managed Server from the Command Line

To start a WebLogic Managed Server from a command line, you use same command
and arguments that you use for an Administration Server plus one of the following
arguments, which configures a connection to the Administration Server:

! -Dweblogic.management.server=host:port

! -Dweblogic.management.server=http://host:port

! -Dweblogic.management.server=https://host:port

Starting a Managed Server

Administration Guide 2-35

For information on configuring a connection to the Administration Server, refer to
“Configuring a Connection to the Administration Server” on page 2-35.

For information on the command and arguments for starting an Administration Server,
refer to “Using the weblogic.Server Command” on page 2-16.

When the server has successfully completed its startup process, it writes the following
message to the command window:

<Notice> <WebLogicServer> <000360> <Server started in RUNNING mode>

Configuring a Connection to the Administration Server

Regardless of whether you start a Managed Server from the Windows Start menu, a
script, or the weblogic.Server command, you must make sure that the Managed
Server specifies the correct listen address of the Administration Server. A Managed
Server uses this address to retrieve its configuration from the Administration Server.

Note: The first time you start a Managed Server, it must be able to contact the
Administration Server. Thereafter you can configure Managed Servers to start
even if the Administration Server is unavailable. For more information, refer
to Starting a Managed Server When the Administration Server Is Not
Available in the Creating and Configuring WebLogic Server Domains Guide.

You can express the listen address in one of the following formats:

! host:port

where host is the name or IP address of the machine where the Administration
Server is running and port is the Administration Server's default, non-SSL
listen port. (By default the Administration Server's listen port is 7001.)

With this format, the Managed Server uses its default protocol (t3) to access the
Administration Server. To modify the default protocol, do the following:

a. Start the Administration Server.

b. From the Administration Console, in the left pane, expand the Servers node and
click the name of the Managed Server.

c. In the right pane, click Connections→Protocols.

d. The Default Protocol field determines the default protocol for a server.

http://e-docs.bea.com/wls/docs70/admin_domain/failures.html#starting_MS_when_AS_not_accessible
http://e-docs.bea.com/wls/docs70/admin_domain/failures.html#starting_MS_when_AS_not_accessible

2 Starting and Stopping WebLogic Servers

2-36 Administration Guide

! http://host:port

where host is the name or IP address of the machine where the Administration
Server is running and port is the Administration Server's default, non-SSL
listen port. (By default the Administration Server's listen port is 7001.)

To verify the host IP address, name, and default listen port of the Administration
Server, start the Administration Server in a command shell. When the server
successfully finishes its startup cycle, it prints to standard out messages that are
similar to the following (among other messages):

<Apr 19, 2002 9:24:19 AM EDT> <Notice> <WebLogicServer>
<000355> <Thread "Listen Thread.Default" listening on port

7001, ip address 11.12.13.141>

...

<Apr 19, 2002 9:24:19 AM EDT> <Notice> <WebLogicServer>
<000331> <Started WebLogic Admin Server "myserver" for domain
"mydomain" running in Development Mode>

You can change the IP address and listen port values from the Administration
Console on a server’s Configuration→General tab.

! https://host:port

If you have configured Secure Socket Layer (SSL) communication for the
Managed Server and Administration Server, you can use this format. In this
format, host is the name or IP address of the machine where the Administration
Server is running and port is the Administration Server's SSL listen port.

If you set up the Administration Server to use an Administration Port, port
must specify the Administration Port.

For information on enabling SSL, refer to Configuring the SSL Protocol in the
Administration Console Online Help. For more information on Administration
Ports, refer to Configuring a Domain-Wide Administration Port in the Creating and
Configuring WebLogic Server Domains Guide.

Because the Managed Server receives its configuration from the Administration
Server, the Administration Server specified must be in the same domain as the
Managed Server.

http://e-docs.bea.com/wls/docs70/ConsoleHelp/security_7x.html#sslprotocol
http://e-docs.bea.com/wls/docs70/admin_domain/network.html#administration_port_and_administration_channel

Starting a Managed Server

Administration Guide 2-37

Specifying the Default Startup State

To set up a server so that the weblogic.Server command (or a script that executes
the command) starts it in STANDBY by default, do the following (starting a server in
STANDBY requires you to set up an Administration Port for the server):

1. In the Administration Console, expand the Servers node in the left pane. A list of
servers appears under the Servers node.

2. Select a specific server in the left pane.

3. On the General tab, in the Startup Mode field, enter STANDBY.

4. Click Apply to save your changes.

Starting a Remote Managed Server

If a Node Manager is running on the host machine of a Managed Server, you can start
the Managed Server from a remote host using the Administration Console or the
weblogic.Admin utility. Node Manager is a standalone Java program provided with
WebLogic Server that enables you to start and stop remote Managed Servers.

For information about starting a remote server from the Administration Console, refer
to Starting a Server and Starting a Server in the STANDBY State in the Administration
Console Online Help.

For information on using the weblogic.Admin command utility, refer to “START” on
page B-23 and “STARTINSTANDBY” on page B-25.

For information about the Node Manager, refer to Managing Server Availability with
Node Manager in the Creating and Configuring WebLogic Server Domains Guide.

http://e-docs.bea.com/wls/docs70/ConsoleHelp/servers.html#server_start
http://e-docs.bea.com/wls/docs70/ConsoleHelp/servers.html#server_start_standby
http://e-docs.bea.com/wls/docs70/admin_domain/nodemgr.html
http://e-docs.bea.com/wls/docs70/admin_domain/nodemgr.html

2 Starting and Stopping WebLogic Servers

2-38 Administration Guide

Starting and Killing All WebLogic Servers in a Domain or
Cluster

If the Node Manager is running on the host machines of your Managed Servers, you
can use the Administration Console to start all of the Managed Servers in the domain
or in a specific cluster. You cannot start the Administration Server from the
Administration Console.

You can also use the Administration Console to force a shutdown (kill) of all
WebLogic Servers in a domain or in a cluster. The kill command initiates a forced
shutdown for Managed Servers and the Administration Server. It does not require the
Node Manager.

This section describes the following tasks:

! Starting All Managed Servers in a Domain

! Starting All Managed Servers in a Cluster

! Killing All Servers in a Domain

! Killing All Servers in a Cluster

For information about the Node Manager, refer to Managing Server Availability with
Node Manager in the Creating and Configuring WebLogic Server Domains Guide.

Starting All Managed Servers in a Domain

To start all of the Managed Servers in the active domain, do the following:

1. Start the Administration Server for the domain.

2. Start the Node Manager on all machines in the domain. For more information,
refer to Starting Node Manager in the Creating and Configuring WebLogic
Server Domains Guide.

3. From the Administration Console, right click on the name of the active domain in
the left panel.

4. Select Start this domain...

http://e-docs.bea.com/wls/docs70/admin_domain/nodemgr.html
http://e-docs.bea.com/wls/docs70/admin_domain/nodemgr.html
http://e-docs.bea.com/wls/docs70/admin_domain/nodemgr.html#starting_node_manager

Starting a Managed Server

Administration Guide 2-39

5. When the Administration Console prompts you to confirm the command, click
Yes.

The Administration Console displays a page that lists the name of each
WebLogic Server in the domain.

6. To view the result of the start operation for a server, click its name.

Starting All Managed Servers in a Cluster

To start all of the Managed Servers in a cluster, do the following:

1. Start the Administration Server for the domain.

2. Start the Node Manager on all machines in the cluster. For more information,
refer to Starting Node Manager in the Creating and Configuring WebLogic
Server Domains Guide.

3. From the Administration Console, right click on the name of the cluster in the left
panel.

4. Select Start this cluster...

5. When the Administration Console prompts you to confirm the command, click
Yes.

The Administration Console displays the Tasks page, which displays the status
of the startup task for each Managed Server in the cluster.

6. To view details about a server’s startup status, on the Tasks page, click the startup
task’s name. Then click the Details tab.

Killing All Servers in a Domain

To initiate a force shutdown (kill) for all servers in a domain, do the following:

1. From the Administration Console, right click on the name of the cluster in the left
panel.

2. Kill this domain...

3. When the Administration Console prompts you to confirm the command, click
Yes.

http://e-docs.bea.com/wls/docs70/admin_domain/nodemgr.html#starting_node_manager

2 Starting and Stopping WebLogic Servers

2-40 Administration Guide

Managed Servers and the Administration Server immediately stop all work items
and shut down. If a Managed Server does not respond, and if you used the Node
Manager to start the server, the Node Manager kills the server.

4. To confirm that the domain is killed, review the output in the shell process that
runs the Administration Server. It displays an ALERT message that indicates the
shutdown sequence has been initiated, and then it exits the process.

Killing All Servers in a Cluster

To initiate a force shutdown (kill) for servers in a cluster, do the following:

1. From the Administration Console, right click on the name of the cluster in the left
panel.

2. Kill this domain...

3. When the Administration Console prompts you to confirm the command, click
Yes.

All servers in the cluster immediately stop all work items and shut down. If a
Managed Server does not respond, and if you used the Node Manager to start the
server, the Node Manager kills the server.

4. To confirm that the cluster is killed, do one of the following:

" If the Administration Server is not part of the cluster, in the left pane, click
the Tasks node. On the Tasks page, click the shutdown task’s name. Then
click the Details tab.

" If the Administration Server is part of the cluster, review the output in the
shell process that runs the Administration Server. It displays an ALERT

message that indicates the shutdown sequence has been initiated, and then it
exits the process.

Shutting Down WebLogic Servers

You can do any of the following to shut down a WebLogic Server:

! Using the Administration Console:

Configuring Startup and Shutdown Classes

Administration Guide 2-41

" Shutting Down a Server

" Forcing Shutdown of a Server

! Using the weblogic.Admin utility:

" “SHUTDOWN” on page B-21

" “FORCESHUTDOWN” on page B-9

When you initiate a graceful shutdown, the server notifies subsystems to complete all
in-work requests. After the subsystems complete their work, the server stops.

When you initiate a forced shutdown, the server instructs subsystems to immediately
drop in-work requests. If you force a Managed Server to shut down and it fails to
respond, and if you started the server with the Node Manager, the Node Manager kills
the server process.

By default, the server waits no more than 40 seconds for all subsystems to successfully
stop. After the number of seconds expires, the server does one of the following:

! If the timeout occurs when the server is in the RUNNING state, the server returns a
message to standard out. To shut down the server after this occurs, you must
issue a force shutdown command.

! If the timeout occurs when the server is in the STANDBY or SHUTTING_DOWN
state, it kills all processes and shuts down.

For information on changing this default period, refer to Setting the Timeout Period for
LifeCycle Operations in the Administration Console Online Help.

Configuring Startup and Shutdown Classes

You can use startup and shutdown classes to configure a WebLogic Server to perform
tasks when you start or gracefully shut down the server. A startup class is a Java
program that is automatically loaded and executed when a WebLogic Server is started
or restarted.

http://e-docs.bea.com/wls/docs70/ConsoleHelp/servers.html#server_shutdown
http://e-docs.bea.com/wls/docs70/ConsoleHelp/servers.html#server_force_shutdown
http://e-docs.bea.com/wls/docs70/ConsoleHelp/servers.html#setting_timeout_period_for_lifecycle_operations
http://e-docs.bea.com/wls/docs70/ConsoleHelp/servers.html#setting_timeout_period_for_lifecycle_operations

2 Starting and Stopping WebLogic Servers

2-42 Administration Guide

By default, startup classes are loaded and executed after all other server subsystems
have initialized and after the server deploys modules. For any startup class, you can
override the default and specify that the server loads and executes it after the server
deploys JDBC connection pools and before it deploys Web applications and EJBs.

A shutdown class is a Java program that is automatically loaded and executed when
the WebLogic Server is shut down either from the Administration Console or the
weblogic.admin shutdown command. For more information about when a server
invokes startup and shutdown classes, refer to “The Server Lifecycle” on page 2-1.

To use startup or shutdown classes, you must configure and assign these classes to one
or more servers. To configure a class from the Administration Console, refer to Startup
and Shutdown Classes in the Administration Console Online Help.

Setting Up a WebLogic Server as a Windows
Service

If you want a WebLogic Server to start automatically when you boot a Windows host,
you can set up the server as a Windows service.

For each server that you set up as a Windows service, WebLogic Server creates a key
in the Windows Registry under
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services. The registry
entry contains such information as the name of the server and other startup arguments.
When you start the Windows host, it passes the information in the registry to the JVM.

This section describes the following tasks:

! Setting Up a Windows Service

! Using a Non-Default JVM with a Windows Service

! Verifying the Setup

! Using the Control Panel to Stop or Restart the Service

! Removing a Server as a Windows Service

! Changing Startup Credentials for a Server Set Up as a Windows Service

http://e-docs.bea.com/wls/docs70/ConsoleHelp/startup_shutdown.html
http://e-docs.bea.com/wls/docs70/ConsoleHelp/startup_shutdown.html

Setting Up a WebLogic Server as a Windows Service

Administration Guide 2-43

Setting Up a Windows Service

WebLogic Server includes a master script,
WL_HOME\server\bin\installSvc.cmd, that you can use to set up a server instance
as a Windows Service. Instead of invoking the installSvc.cmd master script
directly, create your own script that supplies values for a set of variables and then calls
the installSvc.cmd script:

1. In the root directory for the domain’s Administration Server (the directory that
contains the domain’s config.xml file), create a script that is similar to the one in
Listing 2-1.

Listing 2-1 Script for Setting Up a Server as a Windows Service

@rem ***

@rem This script sets up a WebLogic Server instance as a Windows service.
@rem It sets variables to specify the domain name, server name, and optionally,
@rem user credentials, startup mode, and arguments for the JVM. Then the script
@rem calls the %WL_HOME%\server\bininstallSvc.cmd script.

@rem ***

echo off
SETLOCAL

@rem Set DOMAIN_NAME to the name of the domain in which you have defined
@rem the server instance.
set DOMAIN_NAME=myWLSdomain

@rem Set USERDOMAIN_HOME to the root directory of the domain’s Administration
@rem Server, which is the directory that contains the domain’s config.xml file.
@rem For more information about the root directories for servers, refer to
@rem “A Server’s Root Directory” on page 2-27.
set USERDOMAIN_HOME=D:\bea\user_projects\myWLSdomain

@rem Set SERVER_NAME to the name of the existing server instance that you want
@rem set up as a Windows service.
set SERVER_NAME=myWLSserver

@rem Optional: one way of bypassing the username and password prompt during
@rem server startup is to set WLS_USER to your system username and WLS_PW to
@rem your password. The script encrypts the login credentials and stores them
@rem in the Windows registry.
@rem The disadvantage to this method is that changing the username or password

2 Starting and Stopping WebLogic Servers

2-44 Administration Guide

@rem for the server instance requires you to delete the Windows service and set
@rem up a new one with the new username and password.
@rem If you use a boot identity file to bypass the prompt, you can change the
@rem login credentials without needing to modify the Windows service. For more
@rem information about bypassing the username and password prompt, refer to
@rem “Bypassing the Prompt for Username and Password” on page 2-7.
set WLS_USER=
set WLS_PW=

@rem Optional: set Production Mode. When STARTMODE is set to true, the server
@rem starts in Production Mode. When not specified, or when set to false, the
@rem server starts in Development Mode. For more information about
@rem Development Mode and Production Mode, refer to
@rem “Development Mode vs. Production Mode” on page 2-26.
set STARTMODE=

@rem Set JAVA_OPTIONS to the Java arguments you want to pass to the JVM. Separate
@rem multiple arguments with a space.
@rem If you are using this script to set up a Managed Server as a Windows service,
@rem you must include the -Dweblogic.management.server argument, which
@rem specifies the host name and listen port for the domain’s Administration
@rem Server. For example:
@rem set JAVA_OPTIONS=-Dweblogic.management.server=http://adminserver:7501
@rem For more information, refer to
@rem “Starting a Managed Server from the Command Line” on page 2-34.
set JAVA_OPTIONS=

@rem Optional: set JAVA_VM to the java virtual machine you want to run.
@rem For example:
@rem set JAVA_VM=-server
set JAVA_VM=

@rem Set MEM_ARGS to the memory args you want to pass to java. For example:
@rem set MEM_ARGS=-Xms32m -Xmx200m
set MEM_ARGS=

@rem Call Weblogic Server service installation script. Replace <WL_HOME> with
@rem the absolute pathname of the directory in which you installed WebLogic
@rem Server. For example:
@rem call "D:\bea\weblogic700\server\bin\installSvc.cmd"
call "<WL_HOME>\server\bin\installSvc.cmd"

ENDLOCAL

Setting Up a WebLogic Server as a Windows Service

Administration Guide 2-45

2. If you set up both an Administration Server and a Managed Server to run as
Windows services on the same computer, you can specify that the Managed
Server starts only after the Administration Server has started by doing the
following:

a. In a text editor, open the WL_HOME\server\bin\installSvc.cmd master
script.

The last command in this script invokes the beasvc utility.

b. Add the following arguments to the command that invokes the beasvc utility:

" -depend: service_names
Comma-separated list of services that must start before this service starts.

" -delay: delay_milliseconds
Number of milliseconds to delay the JVM thread.
The -delay argument is optional, but recommended to make sure that an
Administration Server has time to complete its startup cycle before any
Managed Servers start.

For example, the modified beasvc invocation will resemble the following:

"%WL_HOME%\server\bin\beasvc" -install
-svcname:"beasvc %DOMAIN_NAME%_%SERVER_NAME%"
-depend: "beasvc myDomain_myAdminServer"
-delay: "800"
-javahome:"%JAVA_HOME%" -execdir:"%USERDOMAIN_HOME%"
-extrapath:"%WL_HOME%\server\bin" -password:"%WLS_PW%"
-cmdline:%CMDLINE%

3. Save the script and run it from the server’s root directory.

If the script runs successfully, it creates a Windows service named
beasvc DOMAIN_NAME_SERVER_NAME and prints a line to standard out that is
similar to the following:
beasvc mydomain_myserver installed.

4. If you modified the WL_HOME\server\bin\installSvc.cmd master script,
undo your modifications so the script can be used to set up other server instances.

Note: If you use the Domain Configuration Wizard to create a domain and server,
some of the domain templates prompt you to set up the server as a Windows
service. You can choose yes to set up an Administration Server as a Windows
service. However, if you want to set up a Managed Server with a dependency,
you must choose no in the wizard and complete the steps in this section.

2 Starting and Stopping WebLogic Servers

2-46 Administration Guide

Regardless of whether you choose yes or no, if the domain template includes
a prompt for setting up a service, it will create a script named
installService.cmd in the server’s root directory, which is similar to the
script in Listing 2-1, “Script for Setting Up a Server as a Windows Service,”
on page 2-43.

Using a Non-Default JVM with a Windows Service

If you are not using the JVM installed with WebLogic Server, you must edit the master
script, WL_HOME\server\bin\installSvc.cmd, so that the JAVA_HOME variable
specifies the correct location of the JVM on your system. In addition, if the JVM does
not support an option to run in a HotSpot mode, then you must remove the %JAVA_VM%
variable from the command that invokes the JVM.

To edit the master script so that it installs server instances that use a non-default JVM,
do the following:

1. Create a backup copy of WL_HOME\server\bin\installSvc.cmd.

2. Open installSvc.cmd in a text editor.

3. Edit the set JAVA_HOME command to specify the home directory of your JVM.
For example, set JAVA_HOME=C:\JRockit\JRE\1.3.1

4. If the JVM does not support a HotSpot mode, remove %JAVA_VM% from the
command that invokes the JVM, which is the line near the end of the file. For
example, remove the bold text from the following command:
"%JAVA_HOME%\bin\java" %JAVA_VM% %MEM_ARGS% %JAVA_OPTIONS%
-Dweblogic.Name=%SERVER_NAME% -Dbea.home="C:\bea"
-Dweblogic.management.username=%WLS_USER%
-Dweblogic.management.password=%WLS_PW%
-Dweblogic.ProductionModeEnabled=%STARTMODE%
-Djava.security.policy="%WL_HOME%\server\lib\weblogic.policy"

weblogic.Server

Verifying the Setup

To verify that you successfully set up a WebLogic Server as a Windows service, do the
following:

Setting Up a WebLogic Server as a Windows Service

Administration Guide 2-47

1. Open a command window and enter the following command:
set PATH=WL_HOME\server\bin;%PATH%

2. Navigate to the directory immediately above your domain directory. For example,
to verify the setup for BEA_HOME\user_domains\mydomain, navigate to
BEA_HOME\user_domains.

3. Enter the following command:
beasvc -debug "yourServiceName"

For example, beasvc -debug "beasvc mydomain_myserver".

If your setup was successful, the beasvc -debug command starts your server. If the
script returns an error similar to the following, make sure that you specified the correct
service name:
Unable to open Registry Key
System\CurrentControlSet\Services\beasvc
example_examplesServer\Parameters

Using the Control Panel to Stop or Restart the Service

After you set up a server to run as a Windows service, you can use the Service Control
Panel to stop and restart the server:

1. Select Start→Settings→Control Panel.

2. On Windows 2000, open the Administrative Tools Control Panel. Then open the
Services Control Panel.

On Windows NT, open the Services Control Panel directly from the Control
Panel window.

3. In the Services Control Panel, find the service that you created. By default, the
service name starts with beasvc.

4. Right-click the service name and select commands from the shortcut menu.

Removing a Server as a Windows Service

To remove a server as a Windows service, do the following:

2 Starting and Stopping WebLogic Servers

2-48 Administration Guide

1. In the root directory of the domain’s Administration Server (the directory that
contains the doman’s config.xml file), create a script similar to the one in
Listing 2-2.

Listing 2-2 Script to Remove a Windows Service

@rem ***

@rem This script is used to uninstall a WebLogic Server service for a
@rem server instance that is defined for the current domain.
@rem The script simply sets the DOMAIN_NAME and SERVER_NAME variables and calls
@rem the %WL_HOME%\server\bin\uninstallSvc.cmd script.

@rem ***

echo off
SETLOCAL

@rem Set DOMAIN_NAME to the name of the domain that contains the server.
set DOMAIN_NAME=myWLSdomain

@rem Set SERVER_NAME to the name of the server that you want to remove as
@rem a service.
set SERVER_NAME=myWLSserver

@rem Call Weblogic Server service uninstallation script. Replace <WL_HOME> with
@rem the absolute pathname of the directory in which you installed WebLogic
@rem Server. For example:
@rem call "D:\bea\weblogic700\server\bin\uninstallSvc.cmd"
call "<WL_HOME>\server\bin\uninstallSvc.cmd"

ENDLOCAL

2. Save and run the script.

If the removal script runs successfully, its output in the command window includes a
line similar to the following:
beasvc mydomain_myserver removed.

Setting Up a WebLogic Server as a Windows Service

Administration Guide 2-49

Changing Startup Credentials for a Server Set Up as a
Windows Service

To change passwords or add users for any WebLogic Server, you must start the server
and use the security realm’s administration tools. If you use the security realm that is
installed with WebLogic Server, you can use the Administration Console. If you use a
third-party security realm, you must use the administration tools provided in that
realm.

After you change the security data, you must do the following to change the arguments
that are passed to the server during the startup cycle:

! If you set up the Windows service to retrieve usernames and passwords from a
boot identity file, you can overwrite the existing file with a new one that
contains the new username and password. For information about creating a boot
identity file, refer to “Creating a Boot Identity File” on page 2-8.

! If you set up the Windows service to retrieve usernames and passwords from the
Windows registry, then you must remove the Windows service and create a new
one that uses your new username or password:

a. Uninstall the WebLogic Server as a Windows service. For more information,
refer to “Removing a Server as a Windows Service” on page 2-47.

b. In a text editor, open the script that you used the install the service and enter
your new password as the value for the set WLS_USER and/or set WLS_PW

directive. WebLogic encrypts this value in the Windows Registry.

After you run the script, you can remove the password from this file.

c. Save and execute the script. This will create a new service with the updated
password.

2 Starting and Stopping WebLogic Servers

2-50 Administration Guide

The WebLogic Server Windows Service Program
(beasvc.exe)

The installSvc.cmd and uninstallSvc.cmd master scripts are convenience
wrappers for the WebLogic Server Windows Service program, beasvc.exe. You can
modify those scripts or create your own scripts that invoke beasvc.exe and install
WebLogic Servers or Node Managers as Windows services. If you want to uninstall a
service, you can invoke beasvc.exe directly without creating a script.

For information on how to install or remove the Node Manager as a Windows service,
see Starting Node Manager as a Windows Service in the Creating and Configuring
WebLogic Server Domains Guide.

beasvc.exe is located in WL_HOME\server\bin and your script can pass any of the
following parameters:

–install

Install the specified service.

–remove

Remove the specified service.

–svcname: service_name

The user-specified name of the service to be installed or removed.

–javahome: java_directory

Root directory of the Java installation. The start command will be formed by
appending \bin\java to java_directory.

–execdir: domain_name

Directory where this startup command will be executed.

–extrapath: additional_env_settings

Additional path settings that will be prepended to the path applicable to this
command execution.

–help

Prints out the usage for the beasvc.exe command.

-depend: service_names
Comma-separated list of services that this service depends on.

-delay: delay_milliseconds
Number of milliseconds to delay the JVM thread.

http://e-docs.bea.com/wls/docs70/admin_domain/nodemgr.html#starting_node_manager_windows_service

Setting Up a WebLogic Server as a Windows Service

Administration Guide 2-51

–cmdline: variable

The java command-line parameters to be used when starting a WebLogic
Server as a Windows service. For example:
-cmdline:"-ms64m -mx64m
-classpath C:\bea\wweblogic7.0\lib\weblogic.jar
-Dweblogic.Name=myserver weblogic.Server"

Win32 systems have a 2K limitation on the length of the command line. If the classpath
setting for the Windows service startup is very long, the 2K limitation could be
exceeded. To work around this limitation, you can do the following when using the
beasvc command:

1. Place the classpath values in a text file.

2. Place your beasvc command in a script. In this script, assign the parameters for
the beasvc command to a variable. For the classpath parameter, use the
following syntax:
-classpath @filename

3. Then, specify the variable as the value of the -cmdline parameter. For example:

set CMDLINE="-ms64m -mx64m -Dweblogic.Name=myserver
-Dbea.home=\"c:\bea\" -classpath @C:\temp\myclasspath.txt
weblogic.Server"

"c:\bea\weblogic700\server\bin\beasvc" -install

-svcname:myserver -cmdline:%CMDLINE%

4. Run the script.

2 Starting and Stopping WebLogic Servers

2-52 Administration Guide

Administration Guide 3-1

CHAPTER

3 Protecting System
Administration
Operations

To leverage individual skills, many Web development teams divide system
administration responsibilities into distinct roles. Each project might give only one or
two team members permission to deploy components, but allow all team members to
view the WebLogic Server configuration. A WebLogic Server supports this role-based
development by providing four global roles that determine access privileges for system
administration operations: Admin, Deployer, Operator, and Monitor.

All WebLogic Server system administration operations are implemented via a set of
MBeans. An MBean is a type of Java object that is specified in the Java Management
Extensions (JMX). When a user tries to invoke operations on these
system-administration MBeans, the WebLogic Server determines whether the user
belongs to a role that is permitted to carry out the operation. For more information on
MBeans that configure WebLogic Servers, refer to “System Administration
Infrastructure” on page 1-5.

This topic contains the following sections:

! Operations Available to Each Role

! Protected User Interfaces

! Permissions for Starting and Shutting Down a WebLogic Server

Note: These role-based permissions replace access control lists (ACLs) for securing
WebLogic Server MBeans, which were used before Release 7.0.

3 Protecting System Administration Operations

3-2 Administration Guide

Operations Available to Each Role

Table 3-1 describes the four global roles that WebLogic Server uses to determine
access privileges for system administration operations, and the permissions granted to
each role.

No user, regardless of role membership, can view the non-encrypted version of an
encrypted attribute.

Table 3-1 Global Roles and Permissions

Global Role Permissions

Admin View the server configuration, including the encrypted value of
encrypted attributes.

Modify the entire server configuration.

Deploy applications, EJBs, startup and shutdown classes, J2EE
Connectors, and Web Service components, and edit deployment
descriptors.

Start, resume, and stop servers by default. “Permissions for Starting
and Shutting Down a WebLogic Server” on page 3-8, provides more
information.

Deployer View the server configuration, except for encrypted attributes.

Deploy applications, EJBs, startup and shutdown classes, J2EE
Connectors, and Web Service components, and edit deployment
descriptors.

Operator View the server configuration, except for encrypted attributes.

Start, resume, and stop servers by default. “Permissions for Starting
and Shutting Down a WebLogic Server” on page 3-8, provides more
information.

Monitor View the server configuration, except for encrypted attributes.

This role effectively provides read-only access to the
Administration Console, weblogic.Admin utility and MBean
APIs.

Operations Available to Each Role

Administration Guide 3-3

While you can create any number of additional roles for use in your applications, only
the roles in Table 3-1 have permission to view or change the configuration of a
WebLogic Server. To define a role, use the Administration Console. For more
information, refer to Granting Roles in the Managing WebLogic Security guide.

Default Group Associations

By default, a WebLogic Server defines four groups that correspond to the four global
roles. By adding a username to one of these groups, the user will also be in the
corresponding global role. (See Table 3-2.)

Membership in a group is a static identity that a system administrator assigns, while
membership in a role can be dynamically calculated based on data such as group
membership, username, or the time of day. (See Figure 3-1.)

Table 3-2 Default Group Associations

Members of This Group Are In This Role

Administrators Admin

Deployers Deployer

Operators Operator

Monitors Monitor

http://e-docs.bea.com/wls/docs70/secmanage/security7.html#roles

3 Protecting System Administration Operations

3-4 Administration Guide

Figure 3-1 Relationship of Group and Role Membership

For example, if you add a user to the group named Deployers, by default the user will
also belong to the Deployer role. You can, however, modify the default definition of
the Deployer role so that a user named User1 is in the Deployer role from 6am to 6pm,
and a user named User2 is in the role from 6pm to 6am.

When you use the Configuration Wizard to create WebLogic Server configuration, the
administrative user that you create is in the Administrators group, and, therefore, the
Admin role. The Deployers, Operators, and Monitors groups are empty.

For information on creating users and assigning them to roles, refer to Defining Users
and Granting Roles in the Managing WebLogic Security guide.

Protected User Interfaces

You can use the following user interfaces (UIs) to perform system administration
operations:

on user ID or group ID and

Members of Role

Members of
Corresponding Group

Static list of group and
user IDs

Static list of user IDs

Static list of additional groups

Calculated membership based

time/date.

http://e-docs.bea.com/wls/docs70/secmanage/security7.html#users
http://e-docs.bea.com/wls/docs70/secmanage/security7.html#roles

Overlapping Permissions for System Administration MBeans and Policies on Resourc-

Administration Guide 3-5

! The Administration Console. For information about using this UI, refer to the
Administration Console Online Help.

Note: To use the Administration Console, you must belong to one of the groups
and roles that are described in Table 3-2. The other user interfaces do not
require you to belong to one of the default groups.

! The weblogic.Admin command. For information about using this UI, refer to
Appendix B, “WebLogic Server Command-Line Interface Reference.”

! MBean APIs. For information about using these APIs, refer to the Programming
WebLogic JMX Services guide.

If you attempt to invoke an operation for which you do not have permission, the
WebLogic Server instance throws a
weblogic.management.NoAccessRuntimeException. The server instance sends
this exception to its log file, and you can configure a server to send exceptions to
standard out. If you invoke the command from the Administration Console, you see an
Access denied error.

Overlapping Permissions for System
Administration MBeans and Policies on
Resources

For a few, specific operations, the MBean permissions described in previous sections
overlap with another security scheme, policies on resources. In these cases, a user must
satisfy both security schemes to invoke the operation.

This section contains the following subsections:

! Resources and Policies

! Working with Policies

! Maintaining a Consistent Security Scheme

http://e-docs.bea.com/wls/docs70/ConsoleHelp/index.html
http://e-docs.bea.com/wls/docs70/jmx/index.html
http://e-docs.bea.com/wls/docs70/jmx/index.html

3 Protecting System Administration Operations

3-6 Administration Guide

Resources and Policies

A WebLogic Server instance, the server’s subsystems (such as Deployment Manager
and JDBC Container), and the items that the subsystems control (such as Web
applications and JDBC connection pools) are called resources. Each WebLogic Server
resource exposes a set of its operations through its own instance of the
weblogic.security.spi.Resource interface.

A policy is a set of criteria that determines who can access the Resource interface for
a resource. For example, the Resource interface for a server resource exposes
operations that start, shut down, lock, or unlock the server instance. You can define a
policy that determines who can access the server’s Resource interface and its
methods.

In some cases, the operations that the Resource interface exposes change attributes of
WebLogic Server MBeans. In these cases, the permissions specified by the policy must
agree with the role-based protections of MBean attributes. (See Figure 3-2.)

Figure 3-2 Overlapping Permissions for Server Policies and MBeans

Resource Interface Server Policy

isAccessAllowed()

Server MBeans Server

stop()
lock()
unlock()

start()

isUserInRole()

Overlapping Permissions for System Administration MBeans and Policies on Resourc-

Administration Guide 3-7

Working with Policies

You can view, create, or modify policies on resources from the Administration
Console. For example, to view the policy on a server resource, right click the name of
a WebLogic Server and choose Define Policy. As illustrated in Figure 3-3, the default
policy for a server resource grants access to the Admin and Operator role.

Figure 3-3 Default Policy for a Server Resource

Note that a server resource inherits a default policy. If you want to change the inherited
policy statement for all WebLogic Server instances in a domain, do the following from
the Administration Console:

1. Right-click the Servers node.

2. From the shortcut menu, click Define Policy.

3. In the right pane, modify the policy and click Apply.

For more information on creating and modifying policies, refer to Setting Protections
for WebLogic Resources in the Managing WebLogic Security guide.

http://e-docs.bea.com/wls/docs70/secmanage/security7.html#securitypolicies
http://e-docs.bea.com/wls/docs70/secmanage/security7.html#securitypolicies

3 Protecting System Administration Operations

3-8 Administration Guide

Maintaining a Consistent Security Scheme

The default configuration of groups, roles, server policies, and MBean permissions
work together to create a consistent security scheme. You can, however, make
modifications that limit access in ways that you do not intend.

For example, if you add a user to the Operator role but fail to add the Operator role to
the policy of a server resource, the Operator can call MBean methods that are used in
the startup and shutdown sequence, but cannot use any server-resource operations to
start or stop a server.

To keep MBean security synchronized with the permissions granted by policies,
consider the following when you create or modify a policy:

! Consider always giving the Admin role access to a resource.

! For a policy on a server, consider adding the Operator role.

! For a policy on a deployable resource (such as an EJB, Application, Connector,
or Startup/Shutdown class), consider adding the Deployer role.

In addition, note that if a user does not belong to one of the four groups described in
Table 3-2, the user cannot log in to the Administration Console.

Permissions for Starting and Shutting Down
a WebLogic Server

WebLogic Server enables two techniques for starting and shutting down server
instances, the weblogic.Server command and the Node Manager. Because the
underlying components for weblogic.Server and Node Manager are different, the
two commands use different authentication methods.

This section contains the following subsections:

! Permissions for Using the weblogic.Server Command

! Permissions for Using the Node Manager

Permissions for Starting and Shutting Down a WebLogic Server

Administration Guide 3-9

! Shutting Down a WebLogic Server

Permissions for Using the weblogic.Server Command

The weblogic.Server command, which starts a WebLogic Server from a local host
machine, calls methods that are protected by a policy on the server resource. To use
this command, you must satisfy the requirements of the policy on the server.

Some weblogic.Server arguments set attributes for MBeans. However, because
these arguments modify an MBean before the server is in the RUNNING state, the policy
on the server resource, not the MBean security scheme, is the authorizer. For example,
a user in the Operator role can use the -Dweblogic.ListenPort argument to change
a server’s default listen port, but once the WebLogic Server is running, the Operator
user cannot change the listen port value.

For more information about weblogic.Server, refer to “Using the weblogic.Server
Command” on page 2-16.

Permissions for Using the Node Manager

The Node Manager uses both MBeans and the server resource to start a remote server.

If you have configured a Node Manager on the host machine of a remote WebLogic
Server, by default a user in the Admin or Operator role can use the Node Manager to
start the remote server.

You must make sure that any modifications you make to the default security settings
do not prevent a user from being authorized by both MBean security and the server
policy. For example, if you remove the Operator role from a server policy, the Operator
can still call MBean methods but cannot call the server resource.

For information about the Node Manager, refer to Managing Server Availability with
Node Manager in the Creating and Configuring WebLogic Server Domains Guide.

http://e-docs.bea.com/wls/docs70/admin_domain/nodemgr.html
http://e-docs.bea.com/wls/docs70/admin_domain/nodemgr.html

3 Protecting System Administration Operations

3-10 Administration Guide

Shutting Down a WebLogic Server

Shutting down a WebLogic Server also involves both MBeans and the server resource.
When you issue a shutdown command, the server first determines whether you are a
member of the Admin or Operator role (per the MBean security scheme). Then, after
the MBean operations run, the server determines whether the policy on the server
resource authorizes you to shut down the server.

Administration Guide 4-1

CHAPTER

4 Using Log Messages to
Manage WebLogic
Server

WebLogic Server uses log messages to record information about events such as the
deployment of new applications or the failure of one or more subsystems. The
messages include information about the time and date of the event as well as the ID of
the user who initiated the event.

You can view and sort these messages to detect problems, track down the source of a
fault, and track system performance. For example, you can determine which user
deployed a specific application or which user changed the thread pool count on a
specific day. You can also create client applications that listen for these messages and
respond automatically. For example, you can create an application that listens for
messages indicating a failed subsystem. If a subsystem fails, the application can send
email to a system administrator.

This topic contains the following sections:

! WebLogic Server Log Messages

! Exceptions and Stack Traces

! WebLogic Server Log Files

! Output to Standard Out

! Additional Log Files

For information on setting up your application to listen for messages, refer to the Using
WebLogic Logging Services Guide.

http://e-docs.bea.com/wls/docs70/logging/index.html
http://e-docs.bea.com/wls/docs70/logging/index.html

4 Using Log Messages to Manage WebLogic Server

4-2 Administration Guide

WebLogic Server Log Messages

Compiled within the weblogic.jar file are sets of messages that each subsystem
within WebLogic Server uses to communicate its status. For example, when you start
a WebLogic Server instance, the Security subsystem writes a message to report its
initialization status.

This section contains the following subsections:

! Message Attributes

! Message Output

Message Attributes

The messages for all subsystems contain a consistent set of fields (attributes) as
described in the following table.

Table 4-1

Attribute Description

Timestamp The time and date when the message originated, in a format that
is specific to the locale.

Severity Indicates the degree of impact or seriousness of the event reported
by the message. For more information, refer to “Message
Severity” on page 4-3.

Subsystem Indicates the subsystem of WebLogic Server that was the source
of the message. For example, EJB, RMI, JMS.

Server Name
Machine Name
Thread ID
Transaction ID

Identify the origins of the message. Transaction ID is present only
for messages logged within the context of a transaction.

User ID The user from the security context in which the message was
generated.

WebLogic Server Log Messages

Administration Guide 4-3

Message Severity

The severity attribute of a WebLogic Server log message indicates the potential
impact of the event or condition that the message reports.

The following table lists the severity levels of log messages from WebLogic Server
subsystems, starting from the lowest level of impact to the highest.

Message ID A unique six-digit identifier. Message IDs through 499999 are
reserved for WebLogic Server system messages.

Message Text A description of the event or condition.

Table 4-1

Attribute Description

Table 4-2

Severity Meaning

INFO Used for reporting normal operations.

WARNING A suspicious operation or configuration has occurred but it may not have
an impact on normal operation.

ERROR A user error has occurred. The system or application is able to handle the
error with no interruption, and limited degradation, of service.

NOTICE An INFO or WARNING-level message that is particularly important for
monitoring the server.

CRITICAL A system or service error has occurred. The system is able to recover but
there might be a momentary loss, or permanent degradation, of service.

ALERT A particular service is in an unusable state while other parts of the system
continue to function. Automatic recovery is not possible; the immediate
attention of the administrator is needed to resolve the problem.

EMERGENCY The server is in an unusable state. This severity indicates a severe system
failure or panic.

4 Using Log Messages to Manage WebLogic Server

4-4 Administration Guide

WebLogic Server subsystems generate many messages of lower severity and fewer
messages of higher severity. For example, under normal circumstances, they generate
many INFO messages and no EMERGENCY messages.

If your application uses the WebLogic logging services, it can use an additional
severity level, DEBUG. WebLogic Server subsystems do not use this severity level. For
more information, refer to Writing Debug Messages in the Using WebLogic Logging
Services Guide.

Message Output

When a WebLogic Server instance outputs a message, the first line of each message
begins with #### followed by the message attributes. Each attribute is contained
between angle brackets.

The following is an example of a log message:

####<Jun 2, 2002 10:23:02 AM PDT> <Info> <SSL> <bigbox> <myServer>
<SSLListenThread> <harry> <> <004500> <Using exportable strength SSL>

In this example, the message attributes are: Timestamp, Severity, Subsystem, Machine
Name, Server Name, Thread ID, User ID, Transaction ID, Message ID, and Message
Text.

If a message is not logged within the context of a transaction, the angle brackets
(separators) for Transaction ID are present even though no Transaction ID is present.

If the message includes a stack trace, the stack trace follows the list of message
attributes.

The character encoding used in writing the log files is the default character encoding
of the host system.

Exceptions and Stack Traces

Some WebLogic Server log messages indicate an exception has been thrown. If the
JVM generates a stack trace with the exception, the WebLogic Server log message
includes the stack trace.

http://e-docs.bea.com/wls/docs70/logging/writing.html#writing_debug_messages

WebLogic Server Log Files

Administration Guide 4-5

You can specify whether a WebLogic Server instance writes the stack traces to its log
file.

If an application that uses WebLogic logging services is running in a remote JVM, the
application sends its exceptions and stack traces to the WebLogic logging services.
You use the Administration Console to determine whether an instance of WebLogic
Server writes these remote exceptions and stack traces to its log file.

For more information on configuring logging of exceptions and stack traces, refer to
Configuring Debug Information in the Server Log File in the Administration Console
Online Help.

WebLogic Server Log Files

To persist the messages that it generates, WebLogic Server writes the messages to log
files. You can view these files with a standard text editor or the with log file viewer in
the Administration Console.

Note: We recommend that you do not modify log files by manually editing them.
Modifying a file changes the timestamp and can confuse log file rotation. In
addition, editing a file might lock it and prevent updates from a WebLogic
Server.

This section contains the following subsections:

! Local Log Files and Domain Log Files

! Log File Names and Locations

! Log File Rotation

! WebLogic Log File Viewer

http://e-docs.bea.com/wls/docs70/ConsoleHelp/servers.html#log_debug

4 Using Log Messages to Manage WebLogic Server

4-6 Administration Guide

Local Log Files and Domain Log Files

Each WebLogic Server instance writes all messages from its subsystems and
applications to a log file that is located on the local host machine. In addition, each
instance uses Java Management Extensions (JMX) to broadcast its messages as JMX
notifications. A server broadcasts all messages and message text except for the
following:

! Messages of the DEBUG severity level.

! Any stack traces that are included in a message.

When a WebLogic Server instance starts, the Administration Server's message listener
registers itself with the server’s log broadcaster. At the time of registration, a default
filter is provided that determines which messages the Administration Server listens for.
The Administration Server writes these messages to an additional domain-wide log
file. (See Figure 4-1.)

WebLogic Server Log Files

Administration Guide 4-7

Figure 4-1 WebLogic Server Logging Services

The default filter selects only messages of severity level ERROR and higher. In this way,
the domain log provides a summary of the domain’s overall status.

For any given WebLogic Server instance, you can override the default filter and create
a domain log filter that causes a different set of messages to be written to the domain
log file. For information on setting up a domain log filter for a WebLogic Server
instance, refer to Domain Log Filters in the Administration Console Online Help.

Managed Server

Log Broadcaster

Log Manager
Local
Log File

Administration Server

Log Broadcaster

Log Manager Local
Log File

Message Listener Domain
Log File

All messages

All messages
except DEBUG

Filter

Filter

http://e-docs.bea.com/wls/docs70/ConsoleHelp/domain_log_filters.html

4 Using Log Messages to Manage WebLogic Server

4-8 Administration Guide

Log File Names and Locations

By default, the local server log file is named ./SERVER_NAME/SERVER_NAME.log,
where SERVER_NAME is the name of the server. The path is relative to the server’s root
directory.

The default name for a domain log file is ./DOMAIN_NAME.log, where DOMAIN_NAME
is the name of the domain. The path is relative to the root directory of the
Administration Server.

For information about a server’s root directory, refer to “A Server’s Root Directory”
on page 2-27.

For information on changing the names and locations of the log files, refer to the
following topics in the Administration Console Online Help:

! Specifying General Log File Settings

! Specifying the Name and Location of the Domain Log File

Log File Rotation

By default, local log files and domain log files grow in size indefinitely. You can
specify that a WebLogic Server instance renames (rotates) a log file periodically. Old
messages remain in the renamed log file and new messages accumulate in the new log
file. You can base log file rotation on the size of the log file or on a time interval. The
rotated log files are numbered in order of creation filenamennnnn, where filename
is the name configured for the log file and nnnnn is a sequential number.

For example, if you base log file rotation on file size, when the log file for a Managed
Server named myserver grows beyond 500 K, the Managed Server renames the file
as myserver.log.00011 and creates a new myserver.log file to accumulate any
new messages. Or you can specify that the server rotates the log file every Monday
morning at 2am.

You use the Administration Console to specify rotation criteria for each WebLogic
Server instance’s local log file. You also use the Administration Console to specify
criteria for rotating the domain message log file.

http://e-docs.bea.com/wls/docs70/ConsoleHelp/servers.html#log_general
http://e-docs.bea.com/wls/docs70/ConsoleHelp/domain.html#naming_domain_log

WebLogic Server Log Files

Administration Guide 4-9

You can also specify the maximum number of rotated files that can accumulate. After
the number of log files reaches this number, subsequent file rotations overwrite the
oldest log file.

Note: Log rotation by time is based on the timestamp of the files. Modifying a log
file changes the timestamp and can confuse log rotation.

For information on specifying rotation criteria, refer to the following sections in the
Administration Console Online Help:

! Specifying Log File Rotation

! Specifying Criteria for Rotating Domain Log Files

WebLogic Log File Viewer

The Administration Console provides separate but similar log viewers for the local
server log and the domain-wide message log. The log viewer can search for messages
based on fields within the message. For example, it can find and display messages
based on the severity, time of occurrence, user ID, subsystem, or the short description.
It can also display messages as they are logged, or search for past log messages.

http://e-docs.bea.com/wls/docs70/ConsoleHelp/servers.html#log_rotation
http://e-docs.bea.com/wls/docs70/ConsoleHelp/domain.html#rotate_log

4 Using Log Messages to Manage WebLogic Server

4-10 Administration Guide

Figure 4-2 Log Viewer in the Administration Console

For information about viewing, configuring, and searching message logs from the
Administration Console, refer to the following topics in the Administration Console
Online Help:

! Viewing Server Logs

! Viewing the Domain Log

Because log files are simple text files, you can also use other applications to view them.
For information about finding the log files, refer to “Log File Names and Locations”
on page 4-8.

http://e-docs.bea.com/wls/docs70/ConsoleHelp/servers.html#view_server_log
http://e-docs.bea.com/wls/docs70/ConsoleHelp/domain.html#viewing_domain_log

Output to Standard Out

Administration Guide 4-11

Output to Standard Out

In addition to writing messages to log files, a WebLogic Server instance can print a
subset of its messages to standard out. By default, all messages of ERROR severity or
higher are printed to standard out and messages of the DEBUG severity are not printed
to standard out. If you configure a server to print stack traces to its log file, the stack
traces are also printed to standard out.

If you use the Node Manager to start a Managed Server, the Node Manager writes
standard out and standard error messages to its log file. You can view these messages
from the Administration Console on the Machine→Monitoring tab.

For more information, refer to the following topics:

! For information on determining which WebLogic Server messages are sent to
standard out, refer to Specifying General Log File Settings in the Administration
Console Online Help.

! For information on printing stack traces to a log file, refer to Configuring Debug
Information in the Server Log File in the Administration Console Online Help.

! For information on viewing messages for a Managed Server that you start with
the Node Manager, refer to Managed Server Log Files in the Creating and
Configuring WebLogic Server Domains guide.

JVM Messages

The JVM within which a WebLogic Server instance runs also can send messages to
standard error and standard out. For example, you can pass standard Java startup
arguments that cause the JVM to print verbose garbage-collection messages to
standard out.

If you use the weblogic.Server command to start a server process, there is no
default, persistent storage for the standard error and standard out messages. If you want
to keep a record of these messages, you can include the following arguments in the
weblogic.Server startup command:

http://e-docs.bea.com/wls/docs70/ConsoleHelp/servers.html#log_general
http://e-docs.bea.com/wls/docs70/ConsoleHelp/servers.html#log_debug
http://e-docs.bea.com/wls/docs70/ConsoleHelp/servers.html#log_debug
http://e-docs.bea.com/wls/docs70/admin_domain/nodemgr.html#mslog

4 Using Log Messages to Manage WebLogic Server

4-12 Administration Guide

! -Dweblogic.Stdout="filename", which redirects all standard out messages
from a WebLogic Server instance and its JVM to a file. The
-Dweblogic.Stdout argument redirects standard out messages from the
WebLogic Server instance and the JVM to a file.

Note: The WebLogic Server prompts for entering your username and password
are sent to standard out. If you use -Dweblogic.Stdout, you will no
longer see the prompts to enter your username and password. To bypass
this prompt, use a boot identity file as described in “Bypassing the Prompt
for Username and Password” on page 2-7.

! -Dweblogic.Stderr="filename", which redirects standard error messages
that a JVM prints to a file.

You cannot view these files from the Administration Console.

For information on passing arguments to the weblogic.Server command, refer to
“Frequently Used Optional Arguments” on page 2-19.

Additional Log Files

The log messages and files that are discussed in previous sections of this topic
communicate events and conditions that affect the operation of the server or the
application.

Some subsystems maintain additional log files to provide an audit of the subsystem’s
interactions under normal operating conditions. The following list describes each of
the additional log files:

! The HTTP subsystem can keep a log of all HTTP transactions in a text file. You
can set the attributes that define the behavior of HTTP access logs for each
server or for each virtual host that you define. For more information, refer to
“Setting Up HTTP Access Logs” on page 6-14.

! The JTA subsystem keeps a transaction log to report statistics on transactions.
For more information, refer to “Monitoring and Logging Transactions” on page
7-6.

Administration Guide 5-1

CHAPTER

5 Deploying
Applications

The following sections discuss installation and deployment of applications and
application components on WebLogic Server:

! Supported Formats for Deployment

! Deploying a Web Application Using the (deprecated) weblogic.deploy Utility

Supported Formats for Deployment

J2EE applications and components can be deployed on WebLogic Servers as
Enterprise Application Archive (EAR) files or in exploded directory format. However,
if a J2EE application is deployed in exploded format, we recommend that no
component other than the Web application component should be in exploded format.
If the application is deployed in archived format, then we recommend that all of the
components of the application also be in archived format.

Archived components may be EJB archives (JARs), Web Application Archives
(WARs), or Resource Adaptor Archives (RAR).

For information about deploying J2EE Applications and an overview of WebLogic
Server deployment, see WebLogic Server Application Deployment at
{DOCROOT}/programming/deploying.html.

For information about deploying Web Applications see Assembling and Configuring
Web Applications at http://e-docs.bea.com/wls/docs70/webapp/index.html.

http://e-docs.bea.com/wls/docs70/programming/deploying.html
http://e-docs.bea.com/wls/docs70/webapp/index.html
http://e-docs.bea.com/wls/docs70/webapp/index.html

5 Deploying Applications

5-2 Administration Guide

For information about deploying Resource Adaptors, see Packaging and Deploying
Resource Adapters at http://e-docs.bea.com/wls/docs70/jconnector/packdepl.html.

For information about deploying EJBs, see Packaging EJBs for the WebLogic Server
Container at http://e-docs.bea.com/wls/docs70/ejb/EJB_packaging.html#1011066.

Deploying a Web Application Using the
(deprecated) weblogic.deploy Utility

The weblogic.Deployer utility is new in WebLogic Server 7.0, and replaces the
earlier weblogic.deploy utility, which has been deprecated.

For information about weblogic.Deployer, see weblogic.Deployer Utility at
http://e-docs.bea.com/wls/docs70/ejb/EJB_packaging.html#1011066.

To deploy a Web Application using the weblogic.deploy utility:

1. Set up your local environment so that WebLogic Server classes are in your system
CLASSPATH and the JDK is available. You can use the setEnv script located in the
config/mydomain directory to set the CLASSPATH.

2. Enter the following command:

% java weblogic.deploy -port port_number -host host_name
-user username -component application:target deploy
password name application source

Where:

" port_number is the port number where WebLogic Server is listening for
requests

" host_name is the name of the machine hosting WebLogic Server

" username is a user that has permission to complete the request on the server
that you specify in the -host argument. The default is the username that you
used to start the server that you specify in the -host argument.username is the
user account under which WebLogic Server is booted.

For information about permissions for system administration tasks, refer to
“Protecting System Administration Operations” on page 3-1.

http://e-docs.bea.com/wls/docs70/jconnector/packdepla.html
http://e-docs.bea.com/wls/docs70/jconnector/packdepla.html
http://e-docs.bea.com/wls/docs70/ejb/EJB_packaging.html#1011066
http://e-docs.bea.com/wls/docs70/ejb/EJB_packaging.html#1011066
http://e-docs.bea.com/wls/docs70/programming/deploying.html#1080428

Deployment Documentation

Administration Guide 5-3

" application is the name you want to assign to this Web Application.

" target is the name of a server, cluster or virtual host to be targeted by this
Web Application. You can enter multiple targets, separated by a comma.

" password is your system administration password

" name is your system administration name

" source is the full pathname of the .war file you want to deploy, or the full
pathname of a directory containing a Web Application in exploded directory
format.

For example:

java weblogic.deploy -port 7001 -host myhost -component
myWebApp:myserver deploy pswd1234 myWebApp d:\myWebApp.war

Deployment Documentation

WebLogic Server Deployment at
http://e-docs.bea.com/wls/docs70/programming/deploying.html describes Weblogic
Server deployment and deployment tools, procedures, and best practices.

:

Document Deployment Topics

WebLogic Builder How to use WebLogic Builder to edit and generate XML
deployment descriptor files for J2EE applications and their
components.

Developing
WebLogic Server
Applications

How to deploy WebLogic Server J2EE applications.

Administration
Console Online Help

How to use the Administration Console for deployment tasks.

Programming
WebLogic EJBs

How to deploy WebLogic Server EJBs.

http://e-docs.bea.com/wls/docs70/wlbuilder/index.html
http://e-docs.bea.com/wls/docs70/webapp/deployment.html#141411
http://e-docs.bea.com/wls/docs70/ConsoleHelp/index.html
http://e-docs.bea.com/wls/docs70/ejb/deploy.html#1050867
http://e-docs.bea.com/wls/docs70/programming/deploying.html

5 Deploying Applications

5-4 Administration Guide

Programming
WebLogic J2EE
Connectors

How to deploy WebLogic Server J2EE Connectors.

Assembling and
Configuring Web
Applications

How to deploy Weblogic Server Web Applications.

Programming
WebLogic JSP

How to deploy applets from JSP.

UnderstandingCluster
Configuration and
Application
Deployment

How to deploy to clustered servers.

WebLogic Server
Application
Packaging and
Classloading

How to package WebLogic Server application components.

Document Deployment Topics

http://e-docs.bea.com/wls/docs70/jconnector/packdepla.html
http://e-docs.bea.com/wls/docs70/webapp/deployment.html#141411
http://e-docs.bea.com/wls/docs70/jsp/reference.html#57772
http://e-docs.bea.com/wls/docs70/cluster/config.html#1028166
http://e-docs.bea.com/wls/docs70/programming/packaging.html#1029830

Administration Guide 6-1

CHAPTER

6 Configuring WebLogic
Server Web
Components

The following sections discuss how to configure WebLogic Server Web components:

! “Overview” on page 6-2

! “HTTP Parameters” on page 6-2

! “Configuring the Listen Port” on page 6-4

! “Web Applications” on page 6-5

! “Configuring Virtual Hosting” on page 6-7

! “How WebLogic Server Resolves HTTP Requests” on page 6-10

! “Setting Up HTTP Access Logs” on page 6-14

! “Preventing POST Denial-of-Service Attacks” on page 6-22

! “Setting Up WebLogic Server for HTTP Tunneling” on page 6-23

! “Using Native I/O for Serving Static Files (Windows Only)” on page 6-25

6 Configuring WebLogic Server Web Components

6-2 Administration Guide

Overview

In addition to its ability to host dynamic Java-based distributed applications,
WebLogic Server is also a fully functional Web server that can handle high volume
Web sites, serving static files such as HTML files and image files as well as servlets
and JavaServer Pages (JSP). WebLogic Server supports the HTTP 1.1 standard.

HTTP Parameters

You can configure the HTTP operating parameters using the Administration Console
for each Server or Virtual Host.

Attribute Description Range of Values Default Value

Default Server Name When WebLogic Server
redirects a request, it sets
the host name returned in
the HTTP response header
with the string specified
with Default Server
Name.

Useful when using
firewalls or load balancers
and you want the
redirected request from
the browser to reference
the same host name that
was sent in the original
request.

String Null

Enable Keepalives This attribute sets whether
or not HTTP keep-alive is
enabled

Boolean

True = enabled

False = not enabled

True

HTTP Parameters

Administration Guide 6-3

Send
Server
Header

If set to false, the server
name is not sent with the
HTTP response. Useful
for wireless applications
where there is limited
space for headers.

Boolean

True = enabled

False = not enabled

True

Duration

(labeled Keep Alive Secs
on the Virtual Host panel)

The number of seconds
that WebLogic Server
waits before closing an
inactive HTTP
connection.

Integer 30

HTTPS Duration

(labeled Https Keep Alive
Secs on the Virtual Host
panel)

The number of seconds
that WebLogic Server
waits before closing an
inactive HTTPS
connection.

Integer 60

WAP Enabled When selected, the
session ID no longer
includes JVM
information. This may be
necessary when using
URL rewriting with WAP
devices that limit the size
of the URL to 128
characters. Selecting
WAP Enabled may affect
the use of replicated
sessions in a cluster.

Enabled

Disabled

Disabled

Post Timeout Secs This attribute sets the
timeout (in seconds) that
WebLogic Server waits
between receiving chunks
of data in an HTTP POST
data. Used to prevent
denial-of-service attacks
that attempt to overload
the server with POST
data.

Integer 0

Attribute Description Range of Values Default Value

6 Configuring WebLogic Server Web Components

6-4 Administration Guide

Configuring the Listen Port

You can specify the port that each WebLogic Server listens on for HTTP requests.
Although you can specify any valid port number, if you specify port 80, you can omit
the port number from the HTTP request used to access resources over HTTP. For
example, if you define port 80 as the listen port, you can use the form
http://hostname/myfile.html instead of
http://hostname:portnumber/myfile.html.

You define a separate listen port for regular and secure (using SSL) requests. You
define the regular listen port on the Servers node in the Administration Console, under
the Configuration/General tab, and you define the SSL listen port under the
Connections/SSL tab.

Max Post Time This attribute sets the time
(in seconds) that
WebLogic Server waits
for chunks of data in an
HTTP POST data.

Integer 0

Max Post Size This attribute sets the size
of the maximum chunks
of data in an HTTP POST
data.

Integer 0

External DNS Address If your system includes an
address translation
firewall that sits between
the clustered WebLogic
Servers and a plug-in to a
web server front-end,
such as the Netscape
(proxy) plug-in, set this
attribute to the address
used by the plug-in to talk
to this server.

Attribute Description Range of Values Default Value

Web Applications

Administration Guide 6-5

Web Applications

HTTP and Web Applications are deployed according to the Servlet 2.3 specification
from Sun Microsystems, which describes the use of Web Applications as a
standardized way of grouping together the components of a Web-based application.
These components include JSP pages, HTTP servlets, and static resources such as
HTML pages or image files. In addition, a Web Application can access external
resources such as EJBs and JSP tag libraries. Each server can host any number of Web
Applications. You normally use the name of the Web Application as part of the URI
you use to request resources from the Web Application.

By default JSPs are compiled into the servers' temporary directory the location for
which is (for a server: "myserver" and for a webapp: "mywebapp"):
<domain_dir>\myserver\.wlnotdelete\appname_mywebapp_4344862

The server deletes the temp directory (and thus the default working directory for the
jsps) each time the server is restarted. If the JSPs are configured to be precompiled they
will be precompiled each time the server restarts.
To avoid this there are following options:

! Precompile the generated classes into your WEB-INF/classes directory (or a jar
file in WEB-INF/lib).

! Set a workingDir for the jsp-descriptor in your weblogic.xml
<jsp-descriptor>
<jsp-param> <param-name>workingDir</param-name>
<param-value>d:\jsp_store</param-value> </jsp-param>
</jsp-descriptor>
After this is done the precomiled classes will not be deleted each time the server
restarts and they will not be recompiled.

For more information, see Assembling and Configuring Web Applications at
http://e-docs.bea.com/wls/docs70/webapp/index.html.

http://e-docs.bea.com/wls/docs70/webapp/index.html

6 Configuring WebLogic Server Web Components

6-6 Administration Guide

Web Applications and Clustering

Web Applications can be deployed in a cluster of WebLogic Servers. When a user
requests a resource from a Web Application, the request is routed to one of the servers
of the cluster that host the Web Application. If an application uses a session object,
then sessions must be replicated across the nodes of the cluster. Several methods of
replicating sessions are provided.

For more information, see Using WebLogic Server Clusters at
http://e-docs.bea.com/wls/docs70/cluster/index.html.

Designating a Default Web Application

Every server and virtual host in your domain can declare a default Web Application.
The default Web Application responds to any HTTP request that cannot be resolved to
another deployed Web Application. In contrast to all other Web Applications, the
default Web Application does not use the Web Application name as part of the URI.
Any Web Application targeted to a server or virtual host can be declared as the default
Web Application. (Targeting a Web Application is discussed later in this section. For
more information about virtual hosts, see “Configuring Virtual Hosting” on page 6-7).

The examples domain that is shipped with Weblogic Server has a default Web
Application already configured. The default Web Application in this domain is named
DefaultWebApp and is located in the applications directory of the domain.

If you declare a default Web Application that fails to deploy correctly, an error is
logged and users attempting to access the failed default Web Application receive an
HTTP 400 error message.

For example, if your Web Application is called shopping, you would use the
following URL to access a JSP called cart.jsp from the Web Application:

http://host:port/shopping/cart.jsp

If, however, you declared shopping as the default Web Application, you would access
cart.jsp with the following URL:

http://host:port/cart.jsp

(Where host is the host name of the machine running WebLogic Server and port is
the port number where the WebLogic Server is listening for requests.)

http://e-docs.bea.com/wls/docs70/cluster/index.html

Configuring Virtual Hosting

Administration Guide 6-7

To designate a default Web Application for a server or virtual host, use the
Administration Console:

1. In the left pane, expand the Web Application node

2. Select your Web Application

3. In the right pane, select the Targets tab.

4. Select the Servers tab and move the server (or virtual host) to the chosen column.
(You can also target all the servers in a cluster by selecting the Clusters tab and
moving the cluster to the Chosen column.)

5. Click Apply.

6. Expand the Servers (or virtual host) node in the left pane.

7. Select the appropriate server or virtual host.

8. In the right pane, select the Connections tab

9. Select the HTTP tab (If you are configuring a virtual host, select the General tab
instead.)

10. Select a Web Application from the drop-down list labeled Default Web
Application.

11. Click Apply.

12. If you are declaring a default Web Application for one or more managed servers,
repeat these procedures for each managed server.

Configuring Virtual Hosting

Virtual hosting allows you to define host names that servers or clusters respond to.
When you use virtual hosting you use DNS to specify one or more host names that map
to the IP address of a WebLogic Server or cluster and you specify which Web
Applications are served by the virtual host. When used in a cluster, load balancing
allows the most efficient use of your hardware, even if one of the DNS host names
processes more requests than the others.

6 Configuring WebLogic Server Web Components

6-8 Administration Guide

For example, you can specify that a Web Application called books responds to
requests for the virtual host name www.books.com, and that these requests are targeted
to WebLogic Servers A,B and C, while a Web Application called cars responds to the
virtual host name www.autos.com and these requests are targeted to WebLogic
Servers D and E. You can configure a variety of combinations of virtual host,
WebLogic Servers, clusters and Web Applications, depending on your application and
Web server requirements.

For each virtual host that you define you can also separately define HTTP parameters
and HTTP access logs. The HTTP parameters and access logs set for a virtual host
override those set for a server. You may specify any number of virtual hosts.

You activate virtual hosting by targeting the virtual host to a server or cluster of
servers. Virtual hosting targeted to a cluster will be applied to all servers in the cluster.

Virtual Hosting and the Default Web Application

You can also designate a default Web Application for each virtual host. The default
Web Application for a virtual host responds to all requests that cannot be resolved to
other Web Applications deployed on same server or cluster as the virtual host.

Unlike other Web Applications, a default Web Application does not use the Web
Application name (also called the context path) as part of the URI used to access
resources in the default Web Application.

For example, if you defined virtual host name www.mystore.com and targeted it to a
server on which you deployed a Web Application called shopping, you would access
a JSP called cart.jsp from the shopping Web Application with the following URI:

http://www.mystore.com/shopping/cart.jsp

If, however, you declared shopping as the default Web Application for the virtual host
www.mystore.com, you would access cart.jsp with the following URI:

http://www.mystore.com/cart.jsp

For more information, see “How WebLogic Server Resolves HTTP Requests” on page
6-10.

Configuring Virtual Hosting

Administration Guide 6-9

Setting Up a Virtual Host

To define a virtual host, use the Administration Console to:

1. Create a new Virtual Host.

a. Expand the Services node in the left pane. The node expands and displays a list
of services.

b. Click on the virtual hosts node. If any virtual hosts are defined, the node
expands and displays a list of virtual hosts.

c. Click on Create a New Virtual Host in the right pane.

d. Enter a name to represent this virtual host.

e. Enter the virtual host names, one per line. Only requests matching one of these
virtual host names will be handled by the WebLogic Server or cluster targeted
by this virtual host.

f. (Optional) Assign a default Web Application to this virtual host.

g. Click Create.

2. Define logging and HTTP parameters:

a. (Optional) Click on the Logging tab and fill in HTTP access log attributes (For
more information, see “Setting Up HTTP Access Logs” on page 6-14.)

b. Select the HTTP tab and fill in the HTTP Parameters.

3. Define the servers that will respond to this virtual host.

a. Select the Targets tab.

b. Select the Servers tab. You will see a list of available servers.

c. Select a server in the available column and use the right arrow button to move
the server to the chosen column.

4. Define the clusters that will respond to this virtual host (optional). You must have
previously defined a WebLogic Cluster. For more information, see Using
WebLogic Server Clusters at
http://e-docs.bea.com/wls/docs70/cluster/index.html.

http://e-docs.bea.com/wls/docs70/cluster/index.html
http://e-docs.bea.com/wls/docs70/cluster/index.html

6 Configuring WebLogic Server Web Components

6-10 Administration Guide

a. Select the Targets tab.

b. Select the Clusters tab. You will see a list of available servers.

c. Select a cluster in the available column and use the right arrow button to move
the cluster to the chosen column. The virtual host is targeted on all of the servers
of the cluster.

5. Target Web Applications to the virtual host.

a. Click the Web Applications node in the left panel.

b. Select the Web Application you want to target.

c. Select the Targets tab in the right panel.

d. Select the Virtual Hosts tab.

e. Select Virtual Host in the available column and use the right arrow button to
move the Virtual Host to the chosen column.

How WebLogic Server Resolves HTTP
Requests

When WebLogic Server receives an HTTP request, it resolves the request by parsing
the various parts of the URL and using that information to determine which Web
Application and/or server should handle the request. The examples below demonstrate
various combinations of requests for Web Applications, virtual hosts, servlets, JSPs,
and static files and the resulting response.

Note: If you package your Web Application as part of an Enterprise Application, you
can provide an alternate name for a Web Application that is used to resolve
requests to the Web Application. For more information, see Deploying Web
Applications as Part of an Enterprise Application at
http://e-docs.bea.com/wls/docs70/webapp/deployment.html#war

-ear.

http://e-docs.bea.com/wls/docs70/webapp/deployment.html#war-ear
http://e-docs.bea.com/wls/docs70/webapp/deployment.html#war-ear

How WebLogic Server Resolves HTTP Requests

Administration Guide 6-11

The table below provides some sample URLs and the file that is served by WebLogic
Server. The Index Directories Checked column refers to the Index Directories attribute
that controls whether or not a directory listing is served if no file is specifically
requested. You set Index Directories using the Administration Console, on the Web
Applications node, under the Configuration →Files tab.

Table 6-1 Examples of How WebLogic Server Resolves URLs

URL Index
Directories
Checked?

This file is served in
response

http://host:port/apples No Welcome file* defined in
the apples Web
Application.

http://host:port/apples Yes Directory listing of the top
level directory of the
apples Web Application.

http://host:port/oranges/naval Does not
matter

Servlet mapped with
<url-pattern> of
/naval in the oranges
Web Application.

There are additional
considerations for servlet
mappings. For more
information, see
Configuring Servlets at
http://e-docs.bea.c
om/wls/docs70/webap
p/
components.html
#configuring-
servlets.

http://e-docs.bea.com/wls/docs70/webapp/components.html#configuring-servlets

6 Configuring WebLogic Server Web Components

6-12 Administration Guide

http://host:port/naval Does not
matter

Servlet mapped with
<url-pattern> of
/naval in the oranges
Web Application and
oranges is defined as the
default Web Application.

For more information, see
Configuring Servlets at
http://e-docs.bea.c
om/wls/docs70/webap
p/
components.html
#configuring-
servlets.

http://host:port/apples/pie.jsp Does not
matter

pie.jsp, from the
top-level directory of the
apples Web Application.

http://host:port Yes Directory listing of the top
level directory of the
default Web Application

http://host:port No Welcome file* from the
default Web Application.

http://host:port/apples/myfile.html Does not
matter

myfile.html, from the
top level directory of the
apples Web Application.

http://host:port/myfile.html Does not
matter

myfile.html, from the
top level directory of the
default Web Application.

http://host:port/apples/images/red.gif Does not
matter

red.gif, from the images
subdirectory of the
top-level directory of the
apples Web Application.

Table 6-1 Examples of How WebLogic Server Resolves URLs

URL Index
Directories
Checked?

This file is served in
response

http://e-docs.bea.com/wls/docs70/webapp/components.html#configuring-servlets

How WebLogic Server Resolves HTTP Requests

Administration Guide 6-13

* For more information, see Configuring Welcome Pages at
http://e-docs.bea.com/wls/docs70/webapp/components.html#welcome_p

ages.

http://host:port/myFile.html

Where myfile.html does not exist in the apples Web
Application and a default servlet has not been defined.

Does not
matter

Error 404

For more information, see
Customizing HTTP Error
Responses at
http://e-docs.bea.c
om/wls/docs70/webap
p/components.html#e
rror-page.

http://www.fruit.com/ No Welcome file* from the
default Web Application
for a virtual host with a host
name of
www.fruit.com.

http://www.fruit.com/ Yes Directory listing of the top
level directory of the
defaultWeb Application
for a virtual host with a host
name of
www.fruit.com.

http://www.fruit.com/oranges/myfile.html Does not
matter

myfile.html, from the
orangesWeb Application
that is targeted to a virtual
host with host name
www.fruit.com.

Table 6-1 Examples of How WebLogic Server Resolves URLs

URL Index
Directories
Checked?

This file is served in
response

http://e-docs.bea.com/wls/docs70/webapp/components.html#error-page
http://e-docs.bea.com/wls/docs70/webapp/components.html#error-page
http://e-docs.bea.com/wls/docs70/webapp/components.html#welcome_pages

6 Configuring WebLogic Server Web Components

6-14 Administration Guide

Setting Up HTTP Access Logs

WebLogic Server can keep a log of all HTTP transactions in a text file, in either
common log format or extended log format. Common log format is the default, and
follows a standard convention. Extended log format allows you to customize the
information that is recorded. You can set the attributes that define the behavior of
HTTP access logs for each server or for each virtual host that you define.

For information on setting up HTTP logging for a server or a virtual host, refer to the
following topics in the Administration Console online help:

! Specifying HTTP Log File Settings for a Server

! Specifying HTTP Log File Settings for a Virtual Host

Log Rotation

You can also choose to rotate the log file based on either the size of the file or after a
specified amount of time has passed. When either one of these two criteria are met, the
current access log file is closed and a new access log file is started. If you do not
configure log rotation, the HTTP access log file grows indefinitely. The name of the
access log file includes a numeric portion that is incremented upon each rotation.
Separate HTTP Access logs are kept for each Web Server you have defined.

Common Log Format

The default format for logged HTTP information is the common log format at
http://www.w3.org/Daemon/User/Config/Logging.html#common-logfile-

format. This standard format follows the pattern:

host RFC931 auth_user [day/month/year:hour:minute:second
UTC_offset] "request" status bytes

where:

host

Either the DNS name or the IP number of the remote client

http://e-docs.bea.com/wls/docs70/ConsoleHelp/servers.html#log_http
http://e-docs.bea.com/wls/docs70/ConsoleHelp/virtual_hosts.html#http_log_file_virtual_host
http://www.w3.org/Daemon/User/Config/Logging.html#common-logfile-format

Setting Up HTTP Access Logs

Administration Guide 6-15

RFC931

Any information returned by IDENTD for the remote client; WebLogic Server
does not support user identification

auth_user

If the remote client user sent a userid for authentication, the user name;
otherwise “-”

day/month/year:hour:minute:second UTC_offset

Day, calendar month, year and time of day (24-hour format) with the hours
difference between local time and GMT, enclosed in square brackets

"request"

First line of the HTTP request submitted by the remote client enclosed in
double quotes

status

HTTP status code returned by the server, if available; otherwise “-”

bytes

Number of bytes listed as the content-length in the HTTP header, not including
the HTTP header, if known; otherwise “-”

Setting Up HTTP Access Logs by Using Extended Log
Format

WebLogic Server also supports extended log file format, version 1.0, as defined by the
W3C. This is an emerging standard, and WebLogic Server follows the draft
specification from W3C at www.w3.org/TR/WD-logfile.html. The current
definitive reference may be found from the W3C Technical Reports and Publications
page at www.w3.org/pub/WWW/TR.

The extended log format allows you to specify the type and order of information
recorded about each HTTP communication. To enable the extended log format, set the
Format attribute on the HTTP tab in the Administration Console to Extended. (See
“Creating Custom Field Identifiers” on page 6-18).

You specify what information should be recorded in the log file with directives,
included in the actual log file itself. A directive begins on a new line and starts with a
sign. If the log file does not exist, a new log file is created with default directives.
However, if the log file already exists when the server starts, it must contain legal
directives at the head of the file.

http://www.w3.org/TR/WD-logfile.html
http://www.w3.org/TR/WD-logfile.html
http://www.w3.org/pub/WWW/TR
http://www.w3.org/pub/WWW/TR

6 Configuring WebLogic Server Web Components

6-16 Administration Guide

Creating the Fields Directive

The first line of your log file must contain a directive stating the version number of the
log file format. You must also include a Fields directive near the beginning of the
file:

#Version: 1.0
#Fields: xxxx xxxx xxxx ...

Where each xxxx describes the data fields to be recorded. Field types are specified as
either simple identifiers, or may take a prefix-identifier format, as defined in the W3C
specification. Here is an example:

#Fields: date time cs-method cs-uri

This identifier instructs the server to record the date and time of the transaction, the
request method that the client used, and the URI of the request for each HTTP access.
Each field is separated by white space, and each record is written to a new line,
appended to the log file.

Note: The #Fields directive must be followed by a new line in the log file, so that the
first log message is not appended to the same line.

Supported Field identifiers

The following identifiers are supported, and do not require a prefix.

date

Date at which transaction completed, field has type <date>, as defined in the
W3C specification.

time

Time at which transaction completed, field has type <time>, as defined in the
W3C specification.

time-taken

Time taken for transaction to complete in seconds, field has type <fixed>, as
defined in the W3C specification.

bytes

Number of bytes transferred, field has type <integer>.

Note that the cached field defined in the W3C specification is not supported in
WebLogic Server.

Setting Up HTTP Access Logs

Administration Guide 6-17

The following identifiers require prefixes, and cannot be used alone. The supported
prefix combinations are explained individually.

IP address related fields:
These fields give the IP address and port of either the requesting client, or the
responding server. This field has type <address>, as defined in the W3C
specification. The supported prefixes are:

c-ip

The IP address of the client.

s-ip

The IP address of the server.

DNS related fields
These fields give the domain names of the client or the server. This field has
type <name>, as defined in the W3C specification. The supported prefixes are:

c-dns

The domain name of the requesting client.

s-dns

The domain name of the requested server.

sc-status

Status code of the response, for example (404) indicating a “File not found”
status. This field has type <integer>, as defined in the W3C specification.

sc-comment

The comment returned with status code, for instance “File not found”. This
field has type <text>.

cs-method

The request method, for example GET or POST. This field has type <name>,
as defined in the W3C specification.

cs-uri

The full requested URI. This field has type <uri>, as defined in the W3C
specification.

cs-uri-stem

Only the stem portion of URI (omitting query). This field has type <uri>, as
defined in the W3C specification.

6 Configuring WebLogic Server Web Components

6-18 Administration Guide

cs-uri-query

Only the query portion of the URI. This field has type <uri>, as defined in the
W3C specification.

Creating Custom Field Identifiers

You can also create user-defined fields for inclusion in an HTTP access log file that
uses the extended log format. To create a custom field you identify the field in the ELF
log file using the Fields directive and then you create a matching Java class that
generates the desired output. You can create a separate Java class for each field, or the
Java class can output multiple fields. A sample of the Java source for such a class is
included in this document. See “Java Class for Creating a Custom ELF Field” on page
6-22.

To create a custom field:

1. Include the field name in the Fields directive, using the form:

x-myCustomField.

Where myCustomField is a fully-qualified class name.

For more information on the Fields directive, see “Creating the Fields
Directive” on page 6-16.

2. Create a Java class with the same fully-qualified class name as the custom field
you defined with the Fields directive (for example myCustomField). This class
defines the information you want logged in your custom field. The Java class
must implement the following interface:

weblogic.servlet.logging.CustomELFLogger

In your Java class, you must implement the logField() method, which takes a
HttpAccountingInfo object and FormatStringBuffer object as its
arguments:

" Use the HttpAccountingInfo object to access HTTP request and response
data that you can output in your custom field. Getter methods are provided to
access this information. For a complete listing of these get methods, see “Get
Methods of the HttpAccountingInfo Object” on page 6-19.

" Use the FormatStringBuffer class to create the contents of your custom
field. Methods are provided to create suitable output. For more information
on these methods, see the Javadocs for FormatStringBuffer (see

http://e-docs.bea.com/wls/docs70/javadocs/weblogic/servlet/logging/FormatStringBuffer.html
http://e-docs.bea.com/wls/docs70/javadocs/weblogic/servlet/logging/FormatStringBuffer.html

Setting Up HTTP Access Logs

Administration Guide 6-19

http://e-docs.bea.com/wls/docs70/javadocs/weblogic/servlet/l

ogging/FormatStringBuffer.html).

3. Compile the Java class and add the class to the CLASSPATH statement used to start
WebLogic Server. You will probably need to modify the CLASSPATH statements
in the scripts that you use to start WebLogic Server.

Note: Do not place this class inside of a Web Application or Enterprise
Application in exploded or jar format.

4. Configure WebLogic Server to use the extended log format. For more
information, see “Setting Up HTTP Access Logs by Using Extended Log
Format” on page 6-15.

Note: When writing the Java class that defines your custom field, you should not
execute any code that is likely to slow down the system (For instance,
accessing a DBMS or executing significant I/O or networking calls.)
Remember, an HTTP access log file entry is created for every HTTP request.

Note: If you want to output more than one field, delimit the fields with a tab
character. For more information on delimiting fields and other ELF formatting
issues, see Extended Log Format at
http://www.w3.org/TR/WD-logfile-960221.html.

Get Methods of the HttpAccountingInfo Object

The following methods return various data regarding the HTTP request. These
methods are similar to various methods of javax.servlet.ServletRequest,
javax.servlet.http.Http.ServletRequest, and
javax.servlet.http.HttpServletResponse.

For details on these methods see the corresponding methods in the Java interfaces
listed in the following table, or refer to the specific information contained in the table.

Table 6-2 Getter Methods of HttpAccountingInfo

HttpAccountingInfo Methods Where to find information on the methods

Object getAttribute(String name); javax.servlet.ServletRequest

Enumeration getAttributeNames(); javax.servlet.ServletRequest

String getCharacterEncoding(); javax.servlet.ServletRequest

http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/ServletRequest.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/ServletRequest.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/ServletRequest.html
http://www.w3.org/TR/WD-logfile-960221.html

6 Configuring WebLogic Server Web Components

6-20 Administration Guide

int getResponseContentLength(); javax.servlet.ServletResponse.
setContentLength()

This method gets the content length of the response, as set
with the setContentLength() method.

String getContentType(); javax.servlet.ServletRequest

Locale getLocale(); javax.servlet.ServletRequest

Enumeration getLocales(); javax.servlet.ServletRequest

String getParameter(String name); javax.servlet.ServletRequest

Enumeration getParameterNames(); javax.servlet.ServletRequest

String[] getParameterValues(String
name);

javax.servlet.ServletRequest

String getProtocol(); javax.servlet.ServletRequest

String getRemoteAddr(); javax.servlet.ServletRequest

String getRemoteHost(); javax.servlet.ServletRequest

String getScheme(); javax.servlet.ServletRequest

String getServerName(); javax.servlet.ServletRequest

int getServerPort(); javax.servlet.ServletRequest

boolean isSecure(); javax.servlet.ServletRequest

String getAuthType(); javax.servlet.http.Http.ServletRequest

String getContextPath(); javax.servlet.http.Http.ServletRequest

Cookie[] getCookies(); javax.servlet.http.Http.ServletRequest

long getDateHeader(String name); javax.servlet.http.Http.ServletRequest

String getHeader(String name); javax.servlet.http.Http.ServletRequest

Enumeration getHeaderNames(); javax.servlet.http.Http.ServletRequest

Table 6-2 Getter Methods of HttpAccountingInfo

HttpAccountingInfo Methods Where to find information on the methods

http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/ServletResponse.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/ServletRequest.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/ServletRequest.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/ServletRequest.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/ServletRequest.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/ServletRequest.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/ServletRequest.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/ServletRequest.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/ServletRequest.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/ServletRequest.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/ServletRequest.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/ServletRequest.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/ServletRequest.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/ServletRequest.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpServletRequest.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpServletRequest.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpServletRequest.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpServletRequest.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpServletRequest.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpServletRequest.html

Setting Up HTTP Access Logs

Administration Guide 6-21

Enumeration getHeaders(String name); javax.servlet.http.Http.ServletRequest

int getIntHeader(String name); javax.servlet.http.Http.ServletRequest

String getMethod(); javax.servlet.http.Http.ServletRequest

String getPathInfo(); javax.servlet.http.Http.ServletRequest

String getPathTranslated(); javax.servlet.http.Http.ServletRequest

String getQueryString(); javax.servlet.http.Http.ServletRequest

String getRemoteUser(); javax.servlet.http.Http.ServletRequest

String getRequestURI(); javax.servlet.http.Http.ServletRequest

String getRequestedSessionId(); javax.servlet.http.Http.ServletRequest

String getServletPath(); javax.servlet.http.Http.ServletRequest

Principal getUserPrincipal(); javax.servlet.http.Http.ServletRequest

boolean
isRequestedSessionIdFromCookie();

javax.servlet.http.Http.ServletRequest

boolean
isRequestedSessionIdFromURL();

javax.servlet.http.Http.ServletRequest

boolean
isRequestedSessionIdFromUrl();

javax.servlet.http.Http.ServletRequest

boolean isRequestedSessionIdValid(); javax.servlet.http.Http.ServletRequest

String getFirstLine(); Returns the first line of the HTTP request, for example:

GET /index.html HTTP/1.0

long getInvokeTime(); Returns the length of time it took for the service method
of a servlet to write data back to the client.

int getResponseStatusCode(); javax.servlet.http.HttpServletResponse

String
getResponseHeader(String name);

javax.servlet.http.HttpServletResponse

Table 6-2 Getter Methods of HttpAccountingInfo

HttpAccountingInfo Methods Where to find information on the methods

http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpServletRequest.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpServletRequest.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpServletRequest.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpServletRequest.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpServletRequest.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpServletRequest.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpServletRequest.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpServletRequest.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpServletRequest.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpServletRequest.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpServletRequest.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpServletRequest.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpServletRequest.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpServletRequest.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpServletRequest.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpServletResponse.html
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpServletResponse.html

6 Configuring WebLogic Server Web Components

6-22 Administration Guide

Listing 6-1 Java Class for Creating a Custom ELF Field

import weblogic.servlet.logging.CustomELFLogger;
import weblogic.servlet.logging.FormatStringBuffer;
import weblogic.servlet.logging.HttpAccountingInfo;

/* This example outputs the User-Agent field into a
custom field called MyCustomField
*/

public class MyCustomField implements CustomELFLogger{

public void logField(HttpAccountingInfo metrics,
FormatStringBuffer buff) {
buff.appendValueOrDash(metrics.getHeader("User-Agent"));
}

}
}

Preventing POST Denial-of-Service Attacks

A Denial-of-Service attack is a malicious attempt to overload a server with phony
requests. One common type of attack is to send huge amounts of data in an HTTP POST

method. You can set three attributes in WebLogic Server that help prevent this type of
attack. These attributes are set in the console, under Servers or virtual hosts. If you
define these attributes for a virtual host, the values set for the virtual host override
those set under Servers.

PostTimeoutSecs

You can limit the amount of time that WebLogic Server waits between
receiving chunks of data in an HTTP POST.

MaxPostTimeSecs

Limits the total amount of time that WebLogic Server spends receiving post
data. If this limit is triggered, a PostTimeoutException is thrown and the
following message is sent to the server log:

Post time exceeded MaxPostTimeSecs.

Setting Up WebLogic Server for HTTP Tunneling

Administration Guide 6-23

MaxPostSize

Limits the number of bytes of data received in a POST from a single request. If
this limit is triggered, a MaxPostSizeExceeded exception is thrown and the
following message is sent to the server log:

POST size exceeded the parameter MaxPostSize.

An HTTP error code 413 (Request Entity Too Large) is sent back to the client.

If the client is in listening mode, it gets these messages. If the client is not in
listening mode, the connection is broken.

Setting Up WebLogic Server for HTTP
Tunneling

HTTP tunneling provides a way to simulate a stateful socket connection between
WebLogic Server and a Java client when your only option is to use the HTTP protocol.
It is generally used to tunnel through an HTTP port in a security firewall. HTTP is a
stateless protocol, but WebLogic Server provides tunneling functionality to make the
connection appear to be a regular T3Connection. However, you can expect some
performance loss in comparison to a normal socket connection.

Configuring the HTTP Tunneling Connection

Under the HTTP protocol, a client may only make a request, and then accept a reply
from a server. The server may not voluntarily communicate with the client, and the
protocol is stateless, meaning that a continuous two-way connection is not possible.

WebLogic HTTP tunneling simulates a T3Connection via the HTTP protocol,
overcoming these limitations. There are two attributes that you can configure in the
Administration Console to tune a tunneled connection for performance. You access
these attributes in the Servers section, under the Connections and Protocols tabs. It is
advised that you leave them at their default settings unless you experience connection
problems. These properties are used by the server to determine whether the client
connection is still valid, or whether the client is still alive.

6 Configuring WebLogic Server Web Components

6-24 Administration Guide

Enable Tunneling

Enables or disables HTTP tunneling. HTTP tunneling is disabled by default.

Note that the server must also support both the HTTP and T3 protocols in order
to use HTTP tunneling.

Tunneling Client Ping

When an HTTP tunnel connection is set up, the client automatically sends a
request to the server, so that the server may volunteer a response to the client.
The client may also include instructions in a request, but this behavior happens
regardless of whether the client application needs to communicate with the
server. If the server does not respond (as part of the application code) to the
client request within the number of seconds set in this attribute, it does so
anyway. The client accepts the response and automatically sends another
request immediately.

Default is 45 seconds; valid range is 20 to 900 seconds.

Tunneling Client Timeout

If the number of seconds set in this attribute have elapsed since the client last
sent a request to the server (in response to a reply), then the server regards the
client as dead, and terminates the HTTP tunnel connection. The server checks
the elapsed time at the interval specified by this attribute, when it would
otherwise respond to the client’s request.

Default is 40 seconds; valid range is 10 to 900 seconds.

Connecting to WebLogic Server from the Client

When your client requests a connection with WebLogic Server, all you need to do in
order to use HTTP tunneling is specify the HTTP protocol in the URL. For example:

Hashtable env = new Hashtable();
env.put(Context.PROVIDER_URL, "http://wlhost:80");
Context ctx = new InitialContext(env);

On the client side, a special tag is appended to the http protocol, so that WebLogic
Server knows this is a tunneling connection, instead of a regular HTTP request. Your
application code does not need to do any extra work to make this happen.

Using Native I/O for Serving Static Files (Windows Only)

Administration Guide 6-25

The client must specify the port in the URL, even if the port is 80. You can set up your
WebLogic Server to listen for HTTP requests on any port, although the most common
choice is port 80 since requests to port 80 are customarily allowed through a firewall.

You specify the listen port for WebLogic Server in the Administration Console under
the “Servers” node, under the “Network” tab.

Using Native I/O for Serving Static Files
(Windows Only)

When running WebLogic Server on Windows NT/2000 you can specify that
WebLogic Server use the native operating system call TransmitFile instead of using
Java methods to serve static files such as HTML files, text files, and image files. Using
native I/O can provide performance improvements when serving larger static files.

Native I/O is enabled by default. You can disable it by clicking on server/tuning and
deselecting the checkbox. When you save this configuration it is written to the
config.xml file rather than the web.xml file used when you configure Native I/O
programmatically.

To configure native I/O programmatically, add two parameters to the web.xml
deployment descriptor of a Web Application containing the files to be served using
native I/O. The first parameter, weblogic.http.nativeIOEnabled should be set to
TRUE to enable native I/O file serving. The second parameter,
weblogic.http.minimumNativeFileSize sets the minimum file size for using
native I/O. If the file being served is larger than this value, native I/O is used. If you
do not specify this parameter, a value of 400 bytes is used.

Generally, native I/O provides greater performance gains when serving larger files;
however, as the load on the machine running WebLogic Server increases, these gains
diminish. You may need to experiment to find the correct value for
weblogic.http.minimumNativeFileSize.

The following example shows the complete entries that should be added to the
web.xml deployment descriptor. These entries must be placed in the web.xml file after
the <distributable> element and before <servlet> element.

6 Configuring WebLogic Server Web Components

6-26 Administration Guide

<context-param>
<param-name>weblogic.http.nativeIOEnabled</param-name>
<param-value>TRUE</param-value>

</context-param>

<context-param>
<param-name>weblogic.http.minimumNativeFileSize</param-name>
<param-value>500</param-value>

</context-param>

For more information on writing deployment descriptors, see Writing Web
Application Deployment Descriptors at
http://e-docs.bea.com/wls/docs70/webapp/webappdeployment.html.

http://e-docs.bea.com/wls/docs70/webapp/webappdeployment.html
http://e-docs.bea.com/wls/docs70/webapp/webappdeployment.html

Administration Guide 7-1

CHAPTER

7 Managing Transactions

These sections discuss transaction management and provide guidelines for configuring
and managing transactions through the Administration Console.

! Overview of Transaction Management

! Configuring Transactions

! Configuring Domains for Inter-Domain Transactions

! Monitoring and Logging Transactions

! Handling Heuristic Completions

! Abandoning Transactions

! Moving a Server to Another Machine

! Transaction Recovery After a Server Fails

For information on configuring JDBC connection pools to allow JDBC drivers to
participate in distributed transactions, see “Managing JDBC Connectivity” on page
8-1.

Overview of Transaction Management

You use the Administration Console to access tools for configuring the WebLogic
Server features, including the Java Transaction API (JTA). To invoke the
Administration Console, see the procedures provided in Starting and Using the
Administration Console in the Administration Guide at

http://e-docs.bea.com/wls/docs70/adminguide/overview.html#start_admin_console
http://e-docs.bea.com/wls/docs70/adminguide/overview.html#start_admin_console

7 Managing Transactions

7-2 Administration Guide

http://e-docs.bea.com/wls/docs70/adminguide/overview.html#start_a

dmin_console. The transaction configuration process involves specifying values for
attributes. These attributes define various aspects of the transaction environment:

! Transaction timeouts and limits

! Transaction Manager behavior

! Transaction log file prefix

Settings you make in the Administration Console, including configuration settings for
JTA, are persisted in the config.xml file for the domain. For information about
entries in this file, see the following sections of the Configuration Reference Guide:

! JTA at http://e-docs.bea.com/wls/docs70/config_xml/JTA.html

! JTAMigratableTarget at
http://e-docs.bea.com/wls/docs70/config_xml/JTAMigratableTarget
.html

! JTARecoveryService at
http://e-docs.bea.com/wls/docs70/config_xml/JTARecoveryService.
html

! JDBCTxDataSource at
http://e-docs.bea.com/wls/docs70/config_xml/JDBCTxDataSource.ht
ml

Before configuring your transaction environment, you should be familiar with the
J2EE components that can participate in transactions, such as EJBs, JDBC, and JMS.

! EJBs (Enterprise JavaBeans) use JTA for transaction support. Several
deployment descriptors relate to transaction handling. For more information
about programming with EJBs and JTA, see Programming WebLogic Enterprise
JavaBeans.

! JDBC (Java Database Connectivity) provides standard interfaces for accessing
relational database systems from Java. JTA provides transaction support on
connections retrieved using a JDBC driver and transaction data source. For more
information about programming with JDBC and JTA, see Programming
WebLogic JDBC.

! JMS (Java Messaging Service) uses JTA to support transactions across multiple
data resources. WebLogic JMS is an XA-compliant resource manager. For more

http://e-docs.bea.com/wls/docs70/config_xml/JTA.html
http://e-docs.bea.com/wls/docs70/config_xml/JTAMigratableTarget.html
http://e-docs.bea.com/wls/docs70/config_xml/JTARecoveryService.html
http://e-docs.bea.com/wls/docs70/config_xml/JDBCTxDataSource.html
http://e-docs.bea.com/wls/docs70/ejb/index.html
http://e-docs.bea.com/wls/docs70/ejb/index.html
http://e-docs.bea.com/wls/docs70/jdbc/index.html
http://e-docs.bea.com/wls/docs70/jdbc/index.html

Configuring Transactions

Administration Guide 7-3

information about programming with JMS and JTA, see Programming WebLogic
JMS.

For more information about configuring J2EE components, see the applicable sections
of this document and the Administration Console Online Help.

Configuring Transactions

Configuration settings for JTA are applicable at the domain level. This means that
configuration attribute settings apply to all servers within a domain. Monitoring and
logging tasks for JTA are performed at the server level.

You can configure any transaction attributes before starting the server (static
configuration) or, with one exception, while the server is running (dynamic
configuration). The TransactionLogFilePrefix attribute must be set before
starting the server.

To modify transaction attributes, do the following:

1. Start the Administration Console.

2. Select the domain node in the left pane. The Configuration tab for the domain is
displayed by default.

3. Select the JTA tab.

4. For each attribute, change the value as desired or accept the default value.

5. Click Apply to store new attribute values.

6. Ensure that the TransactionLogFilePrefix attribute is set appropriately when
you configure the server. For more information about setting the logging
attribute, see “Monitoring and Logging Transactions” on page 7-6.

For detailed information about the transaction attributes available with WebLogic
Server, including valid and default values, see the Domain topic in the Administration
Console Online Help.

http://e-docs.bea.com/wls/docs70/jms/index.html
http://e-docs.bea.com/wls/docs70/jms/index.html
http://e-docs.bea.com/wls/docs70/ConsoleHelp/index.html
http://e-docs.bea.com/wls/docs70/ConsoleHelp/domain.html

7 Managing Transactions

7-4 Administration Guide

Configuring Domains for Inter-Domain
Transactions

For a transaction manager to manage distributed transactions, the transaction manager
must be able to communicate with all participating servers to prepare and then commit
or rollback the transactions. This applies to cases when your WebLogic domain acts as
the transaction manager or a transaction participant (resource) in a distributed
transaction. The following sections describe how to configure your domain to enable
inter-domain transactions. To learn more about interoperability between WebLogic
domains, see Enabling Trust Between WebLogic Domains in the Administration
Console Online Help at
http://e-docs.bea.com/wls/docs70/ConsoleHelp/security_7x.html#int

erop.

Inter-Domain Transactions for WebLogic Server 7.0
Domains

To manage or participate in transactions that span multiple WebLogic Server 7.0
domains (that is, all participating domains run on WebLogic Server 7.0), you must set
a security credential for all domains to the same value. To set the credential value,
follow these steps for each participating domain:

1. Start the Administration Console for one of the participating domains.

2. In the left pane, click the domain name (right below Console). In the right pane,
tabs display with attributes for the domain.

3. Click the Security tab, then the Advanced tab.

4. Clear the Enable Generated Credential check box and click Apply.

5. Click the Change text link next to Credential.

http://e-docs.bea.com/wls/docs70/ConsoleHelp/security_7x.html#interop

Configuring Domains for Inter-Domain Transactions

Administration Guide 7-5

6. In the New Credential field, enter the new credential, then re-enter it in the
Retype to confirm field. Enter the same credential for each domain and click
Apply. If WebLogic Server 6.x domains will participate in distributed
transactions, use the system password from the WebLogic Server 6.x domain.

7. Restart the server.

8. Repeat steps 1 through 7 for each domain that participates in inter-domain
transactions. In step 6, enter the same credential for each domain.

Inter-Domain Transactions Between WebLogic Server 7.0
and WebLogic Server 6.x Domains

To manage transactions that use servers in both WebLogic Server 7.0 and WebLogic
Server 6.x domains, you must do the following:

In all participating WebLogic Server 6.x domains:

! Change the password for the system user to the same value in all participating
domains on the Security→Users tab in the Administration Console. See Changing
the System Password at
http://e-docs.bea.com/wls/docs61/adminguide/cnfgsec.html#cnfgse

c003.

In all participating WebLogic Server 7.0 domains:

! Set a security credential for all domains to the same value on the
Domain→Security→Advanced tab. The credential must match the system
password in all participating WebLogic Server 6.x domains. For instructions, see
“Inter-Domain Transactions for WebLogic Server 7.0 Domains” on page 7-4.

http://e-docs.bea.com/wls/docs61/adminguide/cnfgsec.html#cnfgsec003
http://e-docs.bea.com/wls/docs61/adminguide/cnfgsec.html#cnfgsec003

7 Managing Transactions

7-6 Administration Guide

Monitoring and Logging Transactions

The Administration Console allows you to monitor transactions and to specify the
transaction log file prefix. Monitoring and logging tasks are performed at the server
level. Transaction statistics are displayed for a specific server and each server has a
transaction log file.

To display transaction statistics and to set the prefix for the transaction log files, do the
following:

1. Start the Administration Console.

2. Click the server node in the left pane.

3. Select a specific server in the left pane.

4. Select the Monitoring tab.

5. Select the JTA tab. Totals for transaction statistics are displayed in the JTA
dialog. (You can also click the monitoring text links to monitor transactions by
resource or by name, or to monitor all active transactions.)

6. Select the Logging tab.

7. Select the JTA tab.

8. Enter a transaction log file prefix (storage location for transaction logs) then click
Apply to save the attribute setting. The new transaction log file prefix takes effect
after you restart the server.

The default transaction log file prefix is the server’s working directory.

For detailed information on monitoring and logging values and attributes, see the
following sections in the Administration Console Online Help:

! Server →Monitoring →JTA at
http://e-docs.bea.com/wls/docs70/ConsoleHelp/domain_server_moni
tor_jta.html

! Server →Logging →JTA at
http://e-docs.bea.com/wls/docs70/ConsoleHelp/domain_server_logg
ing_jta.html

http://e-docs.bea.com/wls/docs70/ConsoleHelp/domain_server_monitor_jta.html
http://e-docs.bea.com/wls/docs70/ConsoleHelp/domain_server_monitor_jta.html
http://e-docs.bea.com/wls/docs70/ConsoleHelp/domain_server_monitor_jta.html
http://e-docs.bea.com/wls/docs70/ConsoleHelp/domain_server_logging_jta.html
http://e-docs.bea.com/wls/docs70/ConsoleHelp/domain_server_logging_jta.html
http://e-docs.bea.com/wls/docs70/ConsoleHelp/domain_server_logging_jta.html

Monitoring and Logging Transactions

Administration Guide 7-7

! Domain →Configuration →JTA at
http://e-docs.bea.com/wls/docs70/ConsoleHelp/domain_domain_conf
ig_jta.html

Transaction Monitoring

You can monitor transactions in progress using the WebLogic Console. In addition to
displaying statistics, as described in Transaction Statistics in Programming WebLogic
JTA, you can display the following:

! transactions by name, including rollback and time active information

! transactions by resource, including statistics on total, committed, and rolled back
transactions

! all active transactions, including information on status, servers, resources,
properties, and the transaction identifier

Transaction Log Files

Each server has a transaction log which stores information about committed
transactions coordinated by the server that may not have been completed. WebLogic
Server uses the transaction log when recovering from system crashes or network
failures. You cannot directly view the transaction log—the file is in a binary format.

The transaction log consists of multiple files. Each file is subject to garbage collection.
That is, when none of the records in a transaction log file are needed, the system deletes
the file and returns the disk space to the file system. In addition, the system creates a
new transaction log file if the previous log file becomes too large or a checkpoint
occurs.

Caution: Do not manually delete transaction log files. Deleting transaction log files
may cause inconsistencies in your data.

http://e-docs.bea.com/wls/docs70/ConsoleHelp/domain_domain_config_jta.html
http://e-docs.bea.com/wls/docs70/ConsoleHelp/domain_domain_config_jta.html
http://e-docs.bea.com/wls/docs70/ConsoleHelp/domain_domain_config_jta.html
http://e-docs.bea.com/wls/docs70/jta/trbtrx.html#jtatrb008

7 Managing Transactions

7-8 Administration Guide

Transaction log files are uniquely named using a pathname prefix, the server name, a
four-digit numeric suffix, and a file extension. The pathname prefix determines the
storage location for the file. You can specify a value for the
TransactionLogFilePrefix server attribute using the WebLogic Administration
Console. The default TransactionLogFilePrefix is the server’s working directory.

You should set the TransactionLogFilePrefix so that transaction log files are
created on a highly available file system, for example, on a RAID device. To take
advantage of the migration capability of the Transaction Recovery Service for servers
in a cluster, you must store the transaction log in a location that is available to a server
and its backup servers, preferably on a dual-ported SCSI disk or on a Storage Area
Network (SAN). See “Preparing to Migrate the Transaction Recovery Service” on
page 7-16 for more information.

On a UNIX system with a server name of websvr and with the
TransactionLogFilePrefix set to /usr7/applog1/, you might see the following
log files:

/usr7/applog1/websvr0000.tlog
/usr7/applog1/websvr0001.tlog
/usr7/applog1/websvr0002.tlog

Similarly, on a Windows system with the TransactionLogFilePrefix set to
C:\weblogic\logA\, you might see the following log files:

C:\weblogic\logA\websvr0000.tlog
C:\weblogic\logA\websvr0001.tlog
C:\weblogic\logA\websvr0002.tlog

If you notice a large number of transaction log files on your system, this may be an
indication of multiple long-running transactions that have not completed. This can be
caused by resource manager failures or transactions with especially large timeout
values.

If the file system containing the transaction log runs out of space or is inaccessible,
commit() throws SystemException, and the transaction manager places a message
in the system error log. No transactions are committed until more space is available.

When migrating a server to another machine, move the transaction log files as well,
keeping all the log files for a server together. See “Moving a Server to Another
Machine” on page 7-11 for more information.

Handling Heuristic Completions

Administration Guide 7-9

Heuristic Log Files

When importing transactions from a foreign transaction manager into WebLogic
Server, the WebLogic Server transaction manager acts as an XA resource coordinated
by the foreign transaction manager. In rare catastrophic situations, such as after the
transaction abandon timeout expires or if the XA resources participating in the
WebLogic Server imported transaction throw heuristic exceptions, the WebLogic
Server transaction manager will make a heuristic decision. That is, the WebLogic
Server transaction manager will decide to commit or roll back the transaction without
input from the foreign transaction manager. If the WebLogic Server transaction
manager makes a heuristic decision, it stores the information of the heuristic decision
in the heuristic log files until the foreign transaction manager tells it to forget the
transaction.

Heuristic log files are stored with transaction log files and look similar to transaction
log files with .heur before the .tlog extension. They use the following format:

<TLOG_file_prefix>\<server_name><4-digit number>.heur.tlog

On a UNIX system with a server name of websvr, you might see the following
heuristic log files:

/usr7/applog1/websvr0000.heur.tlog
/usr7/applog1/websvr0001.heur.tlog
/usr7/applog1/websvr0002.heur.tlog

Similarly, on a Windows system, you might see the following heuristic log files:

C:\weblogic\logA\websvr0000.heur.tlog
C:\weblogic\logA\websvr0001.heur.tlog
C:\weblogic\logA\websvr0002.heur.tlog

Handling Heuristic Completions

An heuristic completion (or heuristic decision) occurs when a resource makes a
unilateral decision during the completion stage of a distributed transaction to commit
or rollback updates. This can leave distributed data in an indeterminate state. Network

7 Managing Transactions

7-10 Administration Guide

failures or resource timeouts are possible causes for heuristic completion. In the event
of an heuristic completion, one of the following heuristic outcome exceptions may be
thrown:

! HeuristicRollback—one resource participating in a transaction decided to
autonomously rollback its work, even though it agreed to prepare itself and wait
for a commit decision. If the Transaction Manager decided to commit the
transaction, the resource's heuristic rollback decision was incorrect, and might
lead to an inconsistent outcome since other branches of the transaction were
committed.

! HeuristicCommit—one resource participating in a transaction decided to
autonomously commit its work, even though it agreed to prepare itself and wait
for a commit decision. If the Transaction Manager decided to rollback the
transaction, the resource's heuristic commit decision was incorrect, and might
lead to an inconsistent outcome since other branches of the transaction were
rolled back.

! HeuristicMixed—the Transaction Manager is aware that a transaction resulted
in a mixed outcome, where some participating resources committed and some
rolled back. The underlying cause was most likely heuristic rollback or heuristic
commit decisions made by one or more of the participating resources.

! HeuristicHazard—the Transaction Manager is aware that a transaction might
have resulted in a mixed outcome, where some participating resources
committed and some rolled back. But system or resource failures make it
impossible to know for sure whether a Heuristic Mixed outcome definitely
occurred. The underlying cause was most likely heuristic rollback or heuristic
commit decisions made by one or more of the participating resources.

When an heuristic completion occurs, a message is written to the server log. Refer to
your database vendor documentation for instructions on resolving heuristic
completions.

Some resource managers save context information for heuristic completions. This
information can be helpful in resolving resource manager data inconsistencies. If the
ForgetHeuristics attribute is selected (set to true) on the JTA panel of the
WebLogic Console, this information is removed after an heuristic completion. When
using a resource manager that saves context information, you may want to set the
ForgetHeuristics attribute to false.

Abandoning Transactions

Administration Guide 7-11

Abandoning Transactions

You can choose to abandon incomplete transactions after a specified amount of time.
In the two-phase commit process for distributed transactions, the transaction manager
coordinates all resource managers involved in a transaction. After all resource
managers vote to commit or rollback, the transaction manager notifies the resource
managers to act—to either commit or rollback changes. During this second phase of
the two-phase commit process, the transaction manager will continue to try to
complete the transaction until all resource managers indicate that the transaction is
completed. Using the AbandonTimeoutSeconds attribute, you can set the maximum
time, in seconds, that a transaction manager will persist in attempting to complete a
transaction during the second phase of the commit protocol. The default value is 86400
seconds, or 24 hours. After the abandon transaction timer expires, no further attempt
is made to resolve the transaction with any resources that are unavailable or unable to
acknowledge the transaction outcome. If the transaction is in a prepared state before
being abandoned, the transaction manager will roll back the transaction to release any
locks held on behalf of the abandoned transaction and will write an heuristic error to
the server log.

For instructions on how to set the AbandonTimeoutSeconds attribute, see
Configuring JTA in the Administration Console Online Help. For more information
about the two-phase commit process, see Distributed Transactions and the Two-Phase
Commit Protocol in Programming WebLogic JTA.

Moving a Server to Another Machine

When an application server is moved to another machine, it must be able to locate the
transaction log files on the new disk. For this reason, BEA recommends moving the
transaction log files to the new machine before starting the server on the new machine.
By doing so, you can ensure that recovery runs properly. When you start WebLogic
Server on the new system, the server reads the transaction log files to recover pending
transactions, if any. If the pathname is different on the new machine, update the
TransactionLogFilePrefix attribute with the new path before starting the server.
For instructions on how to change the TransactionLogFilePrefix, see Specifying
the Transaction Log File Location in the Administration Console Online Help.

http://e-docs.bea.com/wls/docs70/ConsoleHelp/jta.html#jta_configure
http://e-docs.bea.com/wls/docs70/jta/gstrx.html#jtaintro006
http://e-docs.bea.com/wls/docs70/jta/gstrx.html#jtaintro006
http://e-docs.bea.com/wls/docs70/ConsoleHelp/servers.html#jta_tx_log
http://e-docs.bea.com/wls/docs70/ConsoleHelp/servers.html#jta_tx_log

7 Managing Transactions

7-12 Administration Guide

Transaction Recovery After a Server Fails

The WebLogic Server transaction manager is designed to recover from system crashes
with minimal user intervention. The transaction manager makes every effort to resolve
transaction branches that are prepared by resource managers with a commit or roll
back, even after multiple crashes or crashes during recovery.

To facilitate recovery after a crash, WebLogic Server provides the Transaction
Recovery Service, which automatically attempts to recover transactions on system
startup. The Transaction Recovery Service owns the transaction log for a server. On
startup, the Transaction Recovery Service parses all log files for incomplete
transactions and completes them as described in “Transaction Recovery Service
Actions After a Crash” on page 7-13.

Because the Transaction Recovery Service is designed to gracefully handle transaction
recovery after a crash, BEA recommends that you attempt to restart a crashed server
and allow the Transaction Recovery Service to handle incomplete transactions.

If a server crashes and you do not expect to be able to restart it within a reasonable
period of time, you may need to take action. Procedures for recovering transactions
after a server failure differ based on your WebLogic Server environment. For a
non-clustered server, you can manually move the server (with transaction log files) to
another system (machine) to recover transactions. See “Recovering Transactions for a
Failed Non-Clustered Server” on page 7-14 for more information. For a server in a
cluster, you can manually migrate the Transaction Recovery Service to another server
in the same cluster. Migrating the Transaction Recovery Service involves selecting a
server with access to the transaction logs to recover transactions, and then migrating
the service using the Administration Console or the WebLogic command line
interface.

Note: For non-cluster servers, you can only move the entire server to a new system.
For clustered servers, you can temporarily migrate the Transaction Recovery
Service.

For more information about migrating the Transaction Recovery Service, see
“Recovering Transactions for a Failed Clustered Server” on page 7-15. For more
information about clusters, see Using WebLogic Server Clusters at
http://e-docs.bea.com/wls/docs70/cluster/index.html.

http://e-docs.bea.com/wls/docs70/cluster/index.html

Transaction Recovery After a Server Fails

Administration Guide 7-13

Transaction Recovery Service Actions After a Crash

When you restart a server after a crash or when you migrate the Transaction Recovery
Service to another (backup) server, the Transaction Recovery Service does the
following:

! Complete transactions ready for second phase of two-phase commit

For transactions for which a commit decision has been made but the second
phase of the two-phase commit process has not completed (transactions recorded
in the transaction log), the Transaction Recovery Service completes the commit
process.

! Resolve prepared transactions

For transactions that the transaction manager has prepared with a resource
manager (transactions in phase one of the two-phase commit process), the
Transaction Recovery Service must call XAResource.recover() during crash
recovery for each resource manager and eventually resolve (by calling the
commit(), rollback(), or forget() method) all transaction IDs returned by
recover().

! Report heuristic completions

If a resource manager reports a heuristic exception, the Transaction Recovery
Service records the heuristic exception in the server log and calls forget() if
the Forget Heuristics configuration attribute is enabled. If the Forget
Heuristics configuration attribute is not enabled, refer to your database
vendor’s documentation for information about resolving heuristic completions.
See “Handling Heuristic Completions” on page 7-9 for more information.

The Transaction Recovery Service provides the following benefits:

! Maintains consistency across resources

The Transaction Recovery Service handles transaction recovery in a consistent,
predictable manner: For a transaction for which a commit decision has been
made but is not yet committed before a crash, and XAResource.recover()

returns the transaction ID, the Transaction Recovery Service consistently calls
XAResource.commit(); for a transaction for which a commit decision has not
been made before a crash, and XAResource.recover() returns its transaction
ID, the Transaction Recovery Service consistently calls
XAResource.rollback(). With consistent, predictable transaction recovery, a

7 Managing Transactions

7-14 Administration Guide

transaction manager crash by itself cannot cause a mixed heuristic completion
where some branches are committed and some are rolled back.

! Persists in achieving transaction resolution

If a resource manager crashes, the Transaction Recovery Service must eventually
call commit() or rollback() for each prepared transaction until it gets a
successful return from commit() or rollback(). The attempts to resolve the
transaction can be limited by setting the AbandonTimeoutSeconds
configuration attribute. See “Abandoning Transactions” on page 7-11 for more
information.

Recovering Transactions for a Failed Non-Clustered
Server

To recover transactions for a failed server, follow these steps:

1. Move (or make available) all transaction log files from the failed server to a new
server.

2. Set the TransactionLogFilePrefix attribute with the path to the transaction
log files. For instructions, see Specifying the Transaction Log File Location in
the Administration Console Online Help.

3. Start the new server. The Transaction Recovery Service searches all transaction
log files for incomplete transactions and completes them as described in
“Transaction Recovery Service Actions After a Crash” on page 7-13.

When moving transaction logs after a server failure, make all transaction log files
available on the new machine before starting the server there. You can accomplish this
by storing transaction log files on a dual-ported disk available to both machines. As in
the case of a planned migration, update the TransactionLogFilePrefix attribute
with the new path before starting the server if the pathname is different on the new
machine. Ensure that all transaction log files are available on the new machine before
the server is started there. Otherwise, transactions in the process of being committed at
the time of a crash might not be resolved correctly, resulting in application data
inconsistencies.

http://e-docs.bea.com/wls/docs70/ConsoleHelp/servers.html#jta_tx_log

Transaction Recovery After a Server Fails

Administration Guide 7-15

Note: The Transaction Recovery Service is designed to gracefully handle transaction
recovery after a crash. BEA recommends that you attempt to restart a crashed
server and allow the Transaction Recovery Service to handle incomplete
transactions, rather than move the server to a new machine.

Recovering Transactions for a Failed Clustered Server

When a clustered server crashes, you can manually migrate the Transaction Recovery
Service from the crashed server to another server in the same cluster using the
Administration Console or the command line interface. The following events occur:

1. The Transaction Recovery Service on the backup server takes ownership of the
transaction log from the crashed server.

2. The Transaction Recovery Service searches all transaction log files from the
failed server for incomplete transactions and completes them as described in
“Transaction Recovery Service Actions After a Crash” on page 7-13.

3. If the Transaction Recovery Service on the backup server successfully completes
all incomplete transactions from the failed server, the server releases ownership
of the Transaction Recovery Service (including transaction log files) for the
failed server so the failed server can reclaim it upon restart.

For instructions to migrate the Transaction Recovery Service using the Administration
Console, see Migrating the Transaction Recovery Service to a Server in the Same
Cluster in the Administration Console online help at
http://e-docs.bea.com/wls/docs70/ConsoleHelp/jta.html#jta_trs_mig

rate. For instructions to migrate the Transaction Recovery Service using the
command line interface, see MIGRATE in Appendix B, “WebLogic Server
Command-Line Interface Reference.”

A server can perform transaction recovery for more than one failed server. While
recovering transactions for other servers, the backup server continues to process and
recover its own transactions. If the backup server fails during recovery, you can
migrate the Transaction Recovery Service to yet another server, which will continue
the transaction recovery. You can also manually migrate the Transaction Recovery
Service back to the original failed server using the Administration Console or the
command line interface. See Manually Migrating the Transaction Recovery Service
Back to the Original Server in the Administration Console online help at
http://e-docs.bea.com/wls/docs70/ConsoleHelp/jta.html#jta_trs_mig

rate_back for more information.

http://e-docs.bea.com/wls/docs70/ConsoleHelp/jta.html#jta_trs_migrate
http://e-docs.bea.com/wls/docs70/ConsoleHelp/jta.html#jta_trs_migrate
http://e-docs.bea.com/wls/docs70/ConsoleHelp/jta.html#jta_trs_migrate_back
http://e-docs.bea.com/wls/docs70/ConsoleHelp/jta.html#jta_trs_migrate_back

7 Managing Transactions

7-16 Administration Guide

When a backup server completes transaction recovery for a server, it releases
ownership of the Transaction Recovery Service (and transaction logs) for the failed
server. When you restart a failed server, it attempts to reclaim ownership of its
Transaction Recovery Service. If a backup server is in the process of recovering
transactions when you restart the failed server, the backup server stops recovering
transactions, performs some internal cleanup, and releases ownership of the
Transaction Recovery service so the failed server can reclaim it and start properly. The
failed server will then complete its own transaction recovery.

If a backup server still owns the Transaction Recovery Service for a failed server and
the backup server is inactive when you attempt to restart the failed server, the failed
server will not start because the backup server cannot release ownership of the
Transaction Recovery Service. This is also true if the fail back mechanism fails or if
the backup server cannot communicate with the Administration Server. You can
manually migrate the Transaction Recovery using the Administration Console or the
command line interface.

Limitations of Migrating the Transaction Recovery Service

When migrating the Transaction Recovery Service, the following limitations apply:

! You cannot migrate the Transaction Recovery Service to a backup server from a
server that is running. You must stop the server before migrating the
Transactions Recovery Service.

! The backup server does not accept new transaction work for the failed server. It
only processes incomplete transactions.

! The backup server does not process heuristic log files.

! The backup server only processes log records written by WebLogic Server. It
does not process log records written by gateway implementations, including
WebLogic Tuxedo Connector.

Preparing to Migrate the Transaction Recovery Service

To migrate the Transaction Recovery Service from a failed server in a cluster to
another server (backup server) in the same cluster, the backup server must have access
to the transaction log files from the failed server. Therefore, you must store transaction
log files on persistent storage available to both (or more) servers. BEA recommends
that you store transaction log files on a Storage Area Network (SAN) device or a

Transaction Recovery After a Server Fails

Administration Guide 7-17

dual-ported disk. Do not use an NFS file system to store transaction log files. Because
of the caching scheme in NFS, transaction log files on disk may not always be current.
Using transaction log files stored on an NFS device for recovery may cause data
corruption.

When migrating the Transaction Recovery Service from a server, you must stop the
failing or failed server before actually migrating the Transaction Recovery Service. If
the original server is still running, you cannot migrate the Transaction Recovery
Service from it.

For detailed instructions to migrate the Transaction Recovery Service, see Migrating
the Transaction Recovery Service to a Server in the Same Cluster in the Administration
Console Online Help at
http://e-docs.bea.com/wls/docs70/ConsoleHelp/jta.html#jta_trs_mig

rate.

You can also use the command line to migrate the Transaction Recovery Service. See
“MIGRATE” in Appendix B, “WebLogic Server Command-Line Interface
Reference.”

http://e-docs.bea.com/wls/docs70/ConsoleHelp/jta.html#jta_trs_migrate
http://e-docs.bea.com/wls/docs70/ConsoleHelp/jta.html#jta_trs_migrate

7 Managing Transactions

7-18 Administration Guide

Administration Guide 8-1

CHAPTER

8 Managing JDBC
Connectivity

The following sections provide guidelines for configuring and managing database
connectivity through the JDBC components—Data Sources, connection pools and
MultiPools—for both local and distributed transactions:

! “Overview of JDBC Administration” on page 8-1

! “JDBC Components—Connection Pools, Data Sources, and MultiPools” on page
8-4

! “Security for JDBC Connection Pools” on page 8-8

! “Configuring and Managing JDBC Connection Pools, MultiPools, and
DataSources Using the Administration Console” on page 8-10

! “JDBC Configuration Guidelines for Connection Pools, MultiPools, and
DataSources” on page 8-19

! “Increasing Performance with the Prepared Statement Cache” on page 8-37

Overview of JDBC Administration

The Administration Console provides an interface to the tools that allow you to
configure and manage WebLogic Server features, including JDBC (Java database
connectivity). For most JDBC administrative functions, which include creating,

8 Managing JDBC Connectivity

8-2 Administration Guide

managing and monitoring connectivity, systems administrators use the Administration
Console or the command-line interface. Application developers may want to use the
JDBC API or the WebLogic Management API.

Frequently performed tasks to set and manage connectivity include:

! Defining the attributes that govern JDBC connectivity between WebLogic Server
and your database management system

! Managing established connectivity

! Monitoring established connectivity

About the Administration Console

Your primary way to set and manage JDBC connectivity is through the Administration
Console. Using the Administration Console, you set up persistent connectivity—
connection pools, Data Sources, Tx Data Sources, and Multipools that are available
even after you stop and restart the server. These JDBC objects are known as static
objects. You can create dynamic objects—objects that you expect to use and then
remove—with the administration command line or in application code.

In addition to setting connectivity, the Administration Console allows you to manage
and monitor established connectivity.

About the Command-Line Interface

The command-line interface provides a way to dynamically create and manage
connection pools and data sources. For information on how to use the command-line
interface, see “WebLogic Server Command-Line Interface Reference” on page B-1.

About the JDBC API

For information on setting and managing connectivity programmatically, see
Programming WebLogic JDBC at
http://e-docs.bea.com/wls/docs70/jdbc/index.html.

http://e-docs.bea.com/wls/docs70/jdbc/index.html

Overview of JDBC Administration

Administration Guide 8-3

Related Information

The JDBC drivers, used locally and in distributed transactions, interface with many
WebLogic Server components and information appears in several documents. For
example, information about JDBC drivers is included in the documentation sets for
JDBC, JTA, and WebLogic jDrivers.

Here is a list of additional resources for JDBC, JTA and Administration:

Administration and Management

! For instructions on opening the Administration Console, refer to “Starting and
Using the Administration Console” on page 1-22.

! For a complete list of the JDBC attributes, see the WebLogic Server
Configuration Reference Guide at
http://e-docs.bea.com/wls/docs70/config_xml/index.html.

! For information about using the command-line interface, see “WebLogic Server
Command-Line Interface Reference” on page B-1.

JDBC and WebLogic jDrivers

The following documentation is written primarily for application developers. Systems
Administrators may want to read the introductory material as a supplement to the
material in this document.

! For information about the JDBC API, see Programming WebLogic JDBC. The
“Introduction to WebLogic JDBC” section provides a concise overview of JDBC
and JDBC drivers.

! For information about using the WebLogic jDrivers, see Using WebLogic
jDriver for Oracle at http://e-docs.bea.com/wls/docs70/oracle/index.html or
Using WebLogic jDriver for Microsoft SQL Server at
http://e-docs.bea.com/wls/docs70/mssqlserver4/index.html.

Transactions (JTA)

! For information about managing JTA, see “Managing Transactions” on page 7-1.

http://e-docs.bea.com/wls/docs70/config_xml/index.html
http://e-docs.bea.com/wls/docs70/config_xml/index.html
http://e-docs.bea.com/wls/docs70/jdbc/index.html
http://e-docs.bea.com/wls/docs70/jdbc/intro.html
http://e-docs.bea.com/wls/docs70/oracle/index.html
http://e-docs.bea.com/wls/docs70/oracle/index.html
http://e-docs.bea.com/wls/docs70/mssqlserver4/index.html

8 Managing JDBC Connectivity

8-4 Administration Guide

! For information about using third-party drivers, see "Using Third-Party JDBC
XA Drivers with WebLogic Server" in Programming WebLogic JTA at
http://e-docs.bea.com/wls/docs70/jta/thirdpartytx.html.

The following documentation is written primarily for application developers. Systems
Administrators may want to read the following as supplements to the material in this
section.

! For information about distributed transactions, see Programming WebLogic JTA
at http://e-docs.bea.com/wls/docs70/jta/index.html.

! For information about using the WebLogic jDriver for Oracle/XA, see "Using
WebLogic jDriver for Oracle/XA in Distributed Transactions" in Using
WebLogic jDriver for Oracle at
http://e-docs.bea.com/wls/docs70/oracle/trxjdbcx.html.

JDBC Components—Connection Pools, Data
Sources, and MultiPools

The following sections provide a brief overview of the JDBC connectivity
components—connection pools, MultiPools, and Data Sources.

http://e-docs.bea.com/wls/docs70/jta/thirdpartytx.html
http://e-docs.bea.com/wls/docs70/jta/thirdpartytx.html
http://e-docs.bea.com/wls/docs70/jta/thirdpartytx.html
http://e-docs.bea.com/wls/docs70/jta/index.html
http://e-docs.bea.com/wls/docs70/oracle/trxjdbcx.html
http://e-docs.bea.com/wls/docs70/oracle/trxjdbcx.html

JDBC Components—Connection Pools, Data Sources, and MultiPools

Administration Guide 8-5

Figure 8-1 JDBC Components in WebLogic Server

Connection Pools

A connection pool contains a group of JDBC connections that are created when the
connection pool is registered—when starting up WebLogic Server or when assigning
the connection pool to a target server or cluster. Connection pools use a type 2 or type
4 JDBC driver to create physical database connections. Your application borrows a
connection from the pool, uses it, then returns it to the pool by closing it. Read more
about Connection Pools in Programming WebLogic JDBC at
http://e-docs.bea.com/wls/docs70/jdbc/programming.html.

All of the settings you make with the Administration Console are static; that is, all
settings persist even after you stop and restart WebLogic Server. You can create
dynamic connection pools—those that you expect to use and delete while the server is
running—using the command line (see “WebLogic Server Command-Line Interface
Reference” on page B-1) or programmatically using the API (see Creating a

http://e-docs.bea.com/wls/docs70/jdbc/programming.html#programming001
http://e-docs.bea.com/wls/docs70/jdbc/programming.html#dynamic_conn_pool

8 Managing JDBC Connectivity

8-6 Administration Guide

Connection Pool Dynamically in Programming WebLogic JDBC at
http://e-docs.bea.com/wls/docs70/jdbc/programming.html#dynamic_co

nn_pool).

Connection pool settings are persisted in the config.xml file, including settings for
dynamically created connection pools (until you programmatically delete the
connection pool). For information about entries in the config.xml file, see the
JDBCConnectionPool section of the Configuration Reference Guide at
http://e-docs.bea.com/wls/docs70/config_xml/JDBCConnectionPool.ht

ml.

Application-Scoped JDBC Connection Pools

When you package your enterprise applications, you can include the
weblogic-application.xml supplemental deployment descriptor, which you use to
configure application scoping. Within the weblogic-application.xml file, you can
configure JDBC connection pools that are created when you deploy the enterprise
application.

An instance of the connection pool is created with each instance of your application.
This means an instance of the pool is created with the application on each node that the
application is targeted to. It is important to keep this in mind when considering pool
sizing.

Connection pools created in this manner are known as application-scoped connection
pools, app scoped pools, application local pools, app local pools, or local pools, and
are scoped for the enterprise application only. That is, they are isolated for use by the
enterprise application.

For more information about application scoping and application scoped resources, see:

! weblogic-application.xml Deployment Descriptor Elements in Developing
WebLogic Server Applications at
http://e-docs.bea.com/wls/docs70/programming/app_xml.html#app-s

coped-pool.

! Packaging Enterprise Applications in Developing WebLogic Server Applications
at
http://e-docs.bea.com/wls/docs70/programming/packaging.html#pac

k009.

http://e-docs.bea.com/wls/docs70/jdbc/programming.html#dynamic_conn_pool
http://e-docs.bea.com/wls/docs70/config_xml/JDBCConnectionPool.html
http://e-docs.bea.com/wls/docs70/programming/app_xml.html#app-scoped-pool
http://e-docs.bea.com/wls/docs70/programming/packaging.html#pack009

JDBC Components—Connection Pools, Data Sources, and MultiPools

Administration Guide 8-7

! Two-Phase Deployment in Developing WebLogic Server Applications at
http://e-docs.bea.com/wls/docs70/programming/deploying.html#two

phasedeploy.

MultiPools

A MultiPool is a pool of connection pools. Used in local (non-distributed) transactions
on single or multiple WebLogic Server configurations, MultiPools aid in either:

! Load Balancing—pools are accessed using a round-robin scheme. When
switching connections, WebLogic Server selects a connection from the next
connection pool in the order listed.

! High Availability—connection pools are listed in the order that determines the
order in which connection pool switching occurs. That is, WebLogic Server
provides database connections from the first connection pool on the list. If that
connection pool fails, it attempts to use a database connection from the second,
and so forth.

Data Sources

A Data Source object enables JDBC applications to obtain a DBMS connection from
a connection pool. Each Data Source object binds to the JNDI tree and points to a
connection pool or MultiPool. Applications look up the Data Source to get a
connection. Data Source objects can be defined with JTA (Tx Data Sources in the
Administration Console) or without JTA (Data Sources in the Administration
Console). You use Tx Data Source for distributed transactions. See “JDBC
Configuration Guidelines for Connection Pools, MultiPools, and DataSources” on
page 8-19 for more information about using Data Sources and Tx Data Sources.

Note: Tx Data Sources cannot point to MultiPools, only connection pools, because
MultiPools are not supported in distributed transactions.

http://e-docs.bea.com/wls/docs70/programming/deploying.html

8 Managing JDBC Connectivity

8-8 Administration Guide

JDBC Data Source Factories

In WebLogic Server, you can bind a JDBC DataSource resource into the WebLogic
Server JNDI tree as a resource factory. You can then map a resource factory reference
in the EJB deployment descriptor to an available resource factory in a running
WebLogic Server to get a connection from a connection pool.

For details about creating and using a JDBC Data Source factory, see Resource
Factories in Programming WebLogic Enterprise JavaBeans at
http://e-docs.bea.com/wls/docs70/ejb/EJB_environment.html#resourc

efact.

Security for JDBC Connection Pools

You can optionally restrict access to JDBC connection pools. In previous releases of
WebLogic Server, ACLs were used to protect WebLogic resources. In WebLogic
Server version 7.0, security policies answer the question “who has access” to a
WebLogic resource. A security policy is created when you define an association
between a WebLogic resource and a user, group, or role. A WebLogic resource has no
protection until you assign it a security policy. For instructions on how to set up
security for all WebLogic Server resources, see “Setting Protections for WebLogic
Resources” in the Administration Console Online Help.

Security for JDBC Connection Pools in Compatibility
Mode

WebLogic Server 7.0 continues to support the security model from version 6.1 for
backward compatibility. To use version 6.1 security, you must run in compatibility
mode. For details about running in compatibility mode, see the following documents:

! Security Compatibility Mode in the Administration Console Online Help at
http://e-docs.bea.com/wls/docs70/ConsoleHelp/security_6x.html.

! Deploying a WebLogic Server 6.x Application on WebLogic Server 7.0 in the
Upgrade Guide at

http://e-docs.bea.com/wls/docs70/ejb/EJB_environment.html#resourcefact
http://e-docs.bea.com/wls/docs70/ejb/EJB_environment.html#resourcefact
http://e-docs.bea.com/wls/docs70/ConsoleHelp/security_7x.html#securitypolicies
http://e-docs.bea.com/wls/docs70/ConsoleHelp/security_7x.html#securitypolicies
http://e-docs.bea.com/wls/docs70/ConsoleHelp/security_6x.html
http://e-docs.bea.com/wls/docs70/upgrade/upgrade6xto70.html#deploying

Security for JDBC Connection Pools

Administration Guide 8-9

http://e-docs.bea.com/wls/docs70/upgrade/upgrade6xto70.html#dep

loying.

! Security in the Upgrade Guide at
http://e-docs.bea.com/wls/docs70/upgrade/upgrade6xto70.html#sec

urity.

The default security realm for WebLogic Server 6.1 was the File realm, which uses
ACLs in the fileRealm.properties file for authorization and authentication.
Connection pools are unprotected unless you define ACLs for connection pools (as a
resource type) or for individual connection pools. If you define an ACL for connection
pools, access is restricted to exactly what is defined in the ACL. For example, before
you have any ACLs for connection pools in your fileRealm.properties file,
everyone has unrestricted access to all connection pools in your domain. However, if
you add the following line to the file, access becomes very restricted:

acl.reset.weblogic.jdbc.connectionPool=Administrators

This line grants reset privileges to Administrators on all connection pools and it
prohibits all other actions by all other users. By adding an ACL, file realm protection
for connection pools is activated. WebLogic Server enforces the ACLs defined in
fileRealm.properties and only allows access specifically granted in the file. If
your intent in adding the ACL was to restrict resets only on connection pools, you must
specifically grant privileges for other actions to everyone or to specific roles or users.
For example:

acl.reserve.weblogic.jdbc.connectionPool=everyone
acl.shrink.weblogic.jdbc.connectionPool=everyone
acl.admin.weblogic.jdbc.connectionPool=everyone

Table 8-1 lists the ACLs that you can use in fileRealm.properties to secure
connection pools.

Table 8-1 File Realm JDBC ACLs

Use this ACL . . . To Restrict . . .

reserve.weblogic.jdbc.connectionPool[.poo
lname]

Reserving connections in a
connection pool.

http://e-docs.bea.com/wls/docs70/upgrade/upgrade6xto70.html#security

8 Managing JDBC Connectivity

8-10 Administration Guide

Configuring and Managing JDBC Connection
Pools, MultiPools, and DataSources Using
the Administration Console

The following sections discuss how to set database connectivity by configuring JDBC
components—connection pools, Data Sources, and MultiPools. Once connectivity is
established, you use either the Administration Console or command-line interface to
manage and monitor connectivity. See Table 8-3 for descriptions of the configuration
tasks and links to the Administration Console Online Help.

JDBC settings you make in the Administration Console, including configuration
settings for connection pools, MultiPools, DataSources, and TxDataSources, are
persisted in the config.xml file for the domain. For information about entries in this
file, see the following sections of the Configuration Reference Guide:

reset.weblogic.jdbc.connectionPool
[.poolname]

Resetting all the connections
in a connection pool by
shutting down and
reestablishing all allocated
connections.

shrink.weblogic.jdbc.connectionPool
[.poolname]

Shrinking the connection pool
to its original size (number of
connections).

admin.weblogic.jdbc.connectionPool
[.poolname]

Enabling, disabling, and
shutting down the connection
pool.

admin.weblogic.jdbc.connectionPoolcreate Creation of static connection
pools.

Table 8-1 File Realm JDBC ACLs

Use this ACL . . . To Restrict . . .

Configuring and Managing JDBC Connection Pools, MultiPools, and DataSources Us-

Administration Guide 8-11

! JDBCConnectionPool at
http://e-docs.bea.com/wls/docs70/config_xml/JDBCConnectionPool.
html

! JDBCMultiPool at
http://e-docs.bea.com/wls/docs70/config_xml/JDBCMultiPool.html

! JDBCDataSource at
http://e-docs.bea.com/wls/docs70/config_xml/JDBCDataSource.html

! JDBCTxDataSource at
http://e-docs.bea.com/wls/docs70/config_xml/JDBCTxDataSource.ht
ml

JDBC Configuration

In this section, we define configuration as including these processes:

Creating the JDBC Objects

Using the Administration Console, you create the JDBC components—connection
pools, Data Sources, and MultiPools—by specifying attributes and database
properties. See “Configuring JDBC Connectivity Using the Administration Console”
on page 8-13.

First you create the connection pools and optionally a MultiPool, then you create the
Data Source. When you create a Data Source object, you specify a connection pool or
MultiPool as one of the Data Source attributes. This associates that Data Source with
one specific connection pool or MultiPool ("pool").

Assigning the JDBC Objects

Once you configure the Data Source and associated connection pool (or MultiPool),
you then assign each object to the same servers or clusters. Some common scenarios
are as follows:

! In a cluster, assign the Data Source to the cluster, and assign the associated
connection pool to each managed server in the cluster.

http://e-docs.bea.com/wls/docs70/config_xml/JDBCConnectionPool.html
http://e-docs.bea.com/wls/docs70/config_xml/JDBCMultiPool.html
http://e-docs.bea.com/wls/docs70/config_xml/JDBCDataSource.html
http://e-docs.bea.com/wls/docs70/config_xml/JDBCTxDataSource.html

8 Managing JDBC Connectivity

8-12 Administration Guide

! In a single server configuration, assign each Data Source and its associated
connection pool to the server.

! If you are using a MultiPool, assign the connection pools to the MultiPool; then
assign the Data Source and all connection pools and the MultiPool to the
server(s) or cluster(s).

See “Configuring JDBC Connectivity Using the Administration Console” on page
8-13 for a description of the tasks you perform.

Refer to the following table for more information about association and assignment in
the configuration process.

You can assign these Data Source/connection pool combinations to more than one
server or cluster, but they must be assigned in combination. For example, you cannot
assign a Data Source to Managed Server A if its associated connection pool is assigned
only to Server B.

Table 8-2 Association and Assignment Scenarios

Scenario
#

Associated . . . Assign . . . Target
Description

1 Data Source A with
Connection Pool A

1. Data Source A to Managed
Server 1, and

2. Connection Pool A to
Managed Server 1.

Data Source and
connection pool
assigned to the
same target.

2 Data Source B with
Connection Pool B

1. Data Source B to Cluster X,
then

2. Connection Pool B to
Managed Server 2 in Cluster
X.

Data Source and
Connection
assigned to
related
server/cluster
targets.

3 Data Source C with

Connection Pool C

! Data Source C and
Connection Pool C to
Managed Server 1.

- AND -

! Data Source C to Cluster X;
then assign Connection Pool
C to Managed Server 2 in
Cluster X.

Data Source and
connection pool
assigned as a unit
to two different
targets.

Configuring and Managing JDBC Connection Pools, MultiPools, and DataSources Us-

Administration Guide 8-13

You can configure dynamic connection pools (after the server starts) using the
WebLogic API (see Creating a Dynamic Connection Pool in Programming WebLogic
JDBC) or the command-line interface (see “JDBC Configuration Tasks Using the
Command-Line Interface” on page 8-16). WebLogic Server also includes example
code for creating and configuring dynamic Data Sources and connection pools in the
server samples, if you opted to install samples during installation. See
SAMPLES_HOME\server\src\examples\jdbc, where SAMPLES_HOME is the location
of the top-level directory for all samples and examples for the WebLogic Platform
(c:\bea\weblogic700\samples, by default).

Configuring JDBC Connectivity Using the Administration Console

The Administration Console allows you to configure, manage, and monitor JDBC
connectivity. To display the tabs that you use to perform these tasks, follow these
steps:

1. Start the Administration Console.

2. Locate the Services node in the left pane, then expand the JDBC node.

3. Select the node in the tree specific to the component you want to configure or
manage—connection pools, MultiPools, Data Source, or Tx Data Source.

4. Follow the instructions in the Online Help. For links to the Online Help, see
Table 8-3.

The following table shows the connectivity tasks, listed in typical order in which you
perform them. You may perform these tasks in a different order; but you must
configure an object before associating or assigning it.

Table 8-3 JDBC Configuration Tasks

JDBC Component/
Task

Description

Configure a Connection
Pool

On the Configuration tabs in the right pane, you set the attributes
for the connection pool, such as Name, URL, and database
Properties.

http://e-docs.bea.com/wls/docs70/ConsoleHelp/jdbc.html#jdbc_conn_pool_create
http://e-docs.bea.com/wls/docs70/jdbc/programming.html#dynamic_conn_pool

8 Managing JDBC Connectivity

8-14 Administration Guide

Clone a Connection Pool
(Optional)

This task copies a connection pool. On the Configuration tabs,
you change Name of pool to a unique name; and accept or change
the remaining attributes. This a useful feature when you want to
have identical pool configurations with different names. For
example, you may want to have each database administrator use
a certain pool to track individual changes to a database.

Assign a Connection
Pool to the
Servers/Clusters

Using the Target tab, you assign the connection pool to one or
more Servers or Clusters. See Table 8-2 Association and
Assignment Scenarios.

Also, to assign several connection pools to a server, see Assigning
JDBC Connection Pools to a Server in the Online Help.

Configure a MultiPool
(Optional)

On the MultiPool tabs, you set the attributes for the name and
algorithm type, either High Availability or Load Balancing. On
the Pool tab, you assign the connection pools to this MultiPool.

Assign the MultiPool to
Servers or Clusters

Using the Target tab, you assign the configured MultiPool to
Servers or Clusters.

Configure a Data Source
(and Associate it with a
Connection Pool)

Using the Data Source tab, set the attributes for the Data Source,
including the Name, JNDI Name, and Pool Name (this associates,
or assigns, the Data Source with a specific pool—connection pool
or MultiPool.)

Assign the Data Source
to Servers or Clusters

Using the Target tab, you assign the configured Data Source to
servers or clusters.

Configure a Tx Data
Source (and Associate it
with a Connection Pool)

Using the Tx Data Source tab, set the attributes for the Tx Data
Source, including the Name, JNDI Name, and Connection Pool
Name (this associates, or assigns, the Data Source with a specific
pool).

Note: Do not associate a Tx Data Source with a MultiPool;
MultiPools are not supported in distributed transactions.

Assign the Tx Data
Source to Servers

Using the Target tab, you assign the configured Tx Data Source
to servers.

Table 8-3 JDBC Configuration Tasks

JDBC Component/
Task

Description

http://e-docs.bea.com/wls/docs70/ConsoleHelp/jdbc.html#jdbc_conn_pool_clone
http://e-docs.bea.com/wls/docs70/ConsoleHelp/jdbc.html#jdbc_assign_conn_pool
http://e-docs.bea.com/wls/docs70/ConsoleHelp/servers.html#jdbc_server_pool_assign
http://e-docs.bea.com/wls/docs70/ConsoleHelp/servers.html#jdbc_server_pool_assign
http://e-docs.bea.com/wls/docs70/ConsoleHelp/jdbc.html#jdbc_metapool_create
http://e-docs.bea.com/wls/docs70/ConsoleHelp/jdbc.html#jdbc_metapool_assign
http://e-docs.bea.com/wls/docs70/ConsoleHelp/jdbc.html#jdbc_data_source_create
http://e-docs.bea.com/wls/docs70/ConsoleHelp/jdbc.html#jdbc_data_source_assign
http://e-docs.bea.com/wls/docs70/ConsoleHelp/jdbc.html#jdbc_tx_data_source_create
http://e-docs.bea.com/wls/docs70/ConsoleHelp/jdbc.html#jdbc_data_source_assign

Configuring and Managing JDBC Connection Pools, MultiPools, and DataSources Us-

Administration Guide 8-15

Database Passwords in Connection Pool Configuration

When you create a connection pool, you typically include at least one password to
connect to the database. If you use an open string to enable XA, you may use two
passwords. You can enter the passwords as a name-value pair in the Properties field
or you can enter them in their respective fields:

! Password. Use this field to set the database password. This value overrides any
password value defined in the Properties passed to the tier-2 JDBC Driver
when creating physical database connections. The value is encrypted in the
config.xml file (stored as the Password attribute in the JDBCConnectionPool
tag) and is hidden on the administration console.

! Open String Password. Use this field to set the password in the open string
that the transaction manager in WebLogic Server uses to open a database
connection. This value overrides any password defined as part of the open string
in the Properties field. The value is encrypted in the config.xml file (stored
as the XAPassword attribute in the JDBCConnectionPool tag) and is hidden on
the Administration Console. At runtime, WebLogic Server reconstructs the open
string with the password you specify in this field. The open string in the
Properties field should follow this format:

openString=Oracle_XA+Acc=P/userName/+SesTm=177+DB=demoPool+Thre
ads=true=Sqlnet=dvi0+logDir=.

Note that after the userName there is no password.

If you specify a password in the Properties field when you first configure the
connection pool, WebLogic Server removes the password from the Properties string
and sets the value as the Password value in an ecrypted form the next time you start
WebLogic Server. If there is already a value for the Password attribute for the
connection pool, WebLogic Server does not change any values. However, the value for
the Password attribute overrides the password value in the Properties string. The
same behavior applies to any password that you define as part of an open string. For
example, if you include the following properties when you first configure a connection
pool:

user=scott;
password=tiger;
openString=Oracle_XA+Acc=p/scott/tiger+SesTm=177+db=jtaXaPool+Thr
eads=true+Sqlnet=lcs817+logDir=.+dbgFl=0x15;server=lcs817

8 Managing JDBC Connectivity

8-16 Administration Guide

The next time you start WebLogic Server, it moves the database password and the
password included in the open string to the Password and Open String Password
attributes, respectively, and the following value remains for the Properties field:

user=scott;
openString=Oracle_XA+Acc=p/scott/+SesTm=177+db=jtaXaPool+Threads=
true+Sqlnet=lcs817+logDir=.+dbgFl=0x15;server=lcs817

After a value is established for the Password or Open String Password attributes,
the values in these attributes override the respective values in the Properties
attribute. That is, continuing with the previous example, if you specify tiger2 as the
database password in the Properties attribute, WebLogic Server ignores the value
and continues to use tiger as the database password, which is the current encrypted
value of the Password attribute. To change the database password, you must change
the Password attribute.

Note: The value for Password and Open String Password do not need to be the
same.

JDBC Configuration Tasks Using the Command-Line Interface

The following table shows what methods you use to create a dynamic connection pool.

For more information, see “WebLogic Server Command-Line Interface Reference” on
page B-1, and “Creating a Connection Pool Dynamically” in Programming WebLogic
JDBC.

Table 8-4 Setting Connectivity—Dynamic

If you want to . . . Then use the . . .

Create a dynamic
connection pool

! Command line—“CREATE_POOL” on page B-32,
or

! API—see Configuring and Administering WebLogic
JDBC in Programming WebLogic JDBC

http://e-docs.bea.com/wls/docs70/jdbc/programming.html
http://e-docs.bea.com/wls/docs70/jdbc/programming.html
http://e-docs.bea.com/wls/docs70/jdbc/programming.html
http://e-docs.bea.com/wls/docs70/jdbc/programming.html#dynamic_conn_pool
http://e-docs.bea.com/wls/docs70/jdbc/programming.html#dynamic_conn_pool
http://e-docs.bea.com/wls/docs70/jdbc/programming.html#dynamic_conn_pool

Configuring and Managing JDBC Connection Pools, MultiPools, and DataSources Us-

Administration Guide 8-17

Managing and Monitoring Connectivity

Managing connectivity includes enabling, disabling, and deleting the JDBC
components once they have been established.

JDBC Management Using the Administration Console

To manage and monitor JDBC connectivity, refer to the following table:

Table 8-5 JDBC Management Tasks

If you want to . . . Do this . . . in the Administration Console

Reassign a Connection Pool
to a Different Server or
Cluster

Using the instructions in Assign a Connection Pool to the
Servers/Clusters, on the Target tab deselect the target
(move target from Chosen to Available) and assign a new
target.

To assign several connection pools to a server, see
Assigning JDBC Connection Pools to a Server in the
Online Help.

Reassign a MultiPool to a
Different Cluster

Using the instructions in Assign the MultiPool to Servers
or Clusters, on the Target tab deselect the target (move
target from Chosen to Available) and assign a new target.

Delete a Connection Pool See Deleting a Connection Pool in the Online Help.

Delete a MultiPool See Deleting a JDBC MultiPool in the Online Help.

Delete a Data Source See Deleting a Connection Pool in the Online Help.

Monitor a Connection Pool To monitor the connections for a single connection pool,
see Monitoring Connections in a JDBC Connection Pool in
the Online Help.

To monitor all active connection pools for a server, see
Monitoring All Active JDBC Connection Pools in the
Online Help.

http://e-docs.bea.com/wls/docs70/ConsoleHelp/jdbc.html#jdbc_assign_conn_pool
http://e-docs.bea.com/wls/docs70/ConsoleHelp/jdbc.html#jdbc_assign_conn_pool
http://e-docs.bea.com/wls/docs70/ConsoleHelp/servers.html#jdbc_server_pool_assign
http://e-docs.bea.com/wls/docs70/ConsoleHelp/jdbc.html#jdbc_metapool_assign
http://e-docs.bea.com/wls/docs70/ConsoleHelp/jdbc.html#jdbc_metapool_assign
http://e-docs.bea.com/wls/docs70/ConsoleHelp/jdbc.html#jdbc_conn_pool_delete
http://e-docs.bea.com/wls/docs70/ConsoleHelp/jdbc.html#jdbc_multipool_delete
http://e-docs.bea.com/wls/docs70/ConsoleHelp/jdbc.html#jdbc_conn_pool_delete
http://e-docs.bea.com/wls/docs70/ConsoleHelp/jdbc.html#jdbc_conn_pool_monitor
http://e-docs.bea.com/wls/docs70/ConsoleHelp/servers.html#jdbc_server_pool_assign

8 Managing JDBC Connectivity

8-18 Administration Guide

JDBC Management Using the Command-Line Interface

The following table describes the connection pool management using the
command-line interface. Select the command for more information.

For information on using the connection pool commands, see “WebLogic Server
Command-Line Interface Reference” on page B-1

Modify an Attribute for a
Connection Pool, MultiPool,
or DataSource

1. Select the JDBC object—connection pool, MultiPool,
or DataSource—in the left pane.

2. Select the Target tab in the right pane, and unassign the
object from each server and cluster (move the object
from the Chosen column to the Available column.)
Then click Apply. This stops the JDBC object—
connection pool, MultiPool, or DataSource—on the
corresponding server(s).

3. Select the tab you want to modify and change the
attribute.

4. Select the Target tab and reassign the object to the
server(s).This starts the JDBC object—connection
pool, MultiPool, or DataSource—on the
corresponding server(s).

Table 8-5 JDBC Management Tasks

If you want to . . . Do this . . . in the Administration Console

Table 8-6 Managing Connection Pools with the Command Line Interface

If you want to . . . Then use this command . . .

Disable a Connection Pool DISABLE_POOL

Enable a Connection Pool
that has been disabled

ENABLE_POOL

Delete a Connection Pool DESTROY_POOL

Confirm if a Connection
Pool was created

EXISTS_POOL

Reset a Connection Pool RESET_POOL

JDBC Configuration Guidelines for Connection Pools, MultiPools, and DataSources

Administration Guide 8-19

JDBC Configuration Guidelines for
Connection Pools, MultiPools, and
DataSources

This section describes JDBC configuration guidelines for connection pools,
MultiPools, and Data Sources used in local and distributed transactions.

Overview of JDBC Configuration

To set up JDBC connectivity, you configure connection pools, Data Source objects
(always recommended, but optional in some cases), and MultiPools (optional) by
defining attributes in the Administration Console or, for dynamic connection pools, in
application code or at the command line.

There are three types of transaction scenarios:

! Local transactions—non-distributed transactions

! Distributed transactions using an XA Driver—distributed transactions with
multiple participants that use two-phase commit

! Distributed transactions using a non-XA Driver—transactions with a single
resource manager and single database instance that emulate two-phase commit

8 Managing JDBC Connectivity

8-20 Administration Guide

You configure Data Source objects (DataSources and TxDataSources), connection
pools, and MultiPools according to the way transactions are handled in your system.
The following table summarizes how to configure these objects for use in the three
transaction scenarios:

Table 8-7 Summary of JDBC Configuration Guidelines

Description/
Object

Local Transactions Distributed
Transactions

XA Driver

Distributed
Transactions
Non-XA Driver

JDBC
driver

! WebLogic jDriver
for Oracle and
Microsoft SQL
Server.

! Compliant
third-party drivers.

! WebLogic
jDriver for
Oracle/XA.

! Compliant
third-party
drivers.

! WebLogic jDriver for
Oracle and Microsoft
SQL Server

! Compliant third-party
drivers.

Data Source Data Source object
recommended. (If there
is no Data Source, use
the JDBC API.)

Requires Tx Data
Source.

Requires Tx Data Source.

SelectEmulate Two-Phase
Commit for non-XA
Driver (set enable
two-phase
commit=true) if more
than one resource is
involved. See
“Configuring Non-XA
JDBC Drivers for
Distributed Transactions”
on page 8-34.

Connection
Pool

Requires Data Source
object when
configuring in the
Administration
Console.

Requires Tx Data
Source.

Requires Tx Data Source.

MultiPool Connection Pool and
Data Source required.

Not supported in
distributed
transactions.

Not supported in
distributed transactions.

JDBC Configuration Guidelines for Connection Pools, MultiPools, and DataSources

Administration Guide 8-21

Note: For distributed transactions, use an XA-compliant driver, such as the
WebLogic jDriver for Oracle/XA, which is the XA compliant version of the
WebLogic jDriver for Oracle.

When to Use a Tx Data Source

If your applications or environment meet any of the following criteria, you should use
a Tx Data Source instead of a Data Source:

! Use the Java Transaction API (JTA)

! Use the EJB container in WebLogic Server to manage transactions

! Include multiple database updates within a single transaction

! Access multiple resources, such as a database and the Java Messaging Service
(JMS), during a transaction

! Use the same connection pool on multiple servers

With an EJB architecture, it is common for multiple EJBs that are doing database work
to be invoked as part of a single transaction. Without XA, the only way for this to work
is if all transaction participants use the exact same database connection. WebLogic
Server uses the JTS driver and a TxDataSource (with Emulate Two-Phase Commit for
non-XA Driver selected) to do this behind the scenes without requiring you to
explicitly pass the JDBC connection from EJB to EJB. With XA (requires an XA
driver), you can use a Tx Data Source in WebLogic Server for distributed transactions
with two-phase commit so that EJBs can use a different database connections for each
part of the transaction. In either case (with or without XA), you should use a
Tx Data Source.

Read more about Data Sources in Programming WebLogic JDBC at
http://e-docs.bea.com/wls/docs70/jdbc/programming.html.

Drivers Supported for Local Transactions

JDBC 2.0 drivers that support the JDBC Core 2.0 API (java.sql), including the
WebLogic jDrivers for Oracle and Microsoft SQL Server. The API allows you to
create the class objects necessary to establish a connection with a data source, send
queries and update statements to the data source, and process the results.

http://e-docs.bea.com/wls/docs70/jdbc/programming.html#programming030

8 Managing JDBC Connectivity

8-22 Administration Guide

Drivers Supported for Distributed Transactions Using XA

Any JDBC driver that supports JDBC 2.0 distributed transactions standard extension
interfaces (javax.sql.XADataSource, javax.sql.XAConnection,
javax.transaction.xa.XAResource), such as the WebLogic jDriver for
Oracle/XA.

Drivers Supported for Distributed Transactions without XA

Any JDBC driver that supports JDBC 2.0 Core API but does not support JDBC 2.0
distributed transactions standard extension interfaces (non-XA). Only one non-XA
JDBC driver can participate in a distributed transaction. See “Configuring Non-XA
JDBC Drivers for Distributed Transactions” on page 8-34.

Configuring a JDBC Connection Pool

This section explains how to configure JDBC connection pools using a type 2 or type
4 JDBC driver for local and distributed transactions.

Avoiding Server Lockup with the Correct Number of Connections

When your applications attempt to get a connection from a connection pool in which
there are no available connections, the connection pool throws an exception stating that
a connection is not available in the connection pool. Connection pools do not queue
requests for a connection. To avoid this error, make sure your connection pool can
expand to the size required to accommodate your peak load of connection requests.

To set the maximum number of connections for a connection pool in the
Administration Console, expand the navigation tree in the left pane to show the
Services→JDBC→Connection Pools nodes and select a connection pool. Then, in the
right pane, select the Configuration→Connections tab and specify a value for Maximum
Capacity.

Configuring JDBC Drivers for Local Transactions

To configure JDBC drivers for local transactions, set up the JDBC connection pool as
follows:

JDBC Configuration Guidelines for Connection Pools, MultiPools, and DataSources

Administration Guide 8-23

! Specify the Driver Classname attribute as the name of the class supporting the
java.sql.Driver interface.

! Specify the data properties. These properties are passed to the specific Driver
as driver properties.

For more information on WebLogic two-tier JDBC drivers, refer to the BEA
documentation for the specific driver you are using: Using WebLogic jDriver for
Oracle at http://e-docs.bea.com/wls/docs70/oracle/index.html and Using
WebLogic jDriver for Microsoft SQL Server at
http://e-docs.bea.com/wls/docs70/mssqlserver4/index.html. If you are
using a third-party driver, refer to Using Third-Party JDBC XA Drivers with
WebLogic Server in Programming WebLogic JTA at
http://e-docs.bea.com/wls/docs70/jta/thirdpartytx.html and the
vendor-specific documentation. The following tables show sample JDBC connection
pool and Data Source configurations using the WebLogic jDrivers.

The following table shows a sample connection pool configuration using the
WebLogic jDriver for Oracle.

Note: The following configuration examples use a Password attribute. The Password
attribute value overrides any password defined in Properties (as a name/value
pair). This attribute is passed to the 2-tier JDBC driver when creating physical
database connections. The value is stored in an encrypted form in the
config.xml file and can be used to avoid storing passwords in clear text in
that file.

Table 8-8 WebLogic jDriver for Oracle: Connection Pool Configuration

Attribute Name Attribute Value

General Tab

Name myConnectionPool

URL jdbc:weblogic:oracle

Driver Classname weblogic.jdbc.oci.Driver

Properties user=scott;server=localdb

Password tiger (Displayed as ***** when typed, hidden thereafter; this
value overrides any password defined in Properties as a name
value pair)

http://e-docs.bea.com/wls/docs70/ConsoleHelp/domain_jdbcconnectionpool_config_general.html
http://e-docs.bea.com/wls/docs70/oracle/index.html
http://e-docs.bea.com/wls/docs70/oracle/index.html
http://e-docs.bea.com/wls/docs70/mssqlserver4/index.html
http://e-docs.bea.com/wls/docs70/mssqlserver4/index.html
http://e-docs.bea.com/wls/docs70/jta/thirdpartytx.html
http://e-docs.bea.com/wls/docs70/jta/thirdpartytx.html

8 Managing JDBC Connectivity

8-24 Administration Guide

The following table shows a sample Data Source configuration using the WebLogic
jDriver for Oracle or Microsoft SQL Server.

Connections Tab

Initial Capacity 1

Max Capacity 5

Capacity Increment 1

Shrink Period 15

Testing Tab

Test Table Name dual

Targets Tab

Targets myserver

Table 8-9 Data Source Configuration

Attribute Name Attribute Value

Configuration Tab

Name myDataSource

JNDI Name myconnection

Pool Name myConnectionPool

Row Prefetch Size 48

Stream Chunk Size 256

Targets Tab

Targets myserver

Table 8-8 WebLogic jDriver for Oracle: Connection Pool Configuration

Attribute Name Attribute Value

http://e-docs.bea.com/wls/docs70/ConsoleHelp/domain_jdbcconnectionpool_config_connections.html
http://e-docs.bea.com/wls/docs70/ConsoleHelp/domain_jdbcconnectionpool_config_testing.html
http://e-docs.bea.com/wls/docs70/ConsoleHelp/domain_jdbcconnectionpool_targets_servers.html
http://e-docs.bea.com/wls/docs70/ConsoleHelp/domain_jdbcdatasource_config.html
http://e-docs.bea.com/wls/docs70/ConsoleHelp/domain_jdbcdatasource_targets_servers.html

JDBC Configuration Guidelines for Connection Pools, MultiPools, and DataSources

Administration Guide 8-25

The following table shows a sample connection pool configuration using the
WebLogic jDriver for Microsoft SQL Server.

Table 8-10 WebLogic jDriver for Microsoft SQL Server: Connection Pool
Configuration

Attribute Name Attribute Value

General Tab

Name myConnectionPool

URL jdbc:weblogic:mssqlserver4

Driver Classname weblogic.jdbc.mssqlserver4.Driver

Properties user=sa;db=pubs;server=myHost:1433;appn
ame=MyApplication;hostname=myhostName

Password secret (Displayed as ****** when typed, hidden
thereafter; this value overrides any password defined in
Properties as a name value pair)

Connections Tab

Initial Capacity 1

Max Capacity 5

Capacity Increment 1

Shrink Period 15

Testing Tab

Test Table Name member

Targets Tab

Targets myserver

http://e-docs.bea.com/wls/docs70/ConsoleHelp/domain_jdbcconnectionpool_config_general.html
http://e-docs.bea.com/wls/docs70/ConsoleHelp/domain_jdbcconnectionpool_config_connections.html
http://e-docs.bea.com/wls/docs70/ConsoleHelp/domain_jdbcconnectionpool_config_testing.html
http://e-docs.bea.com/wls/docs70/ConsoleHelp/domain_jdbcconnectionpool_targets_servers.html

8 Managing JDBC Connectivity

8-26 Administration Guide

The following table shows a sample connection pool configuration using the IBM
Informix JDBC Driver.

Configuring XA JDBC Drivers for Distributed Transactions

To allow XA JDBC drivers to participate in distributed transactions, configure the
JDBC connection pool as follows:

! Specify the Driver Classname attribute as the name of the class supporting the
javax.sql.XADataSource interface.

Table 8-11 IBM Informix JDBC Driver: Connection Pool Configuration

Attribute Name Attribute Value

General Tab

Name myConnectionPool

URL jdbc:informix-sqli:ifxserver:1543

Driver Classname com.informix.jdbc.IfxDriver

Properties informixserver=ifxserver;user=informix

Password informix (Displayed as ****** when typed, hidden
thereafter; this value overrides any password defined in
Properties as a name value pair)

Connections Tab

Initial Capacity 3

Max Capacity 10

Capacity Increment 1

Login Delay Seconds 1

Shrink Period 15

Targets Tab

Targets myserver

http://e-docs.bea.com/wls/docs70/ConsoleHelp/domain_jdbcconnectionpool_config_general.html
http://e-docs.bea.com/wls/docs70/ConsoleHelp/domain_jdbcconnectionpool_config_connections.html
http://e-docs.bea.com/wls/docs70/ConsoleHelp/domain_jdbcconnectionpool_targets_servers.html

JDBC Configuration Guidelines for Connection Pools, MultiPools, and DataSources

Administration Guide 8-27

! Make sure that the database properties are specified. These properties are passed
to the specified XADataSource as data source properties. For more information
on data source properties for the WebLogic jDriver for Oracle, see “WebLogic
jDriver for Oracle/XA Data Source Properties.” For information about data
source properties for third-party drivers, see the vendor documentation.

! See “Additional XA Connection Pool Properties” on page 8-33 for any
additional connection pool properties that may be required to support XA for
your DBMS.

The following table shows an example of a JDBC connection pool configuration using
the WebLogic jDriver for Oracle in XA mode.

Table 8-12 WebLogic jDriver for Oracle/XA: Connection Pool Configuration

Attribute Name Attribute Value

General Tab

Name fundsXferAppPool

URL (none required)

Driver Classname weblogic.jdbc.oci.xa.XADataSource

Properties user=scott;server=localdb

Password tiger (Displayed as ***** when typed, hidden thereafter;
this value overrides any password defined in Properties as a
name value pair)

Connections Tab

Initial Capacity 1

Max Capacity 5

Capacity Increment 1

Shrink Period 15

Testing Tab

Test Table Name dual

Targets Tab

http://e-docs.bea.com/wls/docs70/ConsoleHelp/domain_jdbcconnectionpool_config_general.html
http://e-docs.bea.com/wls/docs70/ConsoleHelp/domain_jdbcconnectionpool_config_connections.html
http://e-docs.bea.com/wls/docs70/ConsoleHelp/domain_jdbcconnectionpool_config_testing.html
http://e-docs.bea.com/wls/docs70/ConsoleHelp/domain_jdbcconnectionpool_targets_servers.html

8 Managing JDBC Connectivity

8-28 Administration Guide

The following table shows an example of a Tx Data Source configuration using the
WebLogic jDriver for Oracle in XA mode.

You can also configure the JDBC connection pool to use a third-party vendor’s driver
in XA mode. In such cases, the data source properties are set via reflection on the
XADataSource instance using the JavaBeans design pattern. In other words, for
property abc, the XADataSource instance must support get and set methods with the
names getAbc and setAbc, respectively.

The following attributes are an example of a JDBC connection pool configuration
using the Oracle Thin Driver.

Targets myserver

Table 8-13 WebLogic jDriver for Oracle/XA: Tx Data Source

Attribute Name Attribute Value

Configuration Tab

Name fundsXferDataSource

JNDI Name myapp.fundsXfer

Pool Name fundsXferAppPool

Targets Tab

Targets myserver

Table 8-14 Oracle Thin Driver: Connection Pool Configuration

Attribute Name Attribute Value

General Tab

Name jtaXAPool

URL jdbc:oracle:thin:@server:port:sid

Table 8-12 WebLogic jDriver for Oracle/XA: Connection Pool Configuration

Attribute Name Attribute Value

http://e-docs.bea.com/wls/docs70/ConsoleHelp/domain_jdbctxdatasource_config.html
http://e-docs.bea.com/wls/docs70/ConsoleHelp/domain_jdbctxdatasource_targets_servers.html
http://e-docs.bea.com/wls/docs70/ConsoleHelp/domain_jdbcconnectionpool_config_general.html

JDBC Configuration Guidelines for Connection Pools, MultiPools, and DataSources

Administration Guide 8-29

The following table shows an example of a Tx Data Source configuration using the
Oracle Thin Driver.

Driver Classname oracle.jdbc.xa.client.OracleXADataSource

Properties user=scott

Password tiger (Displayed as ***** when typed, hidden thereafter;
this value overrides any password defined in Properties as a
name value pair)

Connections Tab

Initial Capacity 4

Max Capacity 20

Capacity Increment 2

Shrink Period 15

Testing Tab

Test Table Name dual

Targets Tab

Targets myserver

Table 8-15 Oracle Thin Driver: Tx Data Source Configuration

Attribute Name Attribute Value

Configuration Tab

Name jtaXADS

JNDI Name jtaXADS

Pool Name jtaXAPool

Targets Tab

Table 8-14 Oracle Thin Driver: Connection Pool Configuration

Attribute Name Attribute Value

http://e-docs.bea.com/wls/docs70/ConsoleHelp/domain_jdbcconnectionpool_config_connections.html
http://e-docs.bea.com/wls/docs70/ConsoleHelp/domain_jdbcconnectionpool_config_testing.html
http://e-docs.bea.com/wls/docs70/ConsoleHelp/domain_jdbcconnectionpool_targets_servers.html
http://e-docs.bea.com/wls/docs70/ConsoleHelp/domain_jdbctxdatasource_config.html
http://e-docs.bea.com/wls/docs70/ConsoleHelp/domain_jdbctxdatasource_targets_servers.html

8 Managing JDBC Connectivity

8-30 Administration Guide

The following table shows an example of a JDBC connection pool configuration for
distributed transactions using the Pointbase JDBC driver.

Targets myserver

Table 8-16 Pointbase: Connection Pool Configuration

Attribute Name Attribute Value

General Tab

Name demoXAPool

URL jdbc:pointbase:server://localhost/demo

Driver Classname com.pointbase.xa.xaDataSource

Properties user=public

DatabaseName=jdbc:pointbase:server://l
ocalhost/demo

Password public (Displayed as ****** when typed, hidden
thereafter; this value overrides any password defined in
Properties as a name value pair)

Connections Tab

Initial Capacity 2

Max Capacity 10

Capacity Increment 2

Supports Local Transaction true

Shrink Period 15

Testing Tab

Test Table Name users

Table 8-15 Oracle Thin Driver: Tx Data Source Configuration

Attribute Name Attribute Value

http://e-docs.bea.com/wls/docs70/ConsoleHelp/domain_jdbcconnectionpool_config_general.html
http://e-docs.bea.com/wls/docs70/ConsoleHelp/domain_jdbcconnectionpool_config_connections.html
http://e-docs.bea.com/wls/docs70/ConsoleHelp/domain_jdbcconnectionpool_config_testing.html

JDBC Configuration Guidelines for Connection Pools, MultiPools, and DataSources

Administration Guide 8-31

Configure the Tx Data Source for use with a Pointbase driver as follows.

WebLogic jDriver for Oracle/XA Data Source Properties

Table 8-18 lists the data source properties supported by the WebLogic jDriver for
Oracle. The JDBC 2.0 column indicates whether a specific data source property is a
JDBC 2.0 standard data source property (S) or a WebLogic Server extension to JDBC
(E).

The Optional column indicates whether a particular data source property is optional or
not. Properties marked with Y* are mapped to the corresponding fields of the Oracle
xa_open string (value of the openString property) as listed in Table 8-18. If they are
not specified, their default values are taken from the openString property. If they are
specified, their values should match those specified in the openString property. If the
properties do not match, a SQLException is thrown when you attempt to make an XA
connection.

Targets Tab

Targets myserver

Table 8-17 Pointbase: Tx Data Source Configuration

Attribute Name Attribute Value

Configuration Tab

Name jtaXADS

JNDI Name JTAXADS

Pool Name demoXAPool

Targets Tab

Targets myserver

Table 8-16 Pointbase: Connection Pool Configuration

Attribute Name Attribute Value

http://e-docs.bea.com/wls/docs70/ConsoleHelp/domain_jdbcconnectionpool_targets_servers.html
http://e-docs.bea.com/wls/docs70/ConsoleHelp/domain_jdbctxdatasource_config.html
http://e-docs.bea.com/wls/docs70/ConsoleHelp/domain_jdbctxdatasource_targets_servers.html

8 Managing JDBC Connectivity

8-32 Administration Guide

Mandatory properties marked with N* are also mapped to the corresponding fields of
the Oracle xa_open string. Specify these properties when specifying the Oracle
xa_open string. If they are not specified or if they are specified but do not match, an
SQLException is thrown when you attempt to make an XA connection.

Property Names marked with ** are supported but not used by WebLogic Server.

Table 8-18 Data Source Properties for WebLogic jDriver for Oracle/XA

Property Name Type Description JDBC 2.0
standard/
extension

Optional Default Value

databaseName** String Name of a particular
database on a server.

S Y None

dataSourceName String A data source name; used to
name an underlying
XADataSource.

S Y Connection Pool
Name

description String Description of this data
source.

S Y None

networkProtocol** String Network protocol used to
communicate with the
server.

S Y None

password String A database password. S N* None

portNumber** Int Port number at which a
server is listening for
requests.

S Y None

roleName** String The initial SQL role name. S Y None

serverName String Database server name. S Y* None

user String User’s account name. S N* None

openString String Oracle’s XA open string. E Y None

JDBC Configuration Guidelines for Connection Pools, MultiPools, and DataSources

Administration Guide 8-33

Table 8-19 lists the mapping between Oracle’s xa_open string fields and data source
properties.

Note: You must specify Threads=true in Oracle’s xa_open string.

For a complete description of Oracle’s xa_open string fields, see your Oracle
documentation.

Additional XA Connection Pool Properties

When using connections from a connection pool in distributed transactions, you may
need to set additional properties for the connection pool so that the connection pool
handles the connection properly within WebLogic Server in the context of the
transaction. You set these properties in the configuration file (config.xml) within the
JDBCConnectionPool tag. By default, all additional properties are set to false. You
set the properties to true to enable them.

oracleXATrace String Indicates whether XA
tracing output is enabled. If
enabled (true), a file with a
name in the form of
xa_poolnamedate.trc
is placed in the directory in
which the server is started.

E Y true

Table 8-18 Data Source Properties for WebLogic jDriver for Oracle/XA

Property Name Type Description JDBC 2.0
standard/
extension

Optional Default Value

Table 8-19 Mapping of xa_open String Names to JDBC Data Source Properties

Oracle xa_open String Field
Name

JDBC 2.0 Data Source Property Optional

acc user, password N

sqlnet ServerName

8 Managing JDBC Connectivity

8-34 Administration Guide

In many cases, WebLogic Server automatically sets the proper value for these
properties internally so that you do not have to set them manually.

KeepXAConnTillTxComplete

Some DBMSs require that you start and end a transaction in the same physical
database connection. In some cases, a transaction in WebLogic Server may start in one
physical database connection and end in another physical database connection. To
force a connection pool to reserve a physical connection and provide the same
connection to an application throughout transaction processing until the transaction is
complete, you set KeepXAConnTillTxComplete="true". For example:

<JDBCConnectionPool KeepXAConnTillTxComplete="true"
DriverName="com.sybase.jdbc2.jdbc.SybXADataSource"
CapacityIncrement="5" InitialCapacity="10" MaxCapacity="25"
Name="demoXAPool" Password="{3DES}vIF8diu4H0QmdfOipd4dWA=="
Properties="User=dbuser;DatabaseName=dbname;ServerName=server_nam
e_or_IP_address;PortNumber=serverPortNumber;NetworkProtocol=Tds;r
esourceManagerName=Lrm_name_in_xa_config;resourceManagerType=2" />

Note: This property is required to support distributed transactions with DB2 and
Sybase.

Configuring Non-XA JDBC Drivers for Distributed Transactions

When configuring the JDBC connection pool to allow non-XA JDBC drivers to
participate with other resources in distributed transactions, select the Emulate
Two-Phase Commit for non-XA Driver attribute (EnableTwoPhaseCommit in the
JDBCTxDataSource MBean) for the JDBC Tx Data Source. This parameter is ignored
by resources that support the XAResource interface. Note that only one non-XA
connection pool may participate in a distributed transaction.

Non-XA Driver/Single Resource

If you are using only one non-XA driver and it is the only resource in the transaction,
leave the Emulate Two-Phase Commit for non-XA Driver option unselected in the
Console (accept the default EnableTwoPhaseCommit = false). In this case, the
Transaction Manager performs a one-phase optimization.

JDBC Configuration Guidelines for Connection Pools, MultiPools, and DataSources

Administration Guide 8-35

Non-XA Driver/Multiple Resources

If you are using one non-XA JDBC driver with other XA resources, select Emulate
Two-Phase Commit in the Administration Console (EnableTwoPhaseCommit =

true).

When the Emulate Two-Phase Commit for non-XA Driver option is selected
(EnableTwoPhaseCommit is set to true), the non-XA JDBC resource always returns
XA_OK during the XAResource.prepare() method call. The resource attempts to
commit or roll back its local transaction in response to subsequent
XAResource.commit() or XAResource.rollback() calls. If the resource commit
or rollback fails, a heuristic error results. Application data may be left in an
inconsistent state as a result of a heuristic failure.

When the Emulate Two-Phase Commit for non-XA Driver option is not selected in the
Console (EnableTwoPhaseCommit is set to false), the non-XA JDBC resource
causes XAResource.prepare() to fail. This mechanism ensures that there is only one
participant in the transaction, as commit() throws a SystemException in this case.
When there is only one resource participating in a transaction, the one phase
optimization bypasses XAResource.prepare(), and the transaction commits
successfully in most instances.

The following table shows configuration attributes for a sample JDBC connection pool
using a non-XA JDBC driver.

Table 8-20 WebLogic jDriver for Oracle: Connection Pool Configuration

Attribute Name Attribute Value

General Tab

Name fundsXferAppPool

URL jdbc:weblogic:oracle

Driver Classname weblogic.jdbc.oci.Driver

Properties user=scott;server=localdb

Password tiger (Displayed as ***** when typed, hidden thereafter;
this value overrides any password defined in Properties as a
name value pair)

Connections Tab

http://e-docs.bea.com/wls/docs70/ConsoleHelp/domain_jdbcconnectionpool_config_general.html
http://e-docs.bea.com/wls/docs70/ConsoleHelp/domain_jdbcconnectionpool_config_connections.html

8 Managing JDBC Connectivity

8-36 Administration Guide

The following table shows configuration attributes for a sample Tx Data Source using
a non-XA JDBC driver.

Initial Capacity 0

Max Capacity 5

Capacity Increment 1

Shrink Period 15

Testing Tab

Test Table Name dual

Targets Tab

Targets myserver

Table 8-21 WebLogic j Driver for Oracle: Tx Data Source Configuration

Attribute Name Attribute Value

Configuration Tab

Name fundsXferDataSource

JNDI Name myapp.fundsXfer

Pool Name fundsXferAppPool

Emulate Two-Phase Commit
for non-XA Driver

selected (EnableTwoPhaseCommit = true)

Targets Tab

Targets myserver

Table 8-20 WebLogic jDriver for Oracle: Connection Pool Configuration

Attribute Name Attribute Value

http://e-docs.bea.com/wls/docs70/ConsoleHelp/domain_jdbcconnectionpool_config_testing.html
http://e-docs.bea.com/wls/docs70/ConsoleHelp/domain_jdbcconnectionpool_targets_servers.html
http://e-docs.bea.com/wls/docs70/ConsoleHelp/domain_jdbctxdatasource_config.html
http://e-docs.bea.com/wls/docs70/ConsoleHelp/domain_jdbctxdatasource_targets_servers.html

Increasing Performance with the Prepared Statement Cache

Administration Guide 8-37

Increasing Performance with the Prepared
Statement Cache

For each connection pool that you create in WebLogic Server, you can specify a
prepared statement cache size. When you set the prepared statement cache size,
WebLogic Server stores each prepared statement used in applications and EJBs until
it reaches the number of prepared statements that you specify. For example, if you set
the prepared statement cache size to 10, WebLogic Server will store the first 10
prepared statements called by applications or EJBs.

When an application or EJB calls any of the prepared statements stored in the cache,
WebLogic Server reuses the statement stored in the cache. Reusing prepared
statements eliminates the need for parsing statements in the database, which reduces
CPU usage on the database machine, improving performance for the current statement
and leaving CPU cycles for other tasks.

The default value for prepared statement cache size is 0. You can use the following
methods to set the prepared statement cache size for a connection pool:

! Using the Administration Console. See Creating and Configuring a JDBC
Connection Pool in the Administration Console Online Help at
http://e-docs.bea.com/wls/docs70/ConsoleHelp/jdbc.html#jdbc_con

n_pool_create.

! Using the WebLogic management API. See the
getPreparedStatementCacheSize() and
setPreparedStatementCacheSize(int cacheSize) methods in the
Javadocs for WebLogic Classes at
http://e-docs.bea.com/wls/docs70/javadocs/weblogic/management/c

onfiguration/JDBCConnectionPoolMBean.html.

! Directly in the configuration file (typically config.xml).

To set the prepared statement cache size for a connection pool using the configuration
file, before starting the server, open the config.xml file in an editor, then add an entry
for the PreparedStatementCacheSize attribute in the JDBCConnectionPool tag.
For example:

<JDBCConnectionPool CapacityIncrement="5"
DriverName="com.pointbase.jdbc.jdbcUniversalDriver"

http://e-docs.bea.com/wls/docs70/ConsoleHelp/jdbc.html#jdbc_conn_pool_create
http://e-docs.bea.com/wls/docs70/ConsoleHelp/jdbc.html#jdbc_conn_pool_create
http://e-docs.bea.com/wls/docs70/javadocs/weblogic/management/configuration/JDBCConnectionPoolMBean.html

8 Managing JDBC Connectivity

8-38 Administration Guide

InitialCapacity="5" MaxCapacity="20" Name="demoPool"
Password="{3DES}ANfMduXgaaGMeS8+CR1xoA=="
PreparedStatementCacheSize="20" Properties="user=examples"
RefreshMinutes="0" ShrinkPeriodMinutes="15"
ShrinkingEnabled="true" Targets="examplesServer"
TestConnectionsOnRelease="false"
TestConnectionsOnReserve="false"
URL="jdbc:pointbase:server://localhost/demo"/>

Usage Restrictions for the Prepared Statement Cache

Using the prepared statement cache can dramatically increase performance, but you
must consider its limitations before you decide to use it. Please note the following
restrictions when using the prepared statement cache.

There may be other issues related to caching prepared statements that are not listed
here. If you see errors in your system related to prepared statements, you should set the
prepared statement cache size to 0, which turns off prepared statement caching, to test
if the problem is caused by caching prepared statements.

Calling a Stored Prepared Statement After a Database Change May Cause
Errors

Prepared statements stored in the cache refer to specific database objects at the time
the prepared statement is cached. If you perform any DDL (data definition language)
operations on database objects referenced in prepared statements stored in the cache,
the statements will fail the next time you run them. For example, if you cache a
statement such as select * from emp and then drop and recreate the emp table, the
next time you run the cached statement, the statement will fail because the exact emp
table that existed when the statement was prepared, no longer exists.

Likewise, prepared statements are bound to the data type for each column in a table in
the database at the time the prepared statement is cached. If you add, delete, or
rearrange columns in a table, prepared statements stored in the cache are likely to fail
when run again.

Increasing Performance with the Prepared Statement Cache

Administration Guide 8-39

Using setNull In a Prepared Statement

When using the WebLogic jDriver for Oracle to connect to the database, if you cache
a prepared statement that uses a setNull bind variable, you must set the variable to
the proper data type. If you use a generic data type, as in the following example, the
statement will fail when it runs with a value other than null.

java.sql.Types.Long sal=null

.

.

.

if (sal == null)
setNull(2,int)//This is incorrect

else
setLong(2,sal)

Instead, use the following:

if (sal == null)
setNull(2,long)//This is correct

else
setLong(2,sal)

This issue occurs consistently when using the WebLogic jDriver for Oracle. It may
occur when using other JDBC drivers.

Prepared Statements in the Cache May Reserve Database Cursors

When WebLogic Server caches a prepared statement, the prepared statement may open
a cursor in the database. If you cache too many statements, you may exceed the limit
of open cursors for a connection. To avoid exceeding the limit of open cursors for a
connection, you can change the limit in your database management system or you can
reduce the prepared statement cache size for the connection pool.

Determining the Proper Prepared Statement Cache Size

To determine the optimum setting for the prepared statement cache size, you can
emulate your server workload in your development environment and then run the
Oracle statspack script. In the output from the script, look at the number of parses per

8 Managing JDBC Connectivity

8-40 Administration Guide

second. As you increase the prepared statement cache size, the number of parses per
second should decrease. Incrementally increase the prepared statement cache size until
the number or parses per second no longer decreases.

Note: Consider the usage restrictions for the prepared statement cache before you
decide to use it in your production environment. See “Usage Restrictions for
the Prepared Statement Cache” on page 8-38 for more information.

Using a Startup Class to Load the Prepared Statement
Cache

To make the best use of the prepared statement cache and to get the best performance,
you may want to create a startup class that calls each of the prepared statements that
you want to store in the prepared statement cache. WebLogic Server caches prepared
statements in the order that they are used and stops caching statements when it reaches
the prepared statement cache size limit. By creating a startup class that calls the
prepared statements that you want to cache, you can fill the cache with statements that
your applications will reuse, rather than with statements that are called only a few
times, thus getting the best performance increase with the least number of cached
statements. You can also avoid caching prepared statements that my be problematic,
such as those described in “Usage Restrictions for the Prepared Statement Cache” on
page 8-38.

Even if the startup class fails, WebLogic Server loads and caches the statements for
future use.

Administration Guide 9-1

CHAPTER

9 Managing JMS

The following sections explain how to manage the Java Message Service (JMS) for
WebLogic Server:

! JMS and WebLogic Server

! Configuring JMS

! Monitoring JMS

! Tuning JMS

! Configuring Distributed Destinations

! Recovering from a WebLogic Server Failure

JMS and WebLogic Server

JMS is a standard API for accessing enterprise messaging systems. Specifically,
WebLogic JMS:

! Enables Java applications sharing a messaging system to exchange messages.

! Simplifies application development by providing a standard interface for
creating, sending, and receiving messages.

The following figure illustrates WebLogic JMS messaging.

9 Managing JMS

9-2 Administration Guide

Figure 9-1 WebLogic Server JMS Messaging

As illustrated in the figure, WebLogic JMS accepts messages from producer
applications and delivers them to consumer applications.

Configuring JMS

Using the Administration Console, you define configuration attributes to:

! Enable JMS.

! Create JMS servers and target a WebLogic Server instance or a Migratable
Target where the JMS server will be deployed.

! Create and/or customize values for JMS servers, connection factories,
destinations (physical queues and topics), distributed destinations (sets of
physical queue and topic members within a cluster), destination templates,
destination sort order (using destination keys), persistent stores, paging stores,
session pools, and connection consumers.

! Set up custom JMS applications.

! Define thresholds and quotas.

! Enable any desired JMS features, such as server clustering, concurrent message
processing, destination sort ordering, persistent messaging, paging, flow control,
and load balancing for distributed destinations.

WebLogic JMS provides default values for some configuration attributes; you must
provide values for all others. If you specify an invalid value for any configuration
attribute, or if you fail to specify a value for an attribute for which a default does not
exist, WebLogic Server will not boot JMS when you restart it. A sample

Configuring JMS

Administration Guide 9-3

examplesJMSServer configuration is provided with the product in the Examples
Server. For more information about starting the Examples Server, see “Starting the
Default, Examples, and Pet Store Servers” in the Installation Guide.

When you port WebLogic JMS applications from a previous release of Weblogic
Server, the configuration information is automatically converted, as described in
“Porting WebLogic JMS Applications” in Programming WebLogic JMS.

To configure WebLogic JMS attributes, follow the procedures described in the
following sections, or in the Administration Console Online Help, to create and
configure the JMS objects.

Once WebLogic JMS is configured, applications can send and receive messages using
the JMS API. For more information about developing WebLogic JMS applications,
refer to “Developing a WebLogic JMS Application” in Programming WebLogic JMS.

Note: To assist with your WebLogic JMS configuration planning, Programming
WebLogic JMS provides configuration checklists for the attribute
requirements and/or options that support various JMS features.

Starting WebLogic Server and Configuring JMS

The following sections review how to start WebLogic Server and the Administration
console, as well as provide a procedure for configuring a basic JMS implementation.

Starting the Default WebLogic Server

The default role for a WebLogic Server is the Administration Server. If a domain
consists of only one WebLogic Server, that server is the Administration Server. If a
domain consists of multiple WebLogic Servers, you must start the Administration
Server first, and then you start the Managed Servers.

For complete information about starting the Administration Server, see “Starting an
Administration Server” on page 2-10.

http://e-docs.bea.com/wls/docs70/install/instpos.html
http://e-docs.bea.com/wls/docs70/install/instpos.html
http://e-docs.bea.com/wls/docs70/jms/migrat.html
http://e-docs.bea.com/wls/docs70/ConsoleHelp/index.html
http://e-docs.bea.com/wls/docs70/jms/implement.html
http://e-docs.bea.com/wls/docs70/jms/appa.html

9 Managing JMS

9-4 Administration Guide

Starting the Administration Console

The Administration Console is the Web-based administrator front-end (administrator
client interface) to WebLogic Server. You must start the server before you can access
the Administration Console for a server.

For complete details about using the Administration Console to configure a WebLogic
Server, see “Starting and Using the Administration Console” on page 1-22.

Configuring a Basic JMS Implementation

This section describes how to configure a basic JMS implementation using the
Administration Console.

1. Under the Services node in the left pane, click the JMS node to expand the list.

2. Optionally, create a File Store for storing persistent messages in a flat file, and/or
a Paging Store for swapping messages out to memory:

a. Click the Stores node in the left pane, and then click the Configure a new
JMSFile Store link in the right pane.

b. On the General tab, give the store a name, specify a directory, and then click the
Create button.

c. Repeat these steps to create a Paging Store.

Note: For more information on configuring stores, see “Configuring Stores” on
page 9-13.

3. Optionally, create a JDBC Store for storing persistent messages in a database:

a. Click the JDBC node in the left pane to expand it.

b. Click the Connection Pools node in the left pane, and then click the Configure
a new JDBC Connection Pool link in the right pane.

c. On the Configuration tabs, set the attributes for the connection pool, such as
Name, URL, and database Properties. Click Apply on each tab when you’re
done making changes.

Configuring JMS

Administration Guide 9-5

d. On the Targets tab, target a WebLogic Server instance or a server cluster on
which to deploy the connection pool by selecting either the Servers tab or the
Clusters tab. Select a target by moving it from the Available list into the Chosen
List, and then click Apply.

e. Return to the JMS –> Stores node, and then click the Configure a new
JMSJDBCStore link in the right pane.

f. Give the JDBC Store a name, select a connection pool, and a prefix name. Then
click Create.

Note: For more information on configuring JDBC connection pools, see
“Configuring and Managing JDBC Connection Pools, MultiPools, and
DataSources Using the Administration Console” on page 8-10.

4. Optionally, create a JMS Template to define multiple destinations with similar
attribute settings. You also need a JMS Template to create temporary queues.

a. Click the Templates node in the left pane, and then click the Configure a new
JMS Template link in the right pane.

b. On the General tab, give the template a name, and then click Create.

c. Fill in the Thresholds & Quotas, Override, and Redelivery tabs, as appropriate.
Click Apply on each tab when you’re done making changes.

Note: For more information on configuring a JMS Template, see “Configuring
JMS Templates” on page 9-11.

5. Configure a JMS Server, as follows:

a. Click the Server node in the left pane, and then click the Configure a new
JMSServer link in the right pane.

b. On the General tab, give the server a name, select a Store if you created one,
select a Paging Store if you created one, and select a Template if you created
one. Then click Create.

c. Fill in the Thresholds & Quotas tab, as appropriate. Click Apply when you’re
done making changes.

d. On the Targets tab, target a WebLogic Server instance or a Migratable Target
server on which to deploy the JMS server by selecting either the Servers tab or
the Migratable Targets tab. Select a target by moving it from the Available list
into the Chosen List, and then click Apply.

9 Managing JMS

9-6 Administration Guide

Note: For more information on configuring a JMS Server, see “Configuring JMS
Servers” on page 9-7.

6. Create the JMS Destinations, which are queues (Point-To-Point) or topics
(Pub/Sub):

a. Under the Servers node in the left pane, click your new JMS server instance to
expand the list, and then click the Destinations node.

b. Click either the Configure a new JMSQueue or Configure a new JMSTopic link
in the right pane.

c. On the General tab, give the destination a name and a JNDI name. Fill in the
other attributes, as appropriate, and then click Create.

d. Fill in the Thresholds & Quotas, Override, Redelivery, and Multicast (topics
only) tabs, as appropriate. Click Apply on each tab when you’re done making
changes.

Note: For more information on configuring a Destinations, see “Configuring
Destinations” on page 9-10.

7. Create a Connection Factory to enable your JMS clients to create JMS
connections:

a. Click to the expand the Connection Factory node and in the left pane, and then
click the Configure a new JMS Connection Factory link in the right pane.

b. On the General tab, give the connection factory a name and a JNDI name. Fill
in the other attributes, as appropriate, and then click Create.

c. Fill in the Transactions and Flow Control tabs, as appropriate. Click Apply on
each tab when you’re done making changes.

d. On the Targets tab, target a WebLogic Server instance or a server cluster on
which to deploy the connection factory by selecting either the Servers tab or the
Clusters tab. Select a target by moving it from the Available list into the Chosen
List, and then click Apply.

Note: For more information on configuring a Connection Factory, see
“Configuring Connection Factories” on page 9-8.

8. Optionally, use the Destination Keys node to define the sort order for a specific
destination. For more information, see “Configuring Destination Keys” on page
9-12.

Configuring JMS

Administration Guide 9-7

9. Optionally, use the Distributed Destinations node to make your physical
destinations part of a logical distributed destination set within a server cluster.
For more information, see “Configuring Distributed Destinations” on page 9-40.

10. Optionally, create JMS Session Pools, which enable your applications to process
messages concurrently, and Connection Consumers (queues or topics) that
retrieve server sessions and process messages. For more information, see
“Configuring Session Pools” on page 9-16 and “Configuring Connection
Consumers” on page 9-17.

Configuring JMS Servers

A JMS server manages connections and message requests on behalf of clients. To
create a JMS server, use the Servers node in the Administration Console and define the
following:

! General configuration attributes, including:

" Name of the JMS server.

" Persistent store (file or JDBC database) required for persistent messaging. If
you do not assign a persistent store for a JMS server, persistent messaging is
not supported on that server.

" Paging store (file recommended) required for paging. If you do not assign a
paging store for a JMS server, paging is not support on that server.

" Temporary template that is used to create all temporary destinations,
including temporary queues and temporary topics.

! Thresholds and quotas for messages and bytes (maximum number, and high and
low thresholds), and whether or not bytes paging and/or messages paging is
enabled.

! Target a WebLogic Server instance or a Migratable Target on which to deploy a
JMS server.

" Servers – When a target WebLogic Server boots, the JMS server boots as
well. If no target WebLogic Server is specified, the JMS server will not boot.

Note: The deployment of a JMS server differs from that of a connection factory
or template. A JMS server is deployed on a single WebLogic Server
instance or on a migratable target (see next bullet item); whereas, a

9 Managing JMS

9-8 Administration Guide

connection factory or template can be instantiated on multiple WebLogic
Server instances simultaneously.

" Migratable Targets – Migratable targets define a set of WebLogic Server
instances in a cluster that can potentially host an “exactly-once” service, such
as JMS. When a migratable target server boots, the JMS server boots as well
on the user-preferred server in the cluster. However, a JMS server and all of
its destinations can migrate to another server within the cluster in response to
a WebLogic Server failure or due to a scheduled migration or system
maintenance. For more information on configuring a migratable target for
JMS, see “Managing JMS” in Programming WebLogic JMS.

For instructions on creating and configuring a JMS server, see “JMS Server” in the
Administration Console Online Help.

Configuring Connection Factories

Connection factories are objects that enable JMS clients to create JMS connections. A
connection factory supports concurrent use, enabling multiple threads to access the
object simultaneously. You define and configure one or more connection factories to
create connections with predefined attributes. WebLogic Server adds them to the JNDI
space during startup, and the application then retrieves a connection factory using
WebLogic JNDI.

You can establish cluster-wide, transparent access to destinations from any server in
the cluster by configuring multiple connection factories and using targets to assign
them to WebLogic Servers. Each connection factory can be deployed on multiple
WebLogic Servers. For more information on configuring JMS clustering, see
“Managing JMS” in Programming WebLogic JMS.

To configure connection factories, use the Connection Factories node in the
Administration Console to define the following:

! General configuration attributes, including:

" Name of the connection factory.

" Name for accessing the connection factory within the JNDI namespace.

" Client identifier (client ID) for clients with durable subscribers. For more
information about durable subscribers, see “Developing a WebLogic JMS
Application” in Programming WebLogic JMS.

http://e-docs.bea.com/wls/docs70/jms/config.html#config_jms_migratable_target
http://e-docs.bea.com/wls/docs70/ConsoleHelp/domain_jmsserver_config_general.html
http://e-docs.bea.com/wls/docs70/jms/config.html#config_jms_clusters
http://e-docs.bea.com/wls/docs70/jms/implement.html
http://e-docs.bea.com/wls/docs70/jms/implement.html

Configuring JMS

Administration Guide 9-9

" Default message delivery attributes (Priority, Time To Live, Time To Deliver,
and Delivery Mode).

" Maximum number of outstanding messages that may exist for an
asynchronous session and the overrun policy (that is, the action to be taken,
for multicast sessions, when this maximum is reached).

" Whether or not the close() method is allowed to be called from the
onMessage() method.

" Whether all messages or only previously received messages are
acknowledged.

" For distributed destinations, determine whether non-anonymous producers
created through a connection factory are load balanced on a per-call basis.

" For distributed destinations, determine whether server affinity is used when
load balancing consumers or producers in a distributed destination.

! Transaction attributes—Transaction time-out, whether Java Transaction API
(JTA) user transactions are allowed, whether a transaction (XA) queue or XA
topic connection factory is returned, and whether server-side transactions are
enabled.

! Flow Control attributes—Allow a message producer to adjust its message flow.
Specifically, the producer receives attributes that limit its flow within a
minimum and maximum range. As conditions worsen, the producer moves
toward the minimum; as conditions improve; the producer moves toward the
maximum.

! Target a WebLogic Server instance or a server cluster. Targets enable you to
limit the set of servers, groups, and/or clusters on which a connection factory
may be deployed.

" Server—Target a single WebLogic Server instance on which to deploy a
connection factory.

" Cluster—Target a cluster on which to deploy a connection factory, in order
to support cluster-wide, transparent access to destinations from any server in
the cluster.

9 Managing JMS

9-10 Administration Guide

WebLogic JMS defines one connection factory, by default:
weblogic.jms.ConnectionFactory. All configuration attributes are set to their
default values for this default connection factory. If the default connection factory
definition is appropriate for your application, you do not need to configure any
additional connection factories for your application.

Note: Using the default connection factory, you have no control over the JMS server
on which the connection factory may be deployed. If you would like to target
a particular JMS server, create a new connection factory and specify the
appropriate JMS server target(s).

For instructions on creating and configuring a connection factory, see “JMS
Connection Factory” in the Administration Console Online Help.

Some connection factory attributes are dynamically configurable. When dynamic
attributes are modified at run time, the new values become effective for new
connections only, and do not affect the behavior of existing connections.

Configuring Destinations

A destination identifies a queue (Point-To-Point) or a topic (Pub/Sub) for a JMS server.
After defining a JMS server, configure one or more destination for each JMS server.

You configure destinations explicitly or by configuring a destination template that can
be used to define multiple destinations with similar attribute settings, as described in
“Configuring JMS Templates” on page 9-11.

Note: You can also configure multiple physical destinations as members of a single
distributed destination set within a cluster. Therefore, if one instance within
the cluster fails, then other instances of the same destination will be able to
provide service to JMS producers and consumers. For more information, see
“Configuring Distributed Destinations” on page 9-40.

To configure destinations explicitly, use the Destinations node in the Administration
Console to define the following configuration attributes:

! General configuration attributes, including:

" Name and type (queue or topic) of the destination.

" Name for accessing the destination within the JNDI namespace.

http://e-docs.bea.com/wls/docs70/ConsoleHelp/domain_jmsconnectionfactory_config_general.html
http://e-docs.bea.com/wls/docs70/ConsoleHelp/domain_jmsconnectionfactory_config_general.html

Configuring JMS

Administration Guide 9-11

" Whether or not a store is enabled for storing persistent messages.

" The JMS template used for creating destinations.

" Keys used to define the sort order for a specific destination.

! Thresholds and quotas for messages and bytes (maximum number, and high and
low thresholds), and whether or not bytes paging and/or messages paging is
enabled on the destination.

! Message attributes that can be overridden, including priority, time-to-live,
time-to-deliver, and delivery mode.

! Message redelivery attributes, including redelivery delay override, redelivery
limit, and error destination.

! Multicasting attributes (for topics only), including multicast address, time-to-live
(TTL), and port.

For instructions on creating and configuring a destination, see “JMS Destination” in
the Administration Console Online Help.

Some destination attributes are dynamically configurable. When attributes are
modified at run time, only incoming messages are affected; stored messages are not
affected.

Configuring JMS Templates

A JMS template provides an efficient means of defining multiple destinations with
similar attribute settings. JMS templates offer the following benefits:

! You do not need to re-enter every attribute setting each time you define a new
destination; you can use the JMS template and override any setting to which you
want to assign a new value.

! You can modify shared attribute settings dynamically simply by modifying the
template.

To define the JMS template configuration attributes for destinations, use the Templates
node in the Administration Console. The configurable attributes for a JMS template are
the same as those configured for a destination. These configuration attributes are
inherited by the destinations that use them, with the following exceptions:

http://e-docs.bea.com/wls/docs70/ConsoleHelp/domain_jmsdestinationtable.html

9 Managing JMS

9-12 Administration Guide

! If the destination that is using a JMS template specifies an override value for an
attribute, the override value is used.

! If the destination that is using a JMS template specifies a message redelivery
value for an attribute, that redelivery value is used.

! The Name attribute is not inherited by the destination. This name is valid for the
JMS template only. You must explicitly define a unique name for all
destinations.

! The JNDI Name, Enable Store, and Template attributes are not defined for JMS
templates.

! The Multicast attributes are not defined for JMS templates because they apply
only to topics.

Any attributes that are not explicitly defined for a destination are assigned default
values. If no default value exists, be sure to specify a value within the JMS template or
as a destination attribute override. If you do not do so, the configuration information
remains incomplete, the WebLogic JMS configuration fails, and the WebLogic JMS
does not boot.

For instructions on creating and configuring a JMS template, see “JMS Template” in
the Administration Console Online Help.

Configuring Destination Keys

Use destination keys to define the sort order for a specific destination.

To create a destination key, use the Destination Keys node in the Administration
Console and define the following configuration attributes:

! Name of the destination key

! Property name on which to sort

! Expected key type

! Direction in which to sort (ascending or descending)

For instructions on creating and configuring a destination key, see “JMS Destination
Key” in the Administration Console Online Help.

http://e-docs.bea.com/wls/docs70/ConsoleHelp/domain_jmstemplate_config_general.html
http://e-docs.bea.com/wls/docs70/ConsoleHelp/domain_jmsdestinationkey_config.html
http://e-docs.bea.com/wls/docs70/ConsoleHelp/domain_jmsdestinationkey_config.html

Configuring JMS

Administration Guide 9-13

Configuring Stores

A persistent store consists of a file or database that is used for persistent messaging. To
create a file or database store, use the Stores node in the Administration Console and
define the following configuration attributes:

! Name of the JMS persistent store.

! For a JMS file store—provide the path to the location where the messages will
be saved.

! For a JMS JDBC database store—provide the JDBC connection pool and
database table name prefix for use with multiple instances.

Warning: You cannot configure a transaction (XA) connection pool to be used with
a JDBC database store. For more information, see “JMS JDBC
Transactions” on page 9-14.

JMS persistent stores can increase the amount of memory required during initialization
of a WebLogic Server instance as the number of stored messages increases. If
initialization fails due to insufficient memory while rebooting WebLogic Server,
increase the heap size of the Java Virtual Machine (JVM) proportionally to the number
of messages that are currently stored in the JMS persistent store. Then, try rebooting
the server again. For more information on setting heap sizes, see “Tuning WebLogic
Server Applications” in the WebLogic Performance and Tuning Guide.

For instructions on creating and configuring a store, see “JMS File Store” and “JMS
JDBC Store” for information about file and JDBC database stores, respectively, in the
Administration Console Online Help.

About JMS JDBC Stores

Through the use of JDBC, JMS enables you to store persistent messages in a database,
which is accessed through a designated JDBC connection pool. The JMS database can
be any database that is accessible through a JDBC driver. WebLogic JMS detects some
drivers for the following databases:

! Pointbase

! Microsoft SQL (MSSQL) Server

! Oracle

http://e-docs.bea.com/wls/docs70/perform/AppTuning.html
http://e-docs.bea.com/wls/docs70/perform/AppTuning.html
http://e-docs.bea.com/wls/docs70/ConsoleHelp/domain_jmsfilestore_config.html
http://e-docs.bea.com/wls/docs70/ConsoleHelp/domain_jmsjdbcstore_config.html
http://e-docs.bea.com/wls/docs70/ConsoleHelp/domain_jmsjdbcstore_config.html

9 Managing JMS

9-14 Administration Guide

! Sybase

! Cloudscape

! Informix

! IBM DB2

! Times Ten

The weblogic/jms/ddl directory within the weblogic.jar file contains JMS DDL
files for these databases, which are actually text files containing the SQL commands
that create the JMS database tables. To use a different database, simply copy and edit
any one of these .ddl files.

Note: The JMS samples provided with your WebLogic Server distribution are set up
to work with the Pointbase Java database. An evaluation version of Pointbase
is included with WebLogic Server and a demoPool database is provided.

If your existing JMS JDBC stores somehow become corrupted, you can regenerate
them using the utils.Schema utility. For more information see, “JDBC Database
Utility” in Programming WebLogic JMS.

JMS JDBC Transactions

You cannot configure a transaction (XA) JDBC connection pool to be used with a JMS
JDBC store. JMS must use a JDBC connection pool that uses a non-XAResource
driver (you cannot use an XA driver or a JTS driver). JMS does the XA support above
the JDBC driver.

This is because WebLogic JMS is its own resource manager. That is, JMS itself
implements the XAResource and handles the transactions without depending on the
database (even when the messages are stored in the database). This means that
whenever you are using JMS and a database (even if it is the same database where the
JMS messages are stored), then it is two-phase commit transaction. For more
information about using transactions with WebLogic JMS, see “Using Transactions
with WebLogic JMS” in Programming WebLogic JMS.

From a performance perspective, you may boost your performance if the JDBC
connection pool used for the database work exists on the same WebLogic Server as the
JMS queue—the transaction will still be two-phase, but it will be handled with less
network overhead. Another performance boost might be achieved by using JMS file
stores rather than JMS JDBC stores.

http://e-docs.bea.com/wls/docs70/jms/appb.html
http://e-docs.bea.com/wls/docs70/jms/appb.html
http://e-docs.bea.com/wls/docs70/jms/trans.html
http://e-docs.bea.com/wls/docs70/jms/trans.html

Configuring JMS

Administration Guide 9-15

JMS JDBC Security

Optionally, you can restrict the JDBC connection pool resource. In previous releases
of WebLogic Server, ACLs were used to protect WebLogic resources. In WebLogic
Server version 7.0, security policies answer the question “who has access” to a
WebLogic resource. A security policy is created when you define an association
between a WebLogic resource and a user, group, or role. A WebLogic resource has no
protection until you assign it a security policy. For instructions on how to set up
security for all WebLogic Server resources, see “Setting Protections for WebLogic
Resources” in the Administration Console Online Help.

About JMS Store Table Prefixes

The JMS database contains two system tables that are generated automatically and are
used internally by JMS:

! <prefix>JMSStore

! <prefix>JMSState

The prefix name uniquely identifies JMS tables in the persistent store. Specifying
unique prefixes allows multiple stores to exist in the same database. You configure the
prefix via the Administration Console when configuring the JDBC store. A prefix is
prepended to table names when the DBMS requires fully qualified names, or when you
must differentiate between JMS tables for two WebLogic Servers, enabling multiple
tables to be stored on a single DBMS.

Warning: No two JMS stores should be allowed to use the same database tables, as
this will result in data corruption.

Specify the prefix using the following format, which will result in a valid table name
when prepended to the JMS table name:

[[[catalog.]schema.]prefix]JMSStore

where catalog identifies the set of system tables being referenced by the DBMS and
schema translates to the ID of the table owner. For example, in a production database
the JMS administrator could maintain a unique table for the Sales department, as
follows:

[[[Production.]JMSAdmin.]Sales]JMSStore

http://e-docs.bea.com/wls/docs70/ConsoleHelp/security_7x.html#securitypolicies
http://e-docs.bea.com/wls/docs70/ConsoleHelp/security_7x.html#securitypolicies

9 Managing JMS

9-16 Administration Guide

Note: For some DBMS vendors, such as Oracle, there is no catalog to set or choose,
so this format simplifies to [[schema.]prefix]. For more information, refer
to your DBMS documentation for instructions on how to write and use a
fully-qualified table name.

Recommended JDBC Connection Pool Settings for JMS JDBC Stores

If you are using a JDBC store when the DBMS goes down and then comes back online,
JMS cannot access the store until WebLogic Server is shut down and restarted. To
work around this problem, configure the following attributes on the JDBC connection
pool associated with the JMSJDBCStore store:

TestConnectionsOnReserve=”true”
TestTableName=”[[[catalog.]schema.]prefix]JMSState”

Configuring Session Pools

Server session pools enable an application to process messages concurrently. After you
define a JMS server, optionally, configure one or more session pools for each JMS
server.

Use the Session Pools node in the Administration Console and define the following
configuration attributes:

! Name of the server session pool.

! Connection factory with which the server session pool is associated and is used
to create sessions.

! Message listener class used to receive and process messages concurrently.

! Transaction attributes (acknowledge mode and whether or not the session pool
creates transacted sessions).

! Maximum number of concurrent sessions.

For instructions on creating and configuring a session pool, see “JMS Session Pool” in
the Administration Console Online Help.

Some session pool attributes are dynamically configurable, but the new values do not
take effect until the session pools are restarted.

http://e-docs.bea.com/wls/docs70/ConsoleHelp/domain_jmssessionpool_config.html

Monitoring JMS

Administration Guide 9-17

Configuring Connection Consumers

Connection consumers are queues (Point-To-Point) or topics (Pub/Sub) that retrieve
server sessions and process messages. After you define a session pool, configure one
or more connection consumers for each session pool.

To configure connection consumers, use the Session Pools node in the Administration
Console to define the following configuration attributes:

! Name of the connection consumer.

! Maximum number of messages that can be accumulated by the connection
consumer.

! JMS selector expression used to filter messages. For information about defining
selectors, see Developing a WebLogic JMS Application” in Programming
WebLogic JMS.

! Destination on which the connection consumer will listen.

To create and configure a connection consumer, and for detailed information about
each of the connection consumer configuration attributes, see “JMS Connection
Consumer” in the Administration Console Online Help.

Monitoring JMS

Using the Administration Console, you can monitor statistics for the following JMS
objects: JMS servers, connections, sessions, destinations, message producers, message
consumers, server session pools, and durable subscribers.

JMS statistics continue to increment as long as the server is running. Statistics are reset
only when the server is rebooted.

Note: For instructions on monitoring JMS connections to WebLogic Server, refer to
the Servers section in the Administration Console Online Help.

http://e-docs.bea.com/wls/docs70/jms/implement.html
http://e-docs.bea.com/wls/docs70/ConsoleHelp/domain_jmsconnectionconsumer_config.html
http://e-docs.bea.com/wls/docs70/ConsoleHelp/domain_jmsconnectionconsumer_config.html
http://e-docs.bea.com/wls/docs70/ConsoleHelp/domain_server_monitor_jms.html

9 Managing JMS

9-18 Administration Guide

Monitoring JMS Objects

To view run-time information for active JMS servers, destinations, and session pools:

1. Start the Administration Console.

2. Select the JMS node under Services, in the left pane, to expand the list of JMS
servers.

3. Select the Server node under JMS in the left pane.

The JMS server information is displayed in the right pane.

4. Select the JMS server that you want to monitor from the list or, from the JMS
servers displayed in the right pane.

5. Select the Monitoring tab to display the following text links:

" Monitor all Active JMS Servers

" Monitor all Active JMS Destinations

" Monitor all Active JMS Session Pool Runtimes

6. Click the appropriate text link to view monitoring data for that JMS object.

Note: When monitoring distributed destinations, you may see proxy topic members
or system subscriptions for the topic or queue members. For more information
see, “Monitoring Distributed Destination System Subscriptions and Proxy
Topic Members” on page 9-19.

Monitoring Durable Subscribers

To view JMS durable subscribers that are running on destination topics:

1. Follow steps 1–3, as described in “Monitoring JMS Objects” on page 9-18.

2. Select the Destinations node under Servers in the left pane, to expand the list of
JMS topic and queue destinations.

Monitoring JMS

Administration Guide 9-19

The JMS destination information is displayed in a table format in the right pane,
with the Durable Subscriber Runtimes column listing the number of durable
subscribers running (if any) for the destination topics listed in the table.

3. To view durable subscriber information for a specific topic, click the icon (or
actual number) in the Durable Subscriber Runtimes column for the desired topic.

Monitoring Distributed Destination System
Subscriptions and Proxy Topic Members

In certain JMS configuration for Weblogic Server 7.0, distributed destinations may
automatically create proxy topic members or system subscriptions between the topic or
queue members. If this occurs, system subscriptions and proxy topic members will
appear in MBean statistics, as well as in the Administration Console, when monitoring
distributed destination members. They may also appear in the durable subscription
names and in the consumer counts for the distributed destination members.

The following points describe the behavior of system subscriptions and proxy topic
members:

! Distributed Topic Proxy Members — A WebLogic Server instance that has a
configured JMS connection factory, but which has not been configured to host a
local distributed topic member for a remote distributed topic, may automatically
create and host a local proxy topic member for the remote distributed topic. This
occurs when the first non-durable subscription for the distributed topic is created
on the server's connection factory. The dynamically-created proxy topic member
resides within a dynamically-created JMS server. Each of the
manually-configured distributed topic members will create a system subscription
for each dynamically-created proxy topic member. The non-durable consumers
are then created on the proxy topic member.

! Distributed Topic System Subscriptions — System subscriptions are used to
forward messages between configured distributed destination members. For
example, when there are n members in a distributed topic, each member has at
least n-1 system subscribers. In addition, for each proxy topic member, there will
also be a system subscription on each distributed topic member.

! Distributed Queue System Subscriptions — Distributed queue members that
have enabled the Forward Delay attribute on the distributed queue (by changing

9 Managing JMS

9-20 Administration Guide

the default value of -1 seconds), may also create system subscribers. The system
subscribers are used to forward messages from queue members with no
consumers to queue members that do have consumers.

! Durable System Subscriptions — When a JMS file or JDBC store is
configured for a distributed topic member, system subscriptions are created as
durable subscribers. They are displayed by name in the Administration Console.

Tuning JMS

The following sections explain how to get the most out of your applications by
implementing the administrative performance tuning features available with
WebLogic JMS.

! Persistent Stores

! Using Message Paging

! Establishing Message Flow Control

! Tuning Distributed Destinations

Persistent Stores

The following sections describe the tuning options available when using persistent
stores with WebLogic Server JMS.

Configuring a Synchronous Write Policy for JMS File Stores

By default, WebLogic JMS file stores guarantee up-to-the-message integrity by using
synchronous writes. Disabling synchronous writes improves file store performance,
often quite dramatically, but at the expense of possibly losing sent messages or
generating duplicate received messages (even if messages are transactional) in the
event of an operating system crash or a hardware failure. Simply shutting down an

Tuning JMS

Administration Guide 9-21

operating system will not generate these failures, as an OS flushes all outstanding
writes during a normal shutdown. Instead, these failures can be emulated by shutting
the power off to a busy server.

Note: The Synchronous Write Policy is ignored if the file store is used exclusively
for paging non-persistent messages to disk.

Table 9-1 explains the options available when configuring a Synchronous Write Policy
for all JMS file stores running on WebLogic Server.

Table 9-1 Synchronous Write Policy Attributes

Attribute Description

Disabled File store writes are allowed to use both the operating
system’s cache as well as the file system’s on-disk
cache. This policy is the fastest but the least reliable.
It can be more than 100 times faster than the other
policies, but power outages or operating system
failures can cause lost and/or duplicate messages.

Cache-Flush The default policy. Transactions cannot complete
until all of their writes have been flushed down to
disk. This policy is reliable and scales well as the
number of simultaneous users increases.

9 Managing JMS

9-22 Administration Guide

Warning: Unlike Sun Solaris, use of the Direct-Write policy on Windows may leave
transaction data in the on-disk cache without writing it to disk
immediately. This is not transactionally safe, as a power failure can cause
loss of on-disk cache data, resulting in lost and/or duplicate messages. For
reliable writes using Direct-Write on Windows, either disable all write
caching for the disk (enabled by default), or use a disk with a battery
backed cache.

To disable the on-disk cache for a hard disk on Windows, do the
following: Start -> Settings -> Control Panel -> System -> Hardware tab
-> click the Device Manager button -> Disk Drives -> double-click the

Direct-Write File store writes are written directly to disk. This
policy is supported on Sun Solaris and Windows
systems. If the Direct-Write policy is set on an
unsupported platform, the file store automatically
uses the Cache-Flush policy instead.

The Direct-Write policy’s reliability and
performance depend on the platform’s use of on-disk
caches with respect to direct writes. For example,
UNIX systems do not use on-disk caches for direct
writes, while Windows systems generally do. The
following points illustrate the pros and cons of using
on-disk caching (when possible) with this policy:

! With on-disk caching enabled, the Direct-Write
policy can be 2-5 times faster than the
Cache-Flush policy, except in highly scalable
cases where it may be slightly slower.

! With on-disk caching disabled, the Direct-Write
policy is faster than the Cache-Flush policy in
one-to-many cases, but much slower otherwise.

! The Direct-Write policy scales well with on-disk
caching enabled, but does not scale with it
disabled. (Note that Sun Solaris does not allow
enabling the on-disk cache for direct writes).

Table 9-1 Synchronous Write Policy Attributes

Attribute Description

Tuning JMS

Administration Guide 9-23

drive name -> Disk Properties tab -> clear the Write Caching Enabled
check box. Some file systems, however, do not allow this value to be
changed (for example, a RAID system that has a reliable cache).

Comparing Policy Settings

The following tables compare the synchronous write policies with respect to
reliability, performance, and scalability. Use the following key to interpret the
expected results based on your synchronous write policy settings.

Disk Cache On/Off: the on-disk write cache enabled/disabled

1-m Perf, m-m Perf, M-M Perf: very few clients, many clients, and a large
amount of concurrent clients

Reliability Low/High: High reliability is needed for exactly-once
(transactional) messaging

Table 9-2 Relative Performance (compare within same column)

Policy Disk Cache 1-m Perf m-m Perf M-M Perf Reliability

Disabled On **** **** **** Low (depends on OS cache)

Off **** **** **** Low

Cache-Flush On * ** *** High

Off * ** *** High

Direct-Write On ** *** ** Medium (High with reliable
disk-cache

Off ** * * High

Table 9-3 Relative Scalability (compare within same row)

Policy Disk Cache 1-m Perf m-m Perf M-M Perf

Disabled On **** **** ****

Off **** **** ****

9 Managing JMS

9-24 Administration Guide

Using Message Paging

With WebLogic JMS message paging, you can free up valuable virtual memory during
peak message load periods by swapping out messages from memory to persistent
storage whenever your message loads reach a specified threshold. From a performance
perspective, this feature can greatly benefit WebLogic Server implementations with
the large message spaces that are required by today's enterprise applications.

Two metrics are used to determine when to start and stop paging: bytes paging and
messages paging. Each metric is the basis of a single paging mode, which you can
enable and disable individually, or use simultaneously, on JMS servers and/or
destinations (queues and topics).

Configuring Paging

You can configure paging for a new or existing JMS server and/or its destinations
through the Administration Console. Using the attributes on the JMS Server node you
can specify a paging store for a JMS server, enable bytes and/or messages paging, and
configure bytes/messages high and low thresholds to start and stop paging.

Similarly, using the attributes on the Destinations node, you can configure
bytes/messages paging for all topics and queues configured on a JMS server. The
destinations use the paging store that is configured for the JMS server.

Also, if you use JMS templates to configure multiple destinations, you can use the
attributes on the Templates node to configure paging quickly on all your destinations.
To override a template’s paging configuration for specific destinations, you can enable
or disable paging on any destination.

Cache-Flush On * ** ***

Off * ** ***

Direct-Write On * ** ***

Off * * *

Table 9-3 Relative Scalability (compare within same row)

Policy Disk Cache 1-m Perf m-m Perf M-M Perf

Tuning JMS

Administration Guide 9-25

For instructions on configuring a new JMS server, templates, and destinations (Topics
or Queues), see “JMS Server,” “JMS Destination,” and “JMS Template” in the
Administration Console Online Help.

Note: For performance tuning purposes, you can modify the paging thresholds to any
legal value at any time. Once paging is enabled, however, you cannot
dynamically disable it by resetting a byte or message threshold back to -1. To
prevent paging from occurring, set the byte/message high threshold to a very
large number (maximum is 263 -1), so that paging is not triggered.

Configuring a Paging Store for a JMS Server

Note: Although it is possible to use a JDBC page store, it is not recommended. The
amount of traffic and subsequent lack of performance makes such a
configuration undesirable.

To configure a new paging store:

1. Start the Administration Console.

2. Click the JMS Store node. The right pane shows all the JMS stores.

3. Click the Create a new JMS File Store text link. The right pane shows the tabs
associated with configuring a new file store.

4. Enter values in the attribute fields.

5. Click Create to create a file store instance with the name you specified in the
Name field. The new instance is added under the JMS Stores node in the left
pane.

6. If you have multiple JMS servers in your domain, repeat steps 3-5 for each server
instance.

Configuring Paging on a JMS Server

To enable and configure paging on an existing JMS server:

1. Click the JMS Servers node. The right pane shows all the servers defined in your
domain.

2. Click the server that you want to configure for paging. The right pane shows the
tabs associated with configuring the server.

http://e-docs.bea.com/wls/docs70/ConsoleHelp/domain_jmsserver_config_general.html
http://e-docs.bea.com/wls/docs70/ConsoleHelp/domain_jmsdestinationtable.html
http://e-docs.bea.com/wls/docs70/ConsoleHelp/domain_jmstemplate_config_general.html

9 Managing JMS

9-26 Administration Guide

3. On the General tab, use the Paging Store list box to select the store that you
configured to store the paged messages. Click Apply to save your changes.

For instructions on configuring a paging store, refer to “Configuring a Paging
Store for a JMS Server” on page 9-25.

4. On the Thresholds & Quotas tab, configure bytes paging:

" Select the Bytes Paging Enabled check box.

" In the Bytes Threshold High field, enter an amount that will start bytes
paging when the number of bytes on the JMS server exceeds this threshold.

" In the Bytes Threshold Low field, enter an amount that will stop bytes
paging once the number of bytes on the JMS server falls below this
threshold.

5. On the Thresholds & Quotas tab, configure messages paging:

" Select the Messages Paging Enabled check box.

" In the Messages Threshold High field, enter an amount that will start
messages paging when the number of messages on the JMS server exceeds
this threshold.

" In the Messages Threshold Low field, enter an amount that will stop
messages paging once the number of messages on the JMS server falls below
this threshold.

6. Click Apply to save the new bytes and/or messages paging values.

7. Repeat steps 2–6 to configure paging for additional JMS servers in the domain.

Note: Each JMS server must have its own paging store.

8. After you configure your JMS server (or servers) for paging, do one of the
following:

" If you are not configuring a JMS server’s destinations for paging, reboot
WebLogic Server to activate paging.

" If you want to configure a server’s destinations for paging, follow refer to
either “Configuring Paging on a JMS Template” on page 9-27 or
“Configuring Paging on Destinations” on page 9-28.

Tuning JMS

Administration Guide 9-27

Configuring Paging on a JMS Template

JMS templates provide an efficient way to define multiple destinations (topics or
queues) with similar attribute settings. To configure paging on a template for
destinations, do the following:

1. Click the JMS node in the left pane.

2. Click the JMS Templates node. The right pane shows all the templates defined in
the domain.

3. Click the template that you want to configure for paging. The right pane shows
the tabs associated with configuring the template.

4. On the Thresholds & Quotas tab, configure bytes paging:

" Select the Bytes Paging Enabled check box.

" In the Bytes Threshold High field, enter an amount that will start bytes
paging when the number of bytes on the JMS server exceeds this threshold.

" In the Bytes Threshold Low field, enter an amount that will stop bytes
paging once the number of bytes on the JMS server falls below this
threshold.

5. On the Thresholds & Quotas tab, configure messages paging:

" Select the Messages Paging Enabled check box.

" In the Messages Threshold High field, enter an amount that will start
messages paging when the number of messages on the JMS server exceeds
this threshold.

" In the Messages Threshold Low field, enter an amount that will stop
messages paging once the number of messages on the JMS server falls below
this threshold.

6. Click Apply to save the new bytes and/or messages paging values.

7. Repeat steps 3–6 to configure paging for additional JMS templates.

8. After configuring all of your JMS templates for paging, reboot WebLogic Server
to activate paging.

9 Managing JMS

9-28 Administration Guide

Configuring Paging on Destinations

Follow these directions if you are configuring paging on destinations without using a
JMS template.

1. Under JMS Servers, click to expand a server instance that is already configured for
paging.

2. Click the Destinations node. The right pane shows all of the server's topics and
queues.

3. Click the topic or queue that you want to configure for paging. The right pane
shows the tabs associated with configuring the topic or queue.

4. On the Thresholds & Quotas tab, configure bytes paging:

" Select the Bytes Paging Enabled check box.

" In the Bytes Threshold High field, enter an amount that will start bytes
paging when the number of bytes on the JMS server exceeds this threshold.

" In the Bytes Threshold Low field, enter an amount that will stop bytes
paging once the number of bytes on the JMS server falls below this
threshold.

5. On the Thresholds & Quotas tab, configure messages paging:

" Select the Messages Paging Enabled check box.

" In the Messages Threshold High field, enter an amount that will start
messages paging when the number of messages on the JMS server exceeds
this threshold.

" In the Messages Threshold Low field, enter an amount that will stop
messages paging once the number of messages on the JMS server falls below
this threshold.

6. Click Apply to save the new bytes and/or messages paging values.

7. Repeat steps 3–6 to configure paging for additional JMS destinations.

8. After you configure all your destinations for paging, reboot WebLogic Server to
activate paging.

Tuning JMS

Administration Guide 9-29

Note: If you use JMS templates to configure your destinations, a destination's
explicit Byte/Messages Paging configuration overrides the template's
configuration. For more information, refer to “Configuring a Destination to
Override Paging on a JMS Template” on page 9-29 and to “Configuring JMS”
on page 9-2.

Configuring a Destination to Override Paging on a JMS Template

Follow these directions if you want to override a template's settings and enable or
disable paging on a specific destination.

1. Under JMS Servers, click to expand a server instance that is already configured for
paging.

2. Click the Destinations node. The right pane shows all of the server's topics and
queues.

3. Click the topic or queue that you want to configure for paging. The right pane
shows the topics or queues associated with the server instance.

4. On the Thresholds & Quotas tab, configure the Bytes Paging Enabled and/or
Messages Paging Enabled attributes on the destination according to how you
want to override the JMS template for the destination.

" To disable paging for the destination, select False in the Bytes Paging
Enabled and/or the Messages Paging Enabled list boxes.

" To enable paging for the destination, select True in the Bytes Paging Enabled
and/or the Messages Paging Enabled list boxes.

5. Click Apply to save the new bytes and/or messages paging values.

6. Repeat steps 2–5 to configure paging for additional JMS destinations on the same
server instance.

7. Once all of your destinations are configured for paging, then reboot WebLogic
Server to activate paging.

JMS Paging Attributes

The following sections briefly describe the paging attributes available with WebLogic
Server JMS.

9 Managing JMS

9-30 Administration Guide

JMS Server Paging Attributes

Table 9-4 describes the paging attributes that you define when configuring paging on
a JMS Server. For detailed information about other JMS Server attributes, and the valid
and default values for them, see “JMS Server” in the Administration Console Online
Help.

Table 9-4 JMS Server Attributes

Attribute Description

Bytes Paging Enabled ! If the Bytes Paging Enabled check box is not
selected (False), then server bytes paging is
explicitly disabled.

! If the Bytes Paging Enabled check box is
selected (True), a paging store has been
configured, and both the Bytes Threshold Low
and Bytes Threshold High attributes are greater
than -1, then server bytes paging is enabled.

! If either the Bytes Threshold Low or Bytes
Threshold High attribute is undefined, or defined
as -1, then server bytes paging is implicitly
disabled—even though the Bytes Paging
Enabled check box is selected (True).

Messages Paging Enabled ! If the Messages Paging Enabled check box is not
selected (False), then server messages paging is
explicitly disabled.

! If the Messages Paging Enabled check box is
selected (True), a paging store has been
configured, and both the Messages Threshold
Low and Messages Threshold High attributes are
greater than -1, then server messages paging is
enabled.

! If either the Messages Threshold Low or
Messages Threshold High attribute is undefined,
or defined as -1, then server paging is implicitly
disabled—even though the Messages Paging
Enabled check box is selected (True).

http://e-docs.bea.com/wls/docs70/ConsoleHelp/domain_jmsserver_config_general.html

Tuning JMS

Administration Guide 9-31

JMS Template Paging Attributes

Table 9-5 describes the paging attributes that you define when configuring paging on
JMS templates for destinations. For detailed information about other JMS template
attributes, and the valid and default values for them, see “JMS Template” in the
Administration Console Online Help.

Paging Store The name of the persistent store where non-persistent
messages are paged. A paging store cannot be the
same store used for persistent messages or durable
subscribers.

Two JMS servers cannot use the same paging store;
therefore, you must configure a unique paging store
for each server.

Table 9-4 JMS Server Attributes

Attribute Description

Table 9-5 JMS Template Attributes

Attribute Description

Bytes Paging Enabled ! If the Bytes Paging Enabled check box is not
selected (False), then destination-level bytes
paging is disabled for the JMS template’s
destinations—unless the destination setting
overrides the template.

! If the Bytes Paging Enabled check box is
selected (True), a paging store has been
configured for the JMS Server, and both the
Bytes Threshold Low and Bytes Threshold High
attributes are greater than -1, then
destination-level bytes paging is enabled for the
JMS template’s destinations—unless the
destination setting overrides the template.

! If no value is defined in the JMS Template
MBean, then the value defaults to False and
bytes paging is disabled for the JMS template’s
destinations.

http://e-docs.bea.com/wls/docs70/ConsoleHelp/domain_jmstemplate_config_general.html

9 Managing JMS

9-32 Administration Guide

JMS Destination Paging Attributes

Table 9-6 describes the attributes that you define when configuring paging on
destinations. For detailed information about other JMS destination attributes, and valid
and default values for them, see “JMS Destination” in the Administration Console
Online Help.

Messages Paging Enabled ! If the Messages Paging Enabled check box is not
selected (False), then destination-level messages
paging is disabled for the template’s
destination—unless the destination setting
overrides the template.

! If the Messages Paging Enabled check box is
selected (True), a paging store has been
configured for the JMS Server, and both the
Messages Threshold Low and Messages
Threshold High attributes are greater than -1,
then destination-level messages paging is
enabled for this destination—unless the
destination setting overrides the template.

! If no value is defined in the JMS Template
MBean, then the value defaults to False and
messages paging is disabled for the template’s
destinations.

Table 9-5 JMS Template Attributes

Attribute Description

http://e-docs.bea.com/wls/docs70/ConsoleHelp/domain_jmsdestinationtable.html

Tuning JMS

Administration Guide 9-33

Note: If server paging is enabled, and destination-level paging is disabled for a given
destination, than messages on the destination can still be paged if server
paging is triggered. However, when destination-level paging is disabled for a
given destination, then the destination’s high thresholds will not force the
destination to page out messages when they are exceeded.

Table 9-6 JMS Destination Attributes

Attribute Description

Bytes Paging Enabled ! If Bytes Paging Enabled is set to False, then
destination-level bytes paging is disabled for this
destination.

! If Bytes Paging Enabled is set to True, a paging
store has been configured for the JMS Server,
and both the Bytes Threshold Low and Bytes
Threshold High attributes are greater than -1,
then destination-level bytes paging is enabled for
this destination.

! If Bytes Paging Enabled is set to Default, then
this value inherits the template’s value—if a
template is specified. If no template is
configured for the destination, then the Default
value is equivalent to False.

Messages Paging Enabled ! If Messages Paging Enabled is set to False, then
destination-level messages paging is disabled for
this destination.

! If Messages Paging Enabled is set to True, a
paging store has been configured for the JMS
Server, and both the Messages Threshold Low
and Messages Threshold High attributes are
greater than -1, then destination-level messages
paging is enabled for this destination.

! If Messages Paging Enabled is set to Default,
then this value inherits the template’s value—if a
template is specified. If no template is
configured for the destination, then the Default
value is equivalent to False.

9 Managing JMS

9-34 Administration Guide

Paging Threshold Attributes

Table 9-7 briefly describes the bytes and messages paging thresholds available with
JMS servers, templates, and destinations. For detailed information about other JMS
server, template, and destination attributes, and the valid and default values for them,
see “JMS Server,” “JMS Destination,” and “JMS Template” in the Administration
Console Online Help.

The thresholds are defined for servers, templates, and destinations as follows:

! If either bytes high/low threshold value is not defined (or is defined as -1), then
the number of bytes is not used to determine when and what to page.

! If either messages high/low threshold value is not defined (or is defined as -1),
then the number of messages is not used to determine when and what to page.

! A server or template/destination must have the Bytes/Messages Paging Enabled
attribute set to True in order for paging to take place. If the thresholds are set,
but paging is not enabled, messages are still logged on the server indicating
threshold conditions.

Table 9-7 Paging Threshold Attributes

Attribute Description

Bytes Threshold High Start paging when the number of bytes exceeds this
threshold.

Bytes Threshold Low Stop paging when the number of bytes falls back
below this threshold.

Messages Threshold High Start paging when the number of messages exceeds
this threshold.

Messages Threshold Low Stop paging when the number of messages falls back
below this threshold.

http://e-docs.bea.com/wls/docs70/ConsoleHelp/domain_jmsserver_config_general.html
http://e-docs.bea.com/wls/docs70/ConsoleHelp/domain_jmsdestinationtable.html
http://e-docs.bea.com/wls/docs70/ConsoleHelp/domain_jmstemplate_config_general.html

Tuning JMS

Administration Guide 9-35

Establishing Message Flow Control

With the WebLogic JMS flow control feature, you can enable a JMS server or
destination to slow down message producers when it determines that it is becoming
overloaded. Specifically, when a JMS server/destination exceeds its specified bytes or
messages thresholds, it becomes armed and instructs producers to limit their message
flow (messages per second).

Producers limit their production rate based on a set of flow control attributes
configured for producers via the JMS connection factory. Starting at a specified flow
maximum number of messages, a producer evaluates whether the server/destination is
still armed at prescribed intervals (for example, every 10 seconds for 60 seconds). If at
each interval, the server/destination is still armed, then the producer continues to move
its rate down to its prescribed flow minimum amount.

As producers slow themselves down, the threshold condition gradually corrects itself
until the server/destination is unarmed. At this point, a producer is allowed to increase
its production rate, but not necessarily to the maximum possible rate. In fact, its
message flow continues to be controlled (even though the server/destination is no
longer armed) until it reaches its prescribed flow maximum, at which point it is no
longer flow controlled.

Configuring Flow Control

Producers receive a set of flow control attributes from their session, which receives the
attributes from the connection, and which receives the attributes from the connection
factory. You configure the flow control attributes on the JMS connection factory via
the Administration Console.

These attributes allow the producer to adjust its message flow. Specifically, the
producer receives attributes that limit its flow within a minimum and maximum range.
As conditions worsen, the producer moves toward the minimum; as conditions
improve; the producer moves toward the maximum. Movement toward the minimum
and maximum are defined by two additional attributes that specify the rate of
movement toward the minimum and maximum. Also, the need for movement toward
the minimum and maximum is evaluated at a configured interval.

To configure message flow control on a connection factory, follow these steps:

1. Click to expand the JMS node.

9 Managing JMS

9-36 Administration Guide

2. Click the Connection Factories node. The JMS Connection Factories table
displays in the right pane showing all the connection factories defined in your
domain.

3. Click the connection factory you want to establish message flow control for. A
dialog displays in the right pane showing the tabs associated with modifying a
connection factory.

4. On the Flow Control tab, define the attributes as described in following table:

Table 9-8 Flow Control Attributes

Attribute Description

Flow Control Enabled Determines whether a producer can be flow controlled by the
JMS server.

Flow Maximum The maximum number of messages per second for a producer
that is experiencing a threshold condition.

If a producer is not currently limiting its flow when a threshold
condition is reached, the initial flow limit for that producer is
set to Flow Maximum. If a producer is already limiting its flow
when a threshold condition is reached (the flow limit is less
than Flow Maximum), then the producer will continue at its
current flow limit until the next time the flow is evaluated.

Once a threshold condition has subsided, the producer is not
permitted to ignore its flow limit. If its flow limit is less than
the Flow Maximum, then the producer must gradually increase
its flow to the Flow Maximum each time the flow is evaluated.
When the producer finally reaches the Flow Maximum, it can
then ignore its flow limit and send without limiting its flow.

Flow Minimum The minimum number of messages per second for a producer
that is experiencing a threshold condition. This is the lower
boundary of a producer’s flow limit. That is, WebLogic JMS
will not further slow down a producer whose message flow
limit is at its Flow Minimum.

Flow Interval An adjustment period of time, defined in seconds, when a
producer adjusts its flow from the Flow Maximum number of
messages to the Flow Minimum amount, or vice versa.

Tuning JMS

Administration Guide 9-37

5. Click Apply to store new attribute values.

For detailed information about other connection factory attributes, and the valid and
default values for them, see “JMS Connection Factory” in the Administration Console
Online Help.

Flow Control Thresholds

The attributes used for configuring bytes/messages thresholds are defined as part of the
JMS server and JMS destination. Table 9-9 defines how these thresholds start and stop
flow control on a JMS server and/or JMS destination.

Flow Steps The number of steps used when a producer is adjusting its flow
from the Flow Minimum amount of messages to the Flow
Maximum amount, or vice versa. Specifically, the Flow
Interval adjustment period is divided into the number of Flow
Steps (for example, 60 seconds divided by 6 steps is 10 seconds
per step).

Also, the movement (i.e., the rate of adjustment) is calculated
by dividing the difference between the Flow Maximum and the
Flow Minimum into steps. At each Flow Step, the flow is
adjusted upward or downward, as necessary, based on the
current conditions, as follows:

! The movement downward (the decay) is geometric (taking
the nth root of the difference, where n is the number of
steps).

! The movement upward is linear. The difference is simply
divided by the number of steps.

Table 9-8 Flow Control Attributes

Attribute Description

Table 9-9 Flow Control Threshold Attributes

Attribute Description

Bytes/Messages Threshold High When the number of bytes/messages exceeds this
threshold, the JMS server/destination becomes armed and
instructs producers to limit their message flow.

http://e-docs.bea.com/wls/docs70/ConsoleHelp/domain_jmsconnectionfactory_config_general.html

9 Managing JMS

9-38 Administration Guide

For detailed information about other JMS server and JMS destination attributes, and
the valid and default values for them, see “JMS Server” and “JMS Destination” in the
Administration Console Online Help.

Tuning Distributed Destinations

The following sections describe how to tune a distributed destination by configuring
attributes on the JMS Connection Factory.

For more information about configuring a distributed destination, see “Configuring
Distributed Destinations” on page 9-40.

Configuring Message Load Balancing

The Load Balancing Enabled attribute on the JMS Connection Factory defines whether
non-anonymous producers created through a connection factory are load balanced on
a per-call basis.

Applications that use distributed destinations to distribute or balance their producers
and consumers across multiple physical destinations, but do not want to make a load
balancing decision each time a message is produced, can turn off the Load Balancing
Enabled attribute.

To configure load balancing on a connection factory:

Bytes/Messages Threshold Low When the number of bytes/messages falls below this
threshold, the JMS server/destination becomes unarmed
and instructs producers to begin increasing their
message flow.

Flow control is still in effect for producers that are below
their message flow maximum. Producers can move their
rate upward until they reach their flow maximum, at
which point they are no longer flow controlled.

Table 9-9 Flow Control Threshold Attributes

Attribute Description

http://e-docs.bea.com/wls/docs70/ConsoleHelp/domain_jmsserver_config_general.html
http://e-docs.bea.com/wls/docs70/ConsoleHelp/domain_jmsdestinationtable.html

Tuning JMS

Administration Guide 9-39

1. Click to expand the JMS node.

2. Click the Connection Factories node. The JMS Connection Factories table
displays in the right pane showing all the connection factories defined in your
domain.

3. Click the connection factory on which you want to establish message load
balancing. A dialog displays in the right pane showing the tabs associated with
modifying a connection factory.

4. Define the Load Balancing Enabled attribute in the General tab.

" If the Load Balancing Enabled check box is selected (True), then producers
are load balanced on every send() or publish() method invocation.

" If the Load Balancing Enabled check box is not selected (False), then
non-anonymous producers balance the load on their first send() or
publish() method invocation, and then produce to the same physical
destination until they fail. At that point, a new physical destination is chosen.

5. Click Apply to save your changes.

Anonymous producers (producers that do not designate a destination when created),
are load-balanced each time they switch destinations. If they continue to use the same
destination, then the rules for non-anonymous producers apply (as stated previously).

For more information on configuring a JMS connection factory, see “Configuring
Connection Factories” on page 9-8.

Configuring Server Affinity

The Server Affinity Enabled attribute on the JMS Connection Factory defines whether
a WebLogic Server that is load balancing consumers or producers across multiple
physical destinations in a distributed destination set, will first attempt to load balance
across any other physical destinations that are also running on the same WebLogic
Server.

To disable server affinity on a connection factory:

1. Click to expand the JMS node.

2. Click the Connection Factories node. The JMS Connection Factories table
displays in the right pane showing all the connection factories defined in your
domain.

9 Managing JMS

9-40 Administration Guide

3. Click the connection factory on which you want to disable server affinity. A
dialog displays in the right pane showing the tabs associated with modifying a
connection factory.

4. Define the Server Affinity Enabled attribute in the General tab.

" If the Server Affinity Enabled check box is selected (True), then a WebLogic
Server that is load balancing consumers or producers across multiple
physical destinations in a distributed destination set, will first attempt to load
balance across any other physical destinations that are also running on the
same WebLogic Server.

" If the Server Affinity Enabled check box is not selected (False), then a
WebLogic Server will load balance consumers or producers across physical
destinations in a distributed destination set and disregard any other physical
destinations also running on the same WebLogic Server.

5. Click Apply to save your changes.

For more information on configuring a JMS connection factory, see “Configuring
Connection Factories” on page 9-8.

Configuring Distributed Destinations

WebLogic JMS supports service continuity in the event of a WebLogic Server instance
failure within a cluster through the configuration of multiple physical destinations
(queues and topics) as members of a single distributed destination set. Once
configured, your producers and consumers send and receive messages through what
appears to be a single destination. However, WebLogic JMS actually distributes the
messaging load across all the available destination members within the distributed
destination. In the event that a member becomes unavailable due to a server failure,
traffic is then redirected toward the other available destination members in the set.

For programmatic instructions on accessing distributed destinations, see “Developing
a WebLogic JMS Application” in Programming WebLogic JMS.

http://e-docs.bea.com/wls/docs70/jms/implement.html#using_distributed_destinations
http://e-docs.bea.com/wls/docs70/jms/implement.html#using_distributed_destinations

Configuring Distributed Destinations

Administration Guide 9-41

Steps for Configuring Distributed Destinations

You configure distributed JMS destinations through the JMS --> Distributed
Destinations node on the Administration Console. To facilitate the configuration
process, these instructions are divided into procedures that address the following
scenarios:

! New implementations of WebLogic JMS with no physical destinations or
existing configurations of WebLogic JMS that do not require previously
configured destinations to be part of a distributed destination:

" Creating a Distributed Topic and Creating Members Automatically

" Creating a Distributed Queue and Creating Members Automatically

! Existing implementations of WebLogic JMS that require previously configured
destinations to be members of a distributed destination set:

" Creating a Distributed Topic and Adding Existing Physical Topics as
Members Manually

" Creating a Distributed Queue and Adding Existing Physical Queues as
Members Manually

Note: The default Load Balancing Enabled and Server Affinity Enabled attributes
for tuning a distributed destination configuration can be modified on the JMS
connection factory through the Administration Console. For more
information, see “Configuring Message Load Balancing” on page 9-38 and
“Configuring Server Affinity” on page 9-39.

Creating a Distributed Topic and Creating Members Automatically

Follow these steps to configure a distributed topic and automatically create its topic
members on JMS servers that are part of a WebLogic Server cluster (for high
availability) or on an single WebLogic Server instance that is not part of a cluster.

1. Expand the JMS node and the Distributed Destinations node.

2. Click the Configure a new Distributed Topic link in the right pane. A
Configuration dialog shows the tabs associated with configuring a new
distributed topic.

3. Define the attributes in the General tab according to the following table.

9 Managing JMS

9-42 Administration Guide

4. Click Create to create the distributed topic.

5. On the Thresholds & Quotas tab, define the following attributes for all of the
distributed topic members:

" Thresholds and quotas for messages and bytes (maximum number and
high/low thresholds).

" Whether or not bytes paging and/or messages paging is enabled on the
distributed topic.

For more information about these attributes, see “JMS Topic -> Configuration ->
Thresholds & Quotas” in the Administration Console Online Help.

6. Click Apply to store new attribute values.

7. On the Auto Deploy tab, indicate the WebLogic Server instances where you want
the distributed topic members to be automatically created.

8. Click the Create members on the selected Servers (and JMS Servers) text link.
An auto deploy dialog prompts you to select one of the following options:

" Select a cluster at which to target the distributed topic, and then click Next.

or

Table 9-10 Distributed Topic Attributes on the General Tab

Attribute Description

Name Uniquely identify the distributed topic within a WebLogic
Server domain.

JNDI Name Enter the name used to bind the distributed topic into the JNDI
namespace. Applications use the JNDI Name to look up the
distributed topic.

A distributed topic that does not have a JNDI Name can be
referenced by passing the Name of the distributed destination
to: javax.jms.TopicSession.createTopic().

Load Balancing Policy Define how producers will distribute their messages across the
members of a distributed topic. The valid values are
Round-Robin and Random as defined in “Configuring
Message Load Balancing” on page 9-38.

http://e-docs.bea.com/wls/docs70/ConsoleHelp/domain_jmstopic_config_thresholds.html
http://e-docs.bea.com/wls/docs70/ConsoleHelp/domain_jmstopic_config_thresholds.html

Configuring Distributed Destinations

Administration Guide 9-43

" Accept the None option to bypass this dialog so you can select an individual
server or servers that are part of the cluster. (In this case, skip to Step 10).

9. If you selected a cluster, do the following to select WebLogic Server instances
within the cluster:

a. All WebLogic Server instances that are members of the cluster and that are not
already hosting a distributed topic are listed and are selected by default. To
exclude a server instance from hosting the distributed topic, clear the
corresponding check box.

b. Click Next to proceed to the next dialog.

c. Skip to Step 11 to select the JMS servers that are available on the selected
WebLogic Servers for creating distributed topic members.

10. If you selected None on the Cluster dialog in Step 8, select a single WebLogic
Server instance in the domain:

a. From the list box, select an individual server where you want to create a
distributed topic member.

b. Click Next to proceed to the next dialog.

11. All JMS servers that are deployed on the selected WebLogic Server instances,
and that are not already hosting a distributed topic, are listed and are selected by
default. To exclude a JMS server from hosting the distributed topic member, clear
the corresponding check box.

If there are no existing distributed topic members on the selected JMS servers,
one new JMSTopic will be created on each JMS server and added as a member
of the distributed topic.

12. Click Next to proceed to the final Auto Deploy dialog.

13. Click Apply to save your Auto Deploy selections.

14. Click the Configuration --> Members tab to view the topic members that were
automatically created for the new distributed topic.

9 Managing JMS

9-44 Administration Guide

Creating a Distributed Topic and Adding Existing Physical Topics as Members
Manually

For existing implementations of WebLogic JMS that require previously configured
destinations to be members of a distributed destination set, follow these steps to
configure a distributed topic and manually add your existing physical topics as
members:

1. Expand the JMS node and the Distributed Destinations node.

2. Click the Configure a new Distributed Topic link in the right pane. A
Configuration dialog shows the tabs associated with configuring a new
distributed topic.

3. Define the attributes in the General tab according to the following table.

4. Click Create to create the distributed topic.

5. On the Thresholds & Quotas tab, define the following attributes for all of the
distributed topic members:

" Thresholds and quotas for messages and bytes (maximum number and
high/low thresholds).

Table 9-11 Distributed Topic Attributes on the General Tab

Attribute Description

Name Uniquely identify the distributed topic within a WebLogic
Server domain.

JNDI Name Enter the name used to bind the distributed topic into the JNDI
namespace. Applications use the JNDI Name to look up the
distributed topic.

A distributed topic that does not have a JNDI Name can be
referenced by passing the Name of the distributed destination
to: javax.jms.TopicSession.createTopic().

Load Balancing Policy Define how producers will distribute their messages across the
members of a distributed topic. The valid values are
Round-Robin and Random as defined in “Configuring
Message Load Balancing” on page 9-38.

Configuring Distributed Destinations

Administration Guide 9-45

" Whether or not bytes paging and/or messages paging is enabled on the
distributed topic.

If a distributed topic member’s underlying physical topic already has a JMS
Template with configured thresholds and quotas, these attributes do not apply to
that topic member. For more information about these attributes, see “JMS Topic
-> Configuration -> Thresholds & Quotas” in the Administration Console Online
Help.

6. Click Apply to store new attribute values.

Note: If you want to automatically create topic members on JMS servers that are
part of a WebLogic Server cluster (for high availability) or on an single
WebLogic Server instance that is not part of a cluster, see “Creating a
Distributed Topic and Creating Members Automatically” on page 9-41.

7. On the Configuration -->Members tab, create distributed topic members for your
existing physical topics.

8. Click the Configure a new Distributed Topic Member link in the right pane. A
Configuration dialog shows the tabs associated with configuring a new
distributed topic member.

9. Define the attributes in the General tab according to the following table.

Table 9-12 Distributed Topic Member Attributes on the General Tab

Attribute Description

Name Uniquely identify the distributed topic member within a
WebLogic Server domain.

JMSTopic Select the underlying physical topic that is associated with the
distributed topic member.

Weight Define the weight (that is, a measure of ability to handle
message load) of the topic member with respect to other topic
members in the distributed destination.

The random distribution load-balancing algorithm uses the
weight assigned to the physical destinations to compute a
weighted distribution for the set of physical destinations. For
more information, see “Developing a WebLogic JMS
Application” in Programming WebLogic JMS.

http://e-docs.bea.com/wls/docs70/jms/implement.html#random_weight
http://e-docs.bea.com/wls/docs70/jms/implement.html#random_weight
http://e-docs.bea.com/wls/docs70/ConsoleHelp/domain_jmstopic_config_thresholds.html
http://e-docs.bea.com/wls/docs70/ConsoleHelp/domain_jmstopic_config_thresholds.html

9 Managing JMS

9-46 Administration Guide

10. Click Create to create the new distributed topic member. The new member is
added to the Distributed Topic table.

11. If necessary, repeat steps 8–10 to continue adding topic members to the
distributed topic.

Creating a Distributed Queue and Creating Members Automatically

Follow these steps to configure a distributed queue and automatically create its queue
members on JMS servers that are part of a WebLogic Server cluster (for high
availability) or on an single WebLogic Server instance that is not part of a cluster.

1. Expand the JMS node and the Distributed Destinations node.

2. Click the Configure a new Distributed Queue link in the right pane. A
Configuration dialog shows the tabs associated with configuring a new
distributed queue.

3. Define the attributes in the General tab according to the following table.

Table 9-13 Distributed Queue Attributes on the General Tab

Attribute Description

Name Uniquely identify the distributed queue within a WebLogic
Server domain.

JNDI Name Enter the name used to bind the distributed queue into the JNDI
namespace. Applications use the JNDI Name to look up the
distributed queue.

A distributed queue that does not have a JNDI Name can be
referenced by passing the Name of the distributed destination
to javax.jms.QueueSession.createQueue().

Load Balancing Policy Define how producers will distribute their messages across the
members of a distributed queue. The valid values are
Round-Robin and Random as defined in “Configuring
Message Load Balancing” on page 9-38.

Forward Delay Define the amount of time, in seconds, that a distributed queue
member with messages, but which has no consumers, will wait
before forwarding its messages to other queue members that do
have consumers.

Configuring Distributed Destinations

Administration Guide 9-47

4. Click Create to create the distributed queue.

5. On the Thresholds & Quotas tab, define the following attributes for all of the
distributed queue members:

" Thresholds and quotas for messages and bytes (maximum number and
high/low thresholds).

" Whether or not bytes paging and/or messages paging is enabled on the
distributed queue.

For more information about these attributes, see “JMS Queue -> Configuration
-> Thresholds & Quotas” in the Administration Console Online Help.

6. Click Apply to store new attribute values.

7. On the Auto Deploy tab, indicate the WebLogic Server instances where you want
the distributed queue members to be automatically created.

8. Click the Create members on the selected Servers (and JMS Servers) text link. A
dialog prompts you to select one of the following options:

" Select a cluster at which to target the distributed queue, and then click Next.

or

" Accept the None option to bypass this dialog so you can select an individual
server that is not in a cluster. (In this case, skip to Step 10).

9. If you selected a cluster, do the following to select WebLogic Server instances
within the cluster:

a. All servers that are members of the cluster, and which are not already hosting a
distributed queue, are listed and are selected by default. To exclude a server
from hosting the distributed queue, clear the corresponding check box.

b. Click Next to proceed to the next dialog.

c. Skip to Step 11 to select the JMS servers that are available on the selected
WebLogic Servers for creating distributed queue members.

10. If you selected None on the Cluster dialog in Step 8, select a single WebLogic
Server instance in the domain:

a. From the list box, select an individual server where you want to create the
distributed queue member.

http://e-docs.bea.com/wls/docs70/ConsoleHelp/domain_jmsqueue_config_thresholds.html
http://e-docs.bea.com/wls/docs70/ConsoleHelp/domain_jmsqueue_config_thresholds.html

9 Managing JMS

9-48 Administration Guide

b. Click Next to proceed to the next dialog.

11. All JMS servers that are deployed on the selected WebLogic Servers, and which
are not already hosting a distributed queue, are listed and are selected by default.
To exclude a JMS server from hosting the distributed queue member, clear the
corresponding check box.

If there are no existing distributed queue members on the selected JMS servers,
one new JMSQueue will be created on each JMS server and added as a member
of the distributed queue.

12. Click Next to proceed to the final Auto Deploy dialog.

13. Click Apply to save your Auto Deploy selections.

14. Click the Configuration --> Members tab to view the queue members that were
automatically created for the new distributed queue.

Creating a Distributed Queue and Adding Existing Physical Queues as Members
Manually

For existing implementations of WebLogic JMS that require previously configured
destinations to be members of a distributed destination set, follow these steps to
configure a distributed queue and manually add your existing physical queues as
members.

1. Expand the JMS node and the Distributed Destinations node.

2. Click the Configure a new Distributed Queue link in the right pane. A
Configuration dialog shows the tabs associated with configuring a new
distributed queue.

3. Define the attributes in the General tab according to the following table.

Table 9-14 Distributed Queue Attributes on the General Tab

Attribute Description

Name Uniquely identify the distributed queue within a WebLogic
Server domain.

Configuring Distributed Destinations

Administration Guide 9-49

4. Click Create to create the distributed queue.

5. On the Thresholds & Quotas tab, define the following attributes for all of the
distributed queue members:

" Thresholds and quotas for messages and bytes (maximum number and
high/low thresholds).

" Whether or not bytes paging and/or messages paging is enabled on the
distributed queue.

If a distributed queue member’s underlying physical queue already has a JMS
Template with configured thresholds and quotas, these attributes will not apply
to that queue member. For more information about these attributes, see “JMS
Queue -> Configuration -> Thresholds & Quotas” in the Administration Console
Online Help.

6. Click Apply to store new attribute values.

Note: If you want to automatically create queue members on JMS servers that are
part of a WebLogic Server cluster (for high availability) or on an single
WebLogic Server instance that is not part of a cluster, see “Creating a
Distributed Queue and Creating Members Automatically” on page 9-46.

JNDI Name Enter the name used to bind the distributed queue into the JNDI
namespace. Applications use the JNDI Name to look up the
distributed queue.

A distributed queue that does not have a JNDI Name can be
referenced by passing the Name of the distributed destination
to javax.jms.QueueSession.createQueue().

Load Balancing Policy Define how producers will distribute their messages across the
members of a distributed queue. The valid values are
Round-Robin and Random as defined in “Configuring
Message Load Balancing” on page 9-38.

Forward Delay Define the amount of time, in seconds, that a distributed queue
member with messages, but which has no consumers, will wait
before forwarding its messages to other queue members that do
have consumers.

Table 9-14 Distributed Queue Attributes on the General Tab

Attribute Description

http://e-docs.bea.com/wls/docs70/ConsoleHelp/domain_jmsqueue_config_thresholds.html
http://e-docs.bea.com/wls/docs70/ConsoleHelp/domain_jmsqueue_config_thresholds.html

9 Managing JMS

9-50 Administration Guide

7. Click the Configuration --> Members tab to define the queue members for the
distributed queue.

8. Click the Configure a new Distributed Queue Member text link in the right pane.
A Configuration dialog shows the tabs associated with configuring a new
distributed queue member.

9. Define the attributes on the General tab according to the following table.

10. Click Create to create the new distributed queue member. The new member is
added to the Distributed Queue table.

11. Repeat steps 8–10 to continue adding members to the distributed queue.

Monitoring Distributed Destinations

When monitoring distributed destinations, you may see proxy topic members or
system subscriptions, which are automatically created for the topic or queue members.
For more information see, “Monitoring Distributed Destination System Subscriptions
and Proxy Topic Members” on page 9-19.

Table 9-15 Distributed Queue Member Attributes on the General Tab

Attribute Description

Name Uniquely identify the distributed queue member within a
WebLogic Server domain.

JMSQueue Select the underlying physical queue that is associated with the
distributed queue member.

Weight Define the weight (that is, a measure of ability to handle
message load) of the queue member with respect to other
queue members in the distributed destination.

The random distribution load-balancing algorithm uses the
weight assigned to the physical destinations to compute a
weighted distribution for the set of physical destinations. For
more information, see “Developing a WebLogic JMS
Application” in Programming WebLogic JMS.

http://e-docs.bea.com/wls/docs70/jms/implement.html#random_weight
http://e-docs.bea.com/wls/docs70/jms/implement.html#random_weight

Recovering from a WebLogic Server Failure

Administration Guide 9-51

Recovering from a WebLogic Server Failure

The following sections describe how to terminate a JMS application gracefully if a
server fails and how to migrate JMS data after server failure.

Programming Considerations

You may want to program your JMS application to terminate gracefully in the event
of a WebLogic Server failure. For example:

Migrating JMS Data to a New Server

WebLogic JMS uses the migration framework implemented in the WebLogic Server
core, which allows WebLogic JMS to properly respond to migration requests and bring
a WebLogic JMS server online and offline in an orderly fashion. This includes both
scheduled migrations as well as migrations in response to a WebLogic Server failure.

Once properly configured, a JMS server and all of its destination members can migrate
to another WebLogic Server within a cluster.

You can recover JMS data from a failed WebLogic Server by starting a new server and
doing one or more of the tasks in the following table:

If a WebLogic Server Instance
Fails and...

Then...

You are connected to the failed
WebLogic Server instance

AJMSException is delivered to the connection exception listener. You
must restart the application once the server is restarted or replaced.

You are not connected to the failed
WebLogic Server instance

You must re-establish everything once the server is restarted or replaced.

A JMS Server is targeted on the failed
WebLogic Server instance

A ConsumerClosedException is delivered to the session exception
listener. You must re-establish any message consumers that have been
lost.

9 Managing JMS

9-52 Administration Guide

Note: JMS persistent stores can increase the amount of memory required during
initialization of WebLogic Server as the number of stored messages increases.
When rebooting WebLogic Server, if initialization fails due to insufficient
memory, increase the heap size of the Java Virtual Machine (JVM)
proportionally to the number of messages that are currently stored in the JMS
persistent store and try the reboot again.

If your JMS application uses. . . Perform the following task. . .

Persistent messaging—JDBC Store ! If the JDBC database store physically exists on the failed server,
migrate the database to a new server and ensure that the JDBC
connection pool URL attribute reflects the appropriate location
reference.

! If the JDBC database does not physically exist on the failed server,
access to the database has not been impacted, and no changes are
required.

Persistent messaging—File Store Migrate the file to the new server, ensuring that the pathname within the
WebLogic Server home directory is the same as it was on the original
server.

Transactions Migrate the transaction log to the new server by copying all files named
<servername>*.tlog. This can be accomplished by storing the
transaction log files on a dual-ported disk that can be mounted on either
machine, or by manually copying the files.

If the files are located in a different directory on the new server, update
that server’s TransactionLogFilePrefix server configuration
attribute before starting the new server.

Note: If migrating following a system crash, it is very important that
the transaction log files be available when the server is restarted
at its new location. Otherwise, transactions in the process of
being committed at the time of the crash might not be resolved
correctly, resulting in data inconsistencies.

All uncommitted transactions are rolled back.

Recovering from a WebLogic Server Failure

Administration Guide 9-53

For information about starting a new WebLogic Server, refer to “Starting and Stopping
WebLogic Servers” on page 2-1. For information about recovering a failed server,
refer to Recovering Failed Servers in the Configuring and Managing WebLogic
Domains guide.

For more information about migratable targets, see “Configuring WebLogic
Migratable Services” in Using WebLogic Server Clusters.

http://e-docs.bea.com/wls/docs70/admin_domain/failures.html
http://e-docs.bea.com/wls/docs70/cluster/index.html
http://e-docs.bea.com/wls/docs70/cluster/index.html

9 Managing JMS

9-54 Administration Guide

Administration Guide 10-1

CHAPTER

10 Using the WebLogic
Messaging Bridge

The following sections explain how to configure and manage a WebLogic Messaging
Bridge:

! What Is a Messaging Bridge?

! Configuring a Messaging Bridge

" Using the Bridge Adapters

" Configuring the Bridge Destinations

" Configuring a Messaging Bridge

! Bridge Interoperability Checklists

" Bridging Different WebLogic Server Versions and Different Domains

" Bridging to a Third-Party Messaging Provider

! Managing a Messaging Bridge

" Stopping and Restarting a Messaging Bridge

" Monitoring Messaging Bridges

" Configuring the Execute Thread Pool Size

10 Using the WebLogic Messaging Bridge

10-2 Administration Guide

What Is a Messaging Bridge?

The WebLogic Messaging Bridge allows you to configure a forwarding mechanism
between any two messaging products—thereby, providing interoperability between
separate implementations of WebLogic JMS or between WebLogic JMS and another
messaging product. You can use the WebLogic Messaging Bridge to integrate your
messaging applications between:

! Any two implementations of WebLogic JMS, including those from separate
releases of WebLogic Server.

! WebLogic JMS implementations that reside in separate WebLogic domains.

! WebLogic JMS with a third-party JMS product (for example, MQSeries).

! WebLogic JMS with non-JMS messaging products (only by using specialized
adapters that are not provided with WebLogic Server).

A messaging bridge consists of two destinations that are being bridged: a source
destination from which messages are received, and a target destination to which
messages are forwarded. For WebLogic JMS and third-party JMS products, a
messaging bridge communicates with source and target destinations using the resource
adapters provided with WebLogic Server. For non-JMS messaging products, a custom
adapter must be obtained from a third-party OEM vendor or by contacting BEA
Professional Services in order to access non-JMS source or target destinations.

Source and target bridge destinations can be either queues or topics. You can also
specify a quality of service (QOS), as well as message filters, transaction semantics,
and connection retry policies. Once a messaging bridge is configured, it is easily
managed from the Administration Console, including temporarily suspending bridge
traffic whenever necessary, tuning the execute thread pool size to suit your
implementation, and monitoring the status of all your configured bridges.

Configuring a Messaging Bridge

Administration Guide 10-3

Configuring a Messaging Bridge

Before you can configure a messaging bridge, you need to deploy bridge adapters and
configure the source and target destinations.

Using the Bridge Adapters

A messaging bridge uses resource adapters to communicate with the configured source
and target JMS destinations. You need to associate both the source and target JMS
destinations with a supported adapter in order for the bridge to communicate with
them. The JNDI name for the adapter is configured as part of the adapter’s deployment
descriptor.

Note: Although WebLogic JMS includes a “General Bridge Destination” framework
for accessing non-JMS messaging products, WebLogic Server does not
provide supported adapters for such products. Therefore, you must obtain a
custom adapter from a third-party OEM vendor and consult their
documentation for configuration instructions. You can also contact BEA
Professional Services for information about obtaining a custom adapter.

10 Using the WebLogic Messaging Bridge

10-4 Administration Guide

The supported adapters are located in the WL_HOME\server\lib directory and are
described in the following table.

Table 10-1 Messaging Bridge Adapters and JNDI Names

Adapter JNDI Name Description

jms-xa-adp.rar eis.jms.WLSConnection
FactoryJNDIXA

Provides transaction semantics via the
XAResource. Used when the required QOS
is Exactly-once. This envelops a received
message and sends it within a user
transaction (XA/JTA). The following
requirements are necessary in order to use
this adapter:

! Any WebLogic Server implementation
being bridged must be version 6.1 or
later.

! The source and target JMS connection
factories must be configured to use the
XAConnectionFactory.

Note: Before deploying this adapter, refer
to the “Bridge Interoperability
Checklists” on page 10-17 for
specific transactional configuration
requirements and guidelines.

jms-notran-adp.rar eis.jms.WLSConnection
FactoryJNDINoTX

Provides no transaction semantics. Used
when the required QOS is Atmost-once or
Duplicate-okay. If the requested QOS is
Atmost-once, the adapter uses the
AUTO_ACKNOWLEDGE mode. If the
requested QOS is Duplicate-okay,
CLIENT_ACKNOWLEDGE is used.

Note: For more information about the
acknowledge modes used in
non-transacted sessions, see
“WebLogic JMS
Fundamentals” in
Programming WebLogic JMS.

http://e-docs.bea.com/wls/docs70/jms/fund.html
http://e-docs.bea.com/wls/docs70/jms/fund.html

Configuring a Messaging Bridge

Administration Guide 10-5

You will specify the appropriate adapter by its JNDI name when you configure each
source and target bridge destination on the Administration Console.

Deploying the Bridge Adapters

Before you configure the bridge destinations, deploy the appropriate bridge adapter’s
RAR file using either of the following methods:

! On the Administration Console — Select the Domain in which you will be
deploying the adapters in, and then select Deployments →Applications option,
and then select the appropriate RAR adapter file.

! Using the Auto Deployment feature — This method is used for quickly
deploying an application on the administration server. By copying the adapters to
the local \applications directory of the administration server, they will be
automatically deployed if the server is already running. Otherwise, they will be
deployed the next time you start WebLogic Server. The auto deployment method
is used only in a single-server development environment for testing an
application, and is not recommended for use in production mode.

For step-by-step instructions on deployment tasks using the Administration Console,
or for more information on using the auto-deployment feature, see “WebLogic Server
Deployment” in Developing WebLogic Server Applications.

jms-notran-adp51.rar eis.jms.WLS51Connection
FactoryJNDINoTX

Provides interoperability when either the
source or target destination is WebLogic
Server 5.1. This adapter provides no
transaction semantics; therefore, it only
supports a QOS of Atmost-once or
Duplicate-okay. If the requested QOS is
Atmost-once, the adapter uses the
AUTO_ACKNOWLEDGE mode. If the
requested QOS is Duplicate-okay,
CLIENT_ACKNOWLEDGE is used.

Table 10-1 Messaging Bridge Adapters and JNDI Names

Adapter JNDI Name Description

http://e-docs.bea.com/wls/docs70/programming/deploying.html#deploy_tools_procedures
http://e-docs.bea.com/wls/docs70/programming/deploying.html#deploy_tools_procedures

10 Using the WebLogic Messaging Bridge

10-6 Administration Guide

Configuring the Bridge Destinations

Each messaging bridge consists of two destinations that are being bridged: a source
destination from which messages are received, and a target destination to which
messages are sent. Depending on the messaging products that need to be bridged, there
are two types of WebLogic Messaging Bridge destinations:

! JMS Bridge Destination — For JMS messaging products, whether it is a
WebLogic JMS implementation or a third-party JMS provider, you need to
configure a JMSBridgeDestination instance for each source and target JMS
destination to be mapped by a messaging bridge.

! General Bridge Destination — For non-JMS messaging products, you need to
configure a generic BridgeDestination instance for each source and target
destination to be mapped by a messaging bridge.

Before starting the procedure in this section, refer to the “Bridge Interoperability
Checklists” on page 10-17 for specific configuration requirements and guidelines.

Configuring a JMS Bridge Destination

A JMSBridgeDestination instance defines a unique name for the destination within
a WebLogic domain, the name of the adapter used to communicate with the specified
destination, property information to pass to the adapter (Connection URL, Connection
Factory JNDI Name, etc.), and, optionally, a user name and password.

You will designate the source and target JMS Bridge Destinations in “Configuring a
Messaging Bridge” on page 10-11.

To configure a JMS bridge destination, follow these steps.

1. In the Administration Console, click the Messaging Bridge node.

2. Click the JMS Bridge Destinations node to open the Bridge Destinations tab in
the right pane.

3. In the right pane, click the Configure a new JMS Bridge Destination link. A
Configuration dialog shows the tabs associated with configuring a new JMS
bridge destination.

4. Define the attributes in the Configuration tab.

The following table describes the attributes you set on the Configuration tab.

Configuring a Messaging Bridge

Administration Guide 10-7

Table 10-2 JMS Bridge Destination Attributes on the Configuration Tab

Attribute Description

Name A JMS bridge destination name that is unique across a
WebLogic Server domain. For the source destination, you may
want to change the default name to “JMS Source Bridge
Destination”. For the target, use something like “JMS Target
Bridge Destination”. Once configured, these names are listed
as options in the Source Destination and Target Destination
attributes on the Bridges →General tab.

Adapter JNDI Name The JNDI name of the adapter used to communicate with the
specified destination. For more information on which adapter
name to enter, see “Messaging Bridge Adapters and JNDI
Names” on page 10-4.

Adapter Classpath When connecting to a destination that is running on WebLogic
Server 6.0 or earlier, the bridge destination must supply a
CLASSPATH that indicates the locations of the classes for the
earlier WebLogic Server implementation.

When connecting to a third-party JMS provider, the bridge
destination must supply the provider’s CLASSPATH in the
WebLogic Server CLASSPATH.

Connection URL The URL of the JNDI provider used to look up the connection
factory and destination.

Initial Context Factory The factory used to get the JNDI context.

Connection Factory
JNDI Name

The JMS connection factory used to create a connection.

Note: In order to use the Exactly-once QOS, the connection
factory has to be a XAConnection Factory. For more
information about connection factory and QOS
requirements, see “Messaging Bridge Attributes on
the General Tab” on page 10-11.

Destination JNDI Name The JNDI name of the JMS destination.

Destination Type Select either Queue or Topic.

10 Using the WebLogic Messaging Bridge

10-8 Administration Guide

5. Click Create to create the JMS bridge destination.

6. When you finish defining attributes for a source JMS bridge destination, repeat
these steps to configure a target JMS bridge destination, or vice versa.

Configuring a General Bridge Destination

A general BridgeDestination instance defines a unique name for the destination
within the WebLogic domain, the name of the adapter used to communicate with the
specified destination, a list of properties to pass to the adapter, and, optionally, a user
name and password.

Note: Although WebLogic JMS includes a “General Bridge Destination” framework
for accessing non-JMS messaging products, WebLogic Server does not
provide supported adapters for such products. Therefore, you must obtain a
custom adapter from a third-party OEM vendor and consult their
documentation for configuration instructions. You can also contact BEA
Professional Services for information about obtaining a custom adapter.

You will designate the source and target general Bridge Destinations in “Configuring
a Messaging Bridge” on page 10-11.

To configure a general bridge destination, follow these steps:

1. In the Administration Console, click the Messaging Bridge node.

2. Click the General Bridge Destinations node to open the Bridge Destinations tab
in the right pane.

User Name and
Password

The user name and password that the messaging bridge will
give to the bridge adapter.

Note: All operations done to the specified destination are
done using that user name and password. Therefore,
the User Name/Password for the source and target
destinations must have permission to access the
underlying JMS destinations in order for the
messaging bridge to work.

Table 10-2 JMS Bridge Destination Attributes on the Configuration Tab

Attribute Description

Configuring a Messaging Bridge

Administration Guide 10-9

3. In the right pane, click the Configure a new General Bridge Destination link. A
Configuration dialog shows the tabs associated with configuring a new general
bridge destination.

4. Define the attributes in the Configuration tab.

The following table describes the attributes you set on the Configuration tab.

Table 10-3 General Bridge Destination Attributes on the Configuration Tab

Attribute Description

Name A bridge destination name that is unique across a WebLogic
domain. For the source destination, you may want to change the
default name to “Source Bridge Destination”. For the target,
use something like “Target Bridge Destination”. Once
configured, these names are listed as options in the Source
Destination and Target Destination attributes on the Bridges →
General tab.

Adapter JNDI Name A bridge destination must supply the JNDI name of the adapter
used to communicate with the specified destination.

WebLogic Server does not provide adapters for non-JMS
messaging products. Therefore, you must use a specialized
adapter from a third-party OEM vendor, or contact BEA
Professional Services to obtain a custom adapter.

Adapter Classpath Defines the CLASSPATH of the bridge destination. This is
attribute is mainly used to connect to a destination running on
WebLogic Server 6.0 or earlier.

When connecting to a third-party product, you must supply the
product’s CLASSPATH in the WebLogic Server CLASSPATH.

10 Using the WebLogic Messaging Bridge

10-10 Administration Guide

5. Click Create to create the general bridge destination.

6. When you finish defining attributes for a source general bridge destination, repeat
these steps to configure a target general bridge destination, or vice versa.

Properties Specifies all the properties defined for a bridge destination.
Each property must be separated by a semicolon (for example,
DestinationJNDIName=myTopic;DestinationType
=topic;).

For non-JMS messaging products that use adapters provided by
a third-party OEM vendor, you should consult the vendor’s
documentation for property configuration instructions.

The following properties are required for all JMS
implementations:

ConnectionURL= URL used to establish a connection to the
destination.

InitialContextFactory= Factory used to get the JNDI
context.

ConnectionFactoryJNDIName= JMS connection factory
used to create a connection.

DestinationJNDIName= JNDI name of the JMS
destination.

DestinationType= Queue or topic.

User Name and
Password

The user name that the messaging bridge will give to the bridge
adapter.

Note: All operations done to the specified destination are
done using this user name and password. Therefore,
the User Name/Password for the source and target
bridge destinations must have permission to access
the underlying source and target destinations in order
for the messaging bridge to work.

Table 10-3 General Bridge Destination Attributes on the Configuration Tab

Attribute Description

Configuring a Messaging Bridge

Administration Guide 10-11

Configuring a Messaging Bridge

A messaging bridge communicates with the configured source and target destinations.
For each mapping of a source destination to a target destination, whether it is another
WebLogic JMS implementation, a third-party JMS provider, or another non-JMS
messaging product, you must configure a MessagingBridge instance via the
Administration Console. Each MessagingBridge instance defines the source and
target destination for the mapping, a message filtering selector, a QOS, transaction
semantics, and various reconnection parameters.

Before starting the procedure in this section, refer to the “Bridge Interoperability
Checklists” on page 10-17 for specific configuration requirements and guidelines.

To configure a messaging bridge, follow these steps:

1. In the Administration Console, click the Messaging Bridge node.

2. Click the Bridges node to open the Bridges tab in the right pane.

3. Click the Configure a new Messaging Bridge link in the right pane. A
Configuration dialog shows the tabs associated with configuring a new
messaging bridge.

4. Define the attributes in the General tab.

The following table describes the attributes you set on the General tab.

Table 10-4 Messaging Bridge Attributes on the General Tab

Attribute Description

Name Enter a name for the messaging bridge that is unique across a
WebLogic domain.

Source Destination Select the source destination from which messages are received
by the messaging bridge. For example, for a JMS messaging
bridge, you should select the “JMS Source Bridge Destination”
name that you created on the JMS Bridge Destination →
Configuration tab.

10 Using the WebLogic Messaging Bridge

10-12 Administration Guide

Target Destination Select the target destination to which messages are sent from
the messaging bridge. For example, for a JMS messaging
bridge, you should select the “JMS Target Bridge Destination”
name that you created on the JMS Bridge Destination →
Configuration tab.

Selector Allows you to filter the messages that are sent across the
messaging bridge. Only messages that match the selection
criteria are sent across the messaging bridge. For queues,
messages that do not match the selection criteria are left behind
and accumulate in the queue. For topics, messages that do not
match the connection criteria are dropped.

For more information on using selectors to filter messages, see
“Developing a WebLogic JMS Application” in Programming
WebLogic JMS.

Quality Of Service (QOS) Select a QOS guarantee for forwarding a message across a
messaging bridge. The valid qualities of service are:

Exactly-once—Each message will be sent exactly once. This is
the highest quality of service. In order to use this QOS:

! Any WebLogic Server implementation must be version 6.1
or later.

! The source and target JMS connection factories must be
configured to use the XAConnectionFactory.

! The transaction jms-xa-adp.rar adapter must be
deployed and identified in the Adapter JNDI Name
attribute as
“eis.jms.WLSConnectionFactoryJNDIXA” for
both the source and target destinations.

Atmost-once—Each message is sent at most one time. Some
messages may not be delivered to the target destination.

Duplicate-okay—Each message is sent at least one time.
Duplicate messages can be delivered to the target destination.

Table 10-4 Messaging Bridge Attributes on the General Tab

Attribute Description

http://e-docs.bea.com/wls/docs70/jms/implement.html

Configuring a Messaging Bridge

Administration Guide 10-13

QOS Degradation Allowed When selected, the messaging bridge automatically degrades
the requested QOS when the configured one is not available. If
this occurs, a message is delivered to the WebLogic startup
window (or log file). If this option is not selected (false), and
the messaging bridge cannot satisfy the requested QOS, it will
result in an error and the messaging bridge will not start.

Maximum Idle Time
(seconds)

For bridges running in asynchronous mode, this is the
maximum amount of time, in seconds, the messaging bridge
sits idle before checking the health of its connections. For
bridges running in synchronous mode, this dictates the amount
of time the messaging bridge can block on a receive call if no
transaction is involved.

Asynchronous Mode
Enabled

Defines whether a messaging bridge works in asynchronous
mode. Messaging bridges that work in asynchronous mode
(true) are driven by the source destination. The messaging
bridge listens for messages and forwards them as they arrive.
When the value is false, the bridge works in synchronous mode
even if the source supports asynchronous receiving.

Note: For a messaging bridge with a QOS of Exactly-once to
work in asynchronous mode, the source destination
has to support the MDBTransaction interface
described in the weblogic.jms.extensions
Javadoc. Otherwise, the bridge automatically
switches to synchronous mode if it detects that
MDBTransactions are not supported by the source
destination. For more information about
MDBTransactions, see “Using Message-Driven
Beans” in Programming WebLogic Enterpise Java
Beans.

Table 10-4 Messaging Bridge Attributes on the General Tab

Attribute Description

http://e-docs.bea.com/wls/docs70/javadocs/weblogic/jms/extensions/package-summary.html
http://e-docs.bea.com/wls/docs70/ejb/message_beans.html
http://e-docs.bea.com/wls/docs70/ejb/message_beans.html

10 Using the WebLogic Messaging Bridge

10-14 Administration Guide

5. Click Create to create the messaging bridge.

6. On the Connection Retry tab, define the bridge’s reconnection time intervals
according to the following table.

The source and target destinations for a messaging bridge will not always be
available. As such, the messaging bridge must be able to reconnect to the
destination at some periodic interval. These attributes govern the time between
reconnection attempts.

Durability Enabled This attribute is used only for JMS topics or for destinations
with similar characteristics as a JMS topic. By enabling
durability, a messaging bridge creates a durable subscription
for the source destination. This allows the source JMS
implementation to save messages that are sent to it when the
bridge is not running. The bridge will then forward these
messages to the target destination once it is restarted. If this
attribute is not selected, messages that are sent to the source
JMS topic while the bridge is down cannot be forwarded to the
target destination.

Note: If a bridge must be taken permanently offline, you
must delete any durable subscriptions that use the
bridge. For information on deleting durable
subscribers, see “Deleting Durable Subscriptions” in
Programming WebLogic JMS.

Started Defines the initial state of the messaging bridge (that is, the
state when the bridge boots). The default value is on (true). By
clearing this check box (false), you can stop the messaging
bridge. Conversely, reselecting the check box restarts the
bridge.

Note: This does not indicate the run-time state of the bridge.
For information on monitoring a bridge’s state, see
“Monitoring Messaging Bridges” on page 10-21.

Table 10-4 Messaging Bridge Attributes on the General Tab

Attribute Description

http://e-docs.bea.com/wls/docs70/jms/implement.html#durable_subscribe_delete

Configuring a Messaging Bridge

Administration Guide 10-15

7. Click Apply to store new attribute values.

8. On the Transactions tab, define the transaction attributes for the messaging bridge
according to the following table.

Table 10-5 Messaging Bridge Attributes on the Connection Retry Tab

Attribute Description

Minimum Delay
(seconds)

The minimum delay, in seconds, between reconnection
attempts. When a messaging bridge boots and cannot connect
to a destination, or a connection is lost and the messaging
bridge is first attempting to reconnect, it attempts to reconnect
in this specified amount of seconds.

Incremental Delay
(seconds)

The delay increment, in seconds, between reconnection
attempts. Each time a bridge fails to reconnect, it adds this
amount of seconds to the delay before making its next
reconnection attempt.

Maximum Delay
(seconds)

The maximum delay, in seconds, between reconnection
attempts. Each reconnection attempt is delayed further by the
Incremental Delay amount of seconds, but it is never delayed
by more than this value.

Table 10-6 Messaging Bridge Attributes on the Transactions Tab

Attribute Description

Transaction Timeout Defines the number of seconds the transaction manager waits
for each transaction before timing it out. Transaction timeouts
are used when a bridge’s quality of service requires two-phase
transactions.

Batch Size Defines the number of messages that the messaging bridge
transfers within one transaction. Batch Size only applies to
bridges that work in synchronous mode and whose quality of
service require two-phase transactions.

10 Using the WebLogic Messaging Bridge

10-16 Administration Guide

9. Click Apply to store new attribute values.

10. On the Targets tab, assign WebLogic Server instances to associate with the
messaging bridge according to the following table.

11. Click Apply to store new attribute values.

Batch Interval
(milliseconds)

Defines the maximum time, in milliseconds, that the bridge
waits before sending a batch of messages in one transaction,
regardless of whether the Batch Size amount has been reached
or not. The default value of -1 indicates that the bridge will wait
until the number of messages reaches the Batch Size before it
completes a transaction.

Batch Interval only applies to bridges that work in synchronous
mode and whose quality of service require two-phase
transactions.

Table 10-7 Messaging Bridge Attributes on the Targets Tab

Attribute Description

Migratable Targets Defines a WebLogic Server migratable target where the
messaging bridge will be deployed. When WebLogic Server is
first booted, the messaging bridge initially is available only on
the user-preferred server. Afterwards, the bridge can be
migrated to another server in the migratable target using either
the Administration Console or the command-line tool.

For more information, see “Migration for Pinned Services”
in Using WebLogic Server Clusters.

Clusters Defines a WebLogic Server cluster where the messaging bridge
will be deployed. The messaging bridge will be available on all
servers in the selected cluster.

Servers Defines the WebLogic Servers where the messaging bridge will
be deployed. The messaging bridge will be available on all the
selected WebLogic Servers.

Table 10-6 Messaging Bridge Attributes on the Transactions Tab

Attribute Description

http://e-docs.bea.com/wls/docs70/cluster/failover.html#1027954

Bridge Interoperability Checklists

Administration Guide 10-17

Bridge Interoperability Checklists

Depending on your messaging product implementation, consider the following
configuration requirements and guidelines.

Bridging Different WebLogic Server Versions and
Different Domains

The following interoperability issues apply when bridging implementations of
WebLogic JMS in different release of WebLogic Server and bridging different
WebLogic JMS implementation in different domains.

Note: If one configuration of WebLogic Server is version 6.0 or earlier, then the
transactional Exactly-once quality of service is not supported. For more
information on the messaging bridge QOS options, see “Configuring a
Messaging Bridge” on page 10-11.

Bridging from a WebLogic Server 7.0 Domain to a Version 6.1 Domain or to
Another Remote 7.0 Domain

Use these guidelines when configuring a messaging bridge that provides
communication between a WebLogic Server 7.0 domain with a version 6.1 domain, or
when bridging to another remote version 7.0 domain.

Transaction Checklist

! Make sure that the XA connection factory is enabled for both domains by
selecting the User Transactions Enabled and XAConnection Factory Enabled
check boxes on the Connection Factories →Configuration →Transactions tab.

! If you are using a JMS file store for persistent messages, make sure the file store
name is unique across WebLogic domains.

! Deploy the jms-xa-adp.rar transaction bridge adapter, as described in “Deploying
the Bridge Adapters” on page 10-5.

10 Using the WebLogic Messaging Bridge

10-18 Administration Guide

! When configuring the bridge destinations, as described in “Configuring a JMS
Bridge Destination” on page 10-6, make sure to identify the jms-xa-adp.rar

transaction adapter’s JNDI name, eis.jms.WLSConnectionFactoryJNDIXA, in
the Adapter JNDI Name attribute for the source and target destinations.

! When configuring the Messaging Bridge, select a Quality Of Service of Exactly-once on
the Messaging Bridge →Configuration →General tab.

Security Checklist

! Configure the WebLogic Server 7.0 domain security interoperability as follows:

a. On the Administration Console, first select the Domain where you are working,
and then on the Security →Advanced tab, clear the Enabled Generated
Credential check box.

b. Also on the Security →Advanced tab, click the Credential: Change attribute to
specify a password for the domain. In version 6.1, the Credential attribute was
the password of the system user. In version 7.0, the Credential can be any
string. For the two domains to interoperate, the string must be the same for both
domains.

Note: For more information about version 7.0 domain interoperability security,
see “Enabling Trust Between WebLogic Domains” in Managing WebLogic
Security. For more information about version 6.1 domain interoperability
security, see “Managing Security” in the Administration Guide.

! Make sure that the system user is configured with the same password in all
domains, and that system is a member of the Administrators group in version
7.0.

! Make sure that the WebLogic Server 7.0 instance that hosts the messaging
bridge has a different name than the WebLogic Server 6.1 instance or the remote
WebLogic Server 7.0 instance that the bridge is communicating with.

Bridging from WebLogic Server 7.0 to a Version 6.0 Domain

When configuring a messaging bridge involves interoperability between WebLogic
Server 7.0 and version 6.0, you must configure the following on the Weblogic Server
7.0 implementation that the bridge is running on:

http://e-docs.bea.com/wls/docs70/secmanage/domain.html#domain_interop
http://edocs.beasys.com/wls/docs61/adminguide/cnfgsec.html

Bridge Interoperability Checklists

Administration Guide 10-19

! On the JMS Bridge Destination →Configuration tab, the Adapter Classpath must
indicate the location of the classes for the earlier WebLogic Server 6.0 implementation.

For example, if your WebLogic Server 6.0 GA implementation is installed in a
directory named WL60_HOME, then set the Adapter Classpath as follows:

WL60_HOME\lib\weblogic60.jar

Note: For more information about interoperability security, see “Using
Compatibility Security” in Managing WebLogic Security.

Bridging from WebLogic Server 7.0 to a Version 5.1 Domain

When configuring a messaging bridge involves interoperability between WebLogic
Server 7.0 and version 5.1, you must configure the following on the Weblogic Server
7.0 implementation that the bridge is running on:

! The jms51-interop.jar file in the WL_HOME\server\lib directory must be
in the CLASSPATH of the WebLogic Server 7.0 implementation.

! The version 5.1 adapter (jms-notran-adp51.rar) must be deployed as
described in “Deploying the Bridge Adapters” on page 10-5.

! On the JMS Bridge Destination →Configuration tab, the Adapter JNDI Name
attribute must set to the 5.1 adapter’s JNDI name:
eis.jms.WLS51ConnectionFactoryJNDINoTX.

! On the JMS Bridge Destination →Configuration tab, the Adapter Classpath
attribute must indicate the location of the classes for the earlier WebLogic Server
5.1 implementation, as well as the location of the jms51-interop.jar file for
the 7.0 implementation.

For example, if your WebLogic Server 5.1 GA implementation is installed in a
directory named WL51_HOME and your WebLogic Server 7.0 implementation is
installed in WL70_HOME, then set the Adapter Classpath as follows:

WL51_HOME\classes;WL70_HOME\server\lib\jms51-interop.jar

Note: For more information about interoperability security, see “Using
Compatibility Security” in Managing WebLogic Security.

http://e-docs.bea.com/wls/docs70/secmanage/security6.html
http://e-docs.bea.com/wls/docs70/secmanage/security6.html
http://e-docs.bea.com/wls/docs70/secmanage/security6.html
http://e-docs.bea.com/wls/docs70/secmanage/security6.html

10 Using the WebLogic Messaging Bridge

10-20 Administration Guide

Bridging to a Third-Party Messaging Provider

When configuring a messaging bridge involves interoperability with a third-party
messaging provider, you must configure the following:

! Before starting WebLogic Server:

" Supply the provider’s CLASSPATH in the WebLogic Server CLASSPATH.

" Include the PATH of any native code required by the provider’s client-side
libraries in the WebLogic Server system PATH. (This variable may vary
depending on your operating system.)

! In the JMSBridgeDestination instance for the third-party messaging product
being bridged, provide vendor-specific information in the following attributes:

" Connection URL

" Initial Context Factory

" Connection Factory JNDI Name

" Destination JNDI Name

For more information on configuring the remaining attributes for a JMS Bridge
Destination, see “Configuring a JMS Bridge Destination” on page 10-6.

Managing a Messaging Bridge

Once a messaging bridge is up and running, it can managed from the Administration
Console.

! Stopping and Restarting a Messaging Bridge

! Monitoring Messaging Bridges

! Configuring the Execute Thread Pool Size

Managing a Messaging Bridge

Administration Guide 10-21

Stopping and Restarting a Messaging Bridge

To temporarily suspend and restart an active messaging bridge:

1. Expand the Messaging Bridge node and the Bridges node.

2. Select the messaging bridge instance that you want to stop.

3. On the Configuration General tab, clear the Started check box to stop the bridge.

4. To restart the bridge, select the Started check box.

Monitoring Messaging Bridges

You can monitor the status of all the messaging bridges in your domain from the
Administration Console:

1. Expand the Servers node and select the server instance where the messaging
bridges are configured.

2. A dialog displays in the right pane showing the tabs associated with the selected
server instance.

3. Select the Services tab.

4. Select the Bridge tab.

5. Click the Monitoring all Messaging Bridge Runtimes text link to display the
monitoring data.

6. A table displays showing all the messaging bridge instances for the server and
their status (either as running or not running).

10 Using the WebLogic Messaging Bridge

10-22 Administration Guide

Configuring the Execute Thread Pool Size

You can configure the default execute thread pool size for your messaging bridges
from the Administration Console. For example, you may want to increase the default
size to reduce competition from the WebLogic Server default thread pool. Entering a
value of -1 disables this thread pool and forces a messaging bridge to use the
WebLogic Server default thread pool.

1. Expand the Servers node.

2. Select the server instance where the messaging bridge is configured. A dialog
displays in the right pane showing the tabs associated with the selected server
instance.

3. Select the Services tab.

4. Select the Bridge tab.

5. Enter a new value in the Messaging Bridge Thread Pool Size field.

6. Click Apply to save your changes.

For more information about tuning execute threads, see “Tuning WebLogic Server
Applications” in the Performance and Tuning Guide.

http://e-docs.bea.com/wls/docs70/perform/AppTuning.html
http://e-docs.bea.com/wls/docs70/perform/AppTuning.html

Administration Guide 11-1

CHAPTER

11 Managing JNDI

The following sections describe how to manage JNDI:

! “Overview of JNDI Management” on page 11-1

! “Viewing the JNDI Tree” on page 11-2

! “Loading Objects in the JNDI Tree” on page 11-2

Overview of JNDI Management

You use the Administration Console to manage JNDI. The JNDI API enables
applications to look up objects—such as Data Sources, EJBs, JMS, and
MailSessions—by name. The JNDI tree is represented by the left pane in the
Administration Console.

For additional information, see Programming WebLogic JNDI at
http://e-docs.bea.com/wls/docs70/jndi/index.html.

What Do JNDI and Naming Services Do?

JNDI provides a common-denominator interface to many existing naming services,
such as LDAP (Lightweight Directory Access Protocol) and DNS (Domain Name
System). These naming services maintain a set of bindings, which relate names to
objects and provide the ability to look up objects by name. JNDI allows the
components in distributed applications to locate each other.

http://e-docs.bea.com/wls/docs70/jndi/index.html

11 Managing JNDI

11-2 Administration Guide

Viewing the JNDI Tree

To view the objects in the WebLogic Server JNDI tree for a specific server, do the
following:

1. Right-click the server node in the left pane. This displays a pop-up menu.

2. Select JNDI Tree. The JNDI tree for this server displays in the right pane.

Loading Objects in the JNDI Tree

Using the Administration Console, you load WebLogic Server J2EE services and
components, such as RMI, JMS, EJBs, and JDBC Data Sources, in the JNDI tree.

To load an object in the JNDI tree, choose a name under which you want the object to
appear in the JNDI tree. Then enter that name in the JNDI Name attribute field when
you create the object. When the object is loaded, JNDI provides a path to the object.

To verify if an object has been loaded, see “Viewing the JNDI Tree”.

For more information on configuring objects, see Table 11-1 Objects in JNDI Tree.

Table 11-1 Objects In JNDI Tree

Service Bound Object w/Link to Online Help

EJB EJB Deployment Descriptor Editor

JDBC DataSource JDBC Data Source and JDBC Transaction (Tx) Data
Source

JMS Connection Factory JMS Connection Factories

Web Services Web Application Deployment Descriptor Editor

Mail MailSession

Deployment Descriptors BEA WebLogic J2EE Connector Architecture Attribute
Descriptions

http://e-docs.bea.com/wls/docs70/ConsoleHelp/ejb_dde.html
http://e-docs.bea.com/wls/docs70/ConsoleHelp/domain_jdbcdatasource_config.html
http://e-docs.bea.com/wls/docs70/ConsoleHelp/domain_jdbctxdatasource_config.html
http://e-docs.bea.com/wls/docs70/ConsoleHelp/domain_jdbctxdatasource_config.html
http://e-docs.bea.com/wls/docs70/ConsoleHelp/domain_jmsconnectionfactory_config_general.html
http://e-docs.bea.com/wls/docs70/ConsoleHelp/web_application_dde.html
http://e-docs.bea.com/wls/docs70/ConsoleHelp/domain_mailsession_config.html
http://e-docs.bea.com/wls/docs70/ConsoleHelp/connector_ra_config.html

Administration Guide 12-1

CHAPTER

12 Managing the
WebLogic J2EE
Connector Architecture

Based on the Sun Microsystems J2EE Connector Specification, Version 1.0, Proposed
Final Draft 2, the WebLogic J2EE Connector Architecture integrates the J2EE
Platform with one or more heterogeneous Enterprise Information Systems (EIS). The
following sections explain how to manage and administer the WebLogic J2EE
Connector Architecture:

! Overview of WebLogic J2EE Connectors

! Configuring Resource Adapters (Connectors) for Deployment

! Deploying Resource Adapters (Connectors)

! Viewing Deployed Resource Adapters (Connectors)

! Undeploying Deployed Resource Adapters (Connectors)

! Updating Deployed Resource Adapters (Connectors)

! Monitoring Connections

! Deleting a Connector

! Editing Resource Adapter Deployment Descriptors

For more information on BEA WebLogic J2EE Connectors, refer to Programming
WebLogic J2EE Connectors.

http://e-docs.bea.com/wls/docs70/jconnector/index.html
http://e-docs.bea.com/wls/docs70/jconnector/index.html

12 Managing the WebLogic J2EE Connector Architecture

12-2 Administration Guide

Overview of WebLogic J2EE Connectors

BEA WebLogic Server continues to build upon the implementation of the Sun
Microsystems J2EE Platform Specification, Version 1.3. The J2EE Connector
Architecture adds simplified Enterprise Information System (EIS) integration to the
J2EE platform. The goal is to leverage the strengths of the J2EE platform—including
component models, and transaction and security infrastructures—to address the
challenges of EIS integration.

The J2EE Connector Architecture provides a Java solution to the problem of
connectivity between the multitude of application servers and EISes. By using the
J2EE Connector Architecture, it is no longer necessary for EIS vendors to customize
their product for each application server. An application server vendor (such as BEA
WebLogic Server) that conforms to the J2EE Connector Architecture also does not
need to add custom code whenever it wants to extend its application server to support
connectivity to a new EIS.

The J2EE Connector Architecture enables an EIS vendor to provide a standard
resource adapter (also referred to as a connector) for its EIS; the resource adapter plugs
into an application server such as WebLogic Server and provides the underlying
infrastructure for the integration between an EIS and the application server.

An application server vendor (BEA WebLogic Server) extends its system only once to
support the J2EE Connector Architecture and is then assured of connectivity to
multiple EISes. Likewise, an EIS vendor provides one standard resource adapter and
it has the capability to plug in to any application server that supports the J2EE
Connector Architecture.

Configuring Resource Adapters (Connectors)
for Deployment

To configure a Connector using the WebLogic Server Administration Console:

1. Start the WebLogic Server Administration Console.

Configuring Resource Adapters (Connectors) for Deployment

Administration Guide 12-3

2. Select the Domain in which you will be working.

3. In the left pane of the Console, click Deployments.

4. In the left pane of the Console, click Connectors. A table is displayed in the right
pane of the Console showing all the deployed Connectors.

5. Select the Configure a new Connector option.

6. Locate the archive file (RAR) to configure.

Note: You can also configure an exploded application or component directory.
Note that WebLogic Server deploys all components it finds in and below
the specified directory.

7. Click [select] to the left of a directory or file to choose it and proceed to the next
step.

8. Select a Target Server from among Available Servers.

9. Enter a name for the Connector in the provided field.

10. Click Configure and Deploy. The Console will display the Deploy panel, which
lists deployment status and deployment activities for the Connector.

11. Using the available tabs, enter the following information:

" Configuration—Edit the staging mode and enter the deployment order.

" Targets—Indicate the Targets-Server for this configured Connector by
moving the server from the Available list to the Chosen list.

" Deploy—Deploy the Connector to all or selected targets or undeploy it from
all or selected targets.

" Monitoring—Enable session monitoring for the Connector.

" Notes—Enter notes related to the Connector.

12 Managing the WebLogic J2EE Connector Architecture

12-4 Administration Guide

Configuring a Connector to Display a
Connection Profile

The Administration Console can display call stacks for Connectors (connection
profiles) as well as call stacks for leaked and idle connections. To configure a
Connector to make this information available to the Administration Console, do the
following:

1. After you deploy the Connector, in the left pane of the Administration Console,
right click the Connector and choose Edit Connector Descriptor.

2. In the left pane, expand WebLogic RA and click Map Config Properties.

3. In the right pane, click Configure a new Map Config Property....

4. On the Configure a new Map Config Property, in the Description box, enter a
description such as "Connection Profiling".

5. In the Config Property Name box, enter connection-profiling-enabled.

6. In the Config Property Value box, enter true.

7. Click Apply to save your changes.

For information on viewing this profile information, refer to “Monitoring
Connections” on page 12-7.

Deploying Resource Adapters (Connectors)

To deploy a Connector using the WebLogic Server Administration Console:

1. Expand the Deployments node in the left pane.

2. Right-click on the Connectors node.

3. Select Configure a New Application.

Viewing Deployed Resource Adapters (Connectors)

Administration Guide 12-5

4. Locate the archive file (RAR) to configure.

Note: You can also configure an exploded application or component directory.
Note that WebLogic Server deploys all components it finds in and below
the specified directory.

5. Click [select] to the left of a directory or file to choose it and proceed to the next
step.

6. Select a Target Server from among Available Servers.

7. Enter a name for the Connector in the provided field.

8. Click Configure and Deploy. The Console will display the Deploy panel, which
lists deployment status and deployment activities for the Connector.

9. Use the Deploy button to deploy the Connector to all or selected targets or
undeploy it from all or selected targets.

10. Test your Connector by accessing a resource through a Web browser. Access
resources with a URL constructed as follows:

http://myServerr:myPort/myConnector/resource

Where:

" myServer is the name of the machine hosting WebLogic Server.

" myPort is the port number where WebLogic Server is listening for requests.

" myConnector is the name of theConnector archive file (myConnector.rar, for
instance) or the name of a directory containing the Connector.

" resource is the name of a resource such as a JSP, HTTP servlet, or HTML
page.

Viewing Deployed Resource Adapters
(Connectors)

To view a deployed connector in the Administration Console:

12 Managing the WebLogic J2EE Connector Architecture

12-6 Administration Guide

1. In the Console, click Deployments.

2. Click the Connectors option.

3. View a list of deployed Connectors in the table displayed in the Console.

Undeploying Deployed Resource Adapters
(Connectors)

To undeploy a deployed connector from the WebLogic Server Administration
Console:

1. In the Console, click Deployments.

2. Click the Connectors option.

3. In the displayed table, click the name of the connector you wish to undeploy.

4. Click Apply.

Updating Deployed Resource Adapters
(Connectors)

To update a deployed connector:

1. In the Console, click Deployments.

1. Click the Connectors option.

2. In the displayed table, click the name of the connector you wish to update.

3. Update the deployment status by accessing the Deploy tab.

4. Click Apply.

Monitoring Connections

Administration Guide 12-7

Monitoring Connections

The BEA J2EE Connector Architecture provides you with monitoring capabilities in
the WebLogic Server Console that show detected leaks and provides a method for
looking up stacks to determine which application(s) is causing the leak. Delete buttons
in the Console allow you to dynamically close leaked connections that are identified;
the option to delete connections is only available for connections that have exceeded
their specified idle time and are safe to delete (in other words, the connection is not
involved in a transaction).

The connection-profiling-enabled element of the weblogic-ra.xml file
indicates whether or not the connection pool should store the call stacks of where each
connection is allocated. If you set this element value to true, you can view this
information on active connections through the Console. Also, you can view the stacks
for leaked and idle connections, and you can debug components that fail to close
connections.

Getting Started

There are two methods for accessing monitoring tools using the Console:

Method One

1. In the left pane of the Console, select Deployments > Connectors to display a list
of connectors.

2. Right-click a connector, and select Monitor all Connector Connection Pool
Runtimes from the pop-up menu.

Connection pool run-time information is provided in the right pane for the
selected connector.

Method Two

1. In the right pane of the Console, under Deployments, select Connectors.

A connector table is displayed.

2. Under the Name column, click the connector to monitor.

12 Managing the WebLogic J2EE Connector Architecture

12-8 Administration Guide

3. In the Monitoring tab, select Monitor all Connector Connection Pool Runtimes.

Connection pool run-time information is provided in the right pane for the
selected connector.

Viewing Leaked Connections

A Connection Leak Profiles column in the Console allows you to view profile
information pertaining to leaked connections. This column is not to be confused with
the Leaked Connections Detected column, which simply displays the number of leaked
connections.

A key difference between these two columns is the Connection Leak Profiles column
is controlled by use of the connection-profiling-enabled setting in the
weblogic-ra.xml file. By default, this setting is false, so normally the Connection
Leak Profiles column will be zero (disabled). However, the Leaked Connections
Detected column is always enabled and will always display the number of leaked
connections.

There are two methods for viewing leaked connections using the Console:

Method One

1. In the left pane of the Console, select Deployments > Connectors to display a list
of connectors.

2. Right-click a connector, and select View Leaked Connections from the pop-up
menu.

Connection pool run-time information for the selected connector is provided in
the right pane.

3. Under the Connection Leak Profiles column, click the number of leaked
connections pertaining to the selected connector.

Leaked connection information is displayed in the right pane.

Method Two

1. In the right pane of the Console, under Deployments, select Connectors.

A connector table is displayed.

2. Under the Name column, click the name of the connector to monitor.

Monitoring Connections

Administration Guide 12-9

3. In the Monitoring tab, select Monitor all Connector Connection Pool Runtimes.

Connection pool run-time information for the selected connector is provided in
the right pane.

4. Under the Connection Leak Profiles column, click the number of leaked
connections pertaining to the selected connector.

Leaked connection information is displayed in the right pane.

Viewing Idle Connections

A Connection Idle Profiles column in the Console allows you to view profile
information pertaining to idle connections. This column is not to be confused with the
Idle Connections Detected column, which simply displays the number of idle
connections.

A key difference between these two columns is the Connection Idle Profiles column is
controlled by use of the connection-profiling-enabled setting in the
weblogic-ra.xml file. By default, this setting is false, so normally the Connection
Idle Profiles column will be zero (disabled). However, the Idle Connections Detected
column is always enabled and will always display the number of idle connections.

There are two methods for idle connections using the Console:

Method One

1. In the left pane of the Console, select Deployments > Connectors to display a list
of connectors.

2. Right-click a connector, and select View Idle Connections from the pop-up menu.

Connection pool run-time information for the selected connector is provided in
the right pane.

3. Under the Connection Idle Profiles column, click the number of idle connections
pertaining to the selected connector.

Idle connection information is displayed in the right pane.

Method Two

1. In the right pane of the Console, under Deployments, select Connectors.

12 Managing the WebLogic J2EE Connector Architecture

12-10 Administration Guide

A connector table is displayed.

2. Under the Name column, click the name of the connector to monitor.

3. In the Monitoring tab, select Monitor all Connector Connection Pool Runtimes.

Connection pool run-time information for the selected connector is provided in
the right pane.

4. Under the Connection Idle Profiles column, click the number of idle connections
pertaining to the selected connector.

Idle connection information is displayed in the right pane.

Deleting Connections

This functionality is not currently implemented in the WebLogic Server
Administration Console.

Deleting a Connector

To delete a connector, proceed as follows:

1. Select a connector to delete in the left pane of the Console under Deployments >
Connectors > Connector Name.

2. In the table of connectors located in the right pane, select the Trash Can icon.

The following message is displayed in the right pane:

Are you sure you want to permanently delete <Connector Name> from the
domain configuration?

3. Click Yes to delete the connector.

Editing Resource Adapter Deployment Descriptors

Administration Guide 12-11

Editing Resource Adapter Deployment
Descriptors

This section describes the procedure for editing the following resource adapter
(connector) deployment descriptors using the Administration Console Deployment
Descriptor Editor:

! ra.xml

! weblogic-ra.xml

For detailed information about the elements in the resource adapter deployment
descriptors, refer to Programming WebLogic J2EE Connectors.

To edit the resource adapter deployment descriptors, follow these steps:

1. Invoke the Administration Console in your browser using the following URL:

http://host:port/console

where host refers to the name of the computer upon which WebLogic Server is
running and port refers to the port number to which it is listening.

2. Click to expand the Deployments node in the left pane.

3. Click to expand the Connectors node under the Deployments node.

4. Right-click the name of the resource adapter whose deployment descriptors you
want to edit and choose Edit Connector Descriptor from the drop-down menu.

The Administration Console window appears in a new browser. The left pane
contains a tree structure that lists all the elements in the two resource adapter
deployment descriptors and the right pane contains a form for the descriptive
elements of the ra.xml file.

5. To edit, delete, or add elements in the resource adapter deployment descriptors,
click to expand the node in the left pane that corresponds to the deployment
descriptor file you want to edit, as described in the following list:

" The RA node contains the elements of the ra.xml deployment descriptor.

http://e-docs.bea.com/wls/docs70/jconnector/index.html

12 Managing the WebLogic J2EE Connector Architecture

12-12 Administration Guide

" The WebLogic RA node contains the elements of the weblogic-ra.xml
deployment descriptor.

6. To edit an existing element in one of the resource adapter deployment
descriptors, follow these steps:

a. Navigate the tree in the left pane, clicking on parent elements until you find the
element you want to edit.

b. Click the element. A form appears in the right pane that lists either its attributes
or subelements.

c. Edit the text in the form in the right pane.

d. Click Apply.

7. To add a new element to one of the resource adapter deployment descriptors,
follow these steps:

a. Navigate the tree in the left pane, clicking on parent elements until you find the
name of the element you want to create.

b. Right-click the element and chose Configure a New Element from the
drop-down menu.

c. Enter the element information in the form that appears in the right pane.

d. Click Create.

8. To delete an existing element from one of the resource adapter deployment
descriptors, follow these steps:

a. Navigate the tree in the left pane, clicking on parent elements until you find the
name of the element you want to delete.

b. Right-click the element and chose Delete Element from the drop-down menu.

c. Click Yes to confirm that you want to delete the element.

9. Once you have made all your changes to the resource adapter deployment
descriptors, click the root element of the tree in the left pane. The root element is
the either the name of the resource adapter *.rar archive file or the display
name of the resource adapter.

10. Click Validate if you want to ensure that the entries in the resource adapter
deployment descriptors are valid.

Editing Resource Adapter Deployment Descriptors

Administration Guide 12-13

11. Click Persist to write your edits of the deployment descriptor files to disk in
addition to WebLogic Server's memory.

12 Managing the WebLogic J2EE Connector Architecture

12-14 Administration Guide

Editing Resource Adapter Deployment Descriptors

Administration Guide 12-15

12 Managing the WebLogic J2EE Connector Architecture

12-16 Administration Guide

Administration Guide 13-1

CHAPTER

13 Managing WebLogic
Server Licenses

Your WebLogic Server requires a valid license to run. The following sections explain
how to install and update WebLogic licenses:

! Installing a WebLogic Server License

! Updating a License

Installing a WebLogic Server License

An evaluation copy of WebLogic Server is enabled for 60 days so you can start using
WebLogic Server immediately. To use WebLogic Server beyond the 60-day
evaluation period, you will need to contact your salesperson about further evaluation
or purchasing a license for each server (machine) on which you intend to use
WebLogic Server. All WebLogic Server evaluation products are licensed for use on a
single server with access allowed from up to five unique client IP addresses.

If you downloaded WebLogic Server from the BEA Web site, your evaluation license
is included with the distribution. The WebLogic Server installation program allows
you to specify the location of the BEA home directory, and installs a BEA license file,
license.bea, in that directory.

13 Managing WebLogic Server Licenses

13-2 Administration Guide

Updating a License

You will need to update the BEA license file if one of the following is true:

! You have purchased additional BEA software.

! You obtain a new distribution that includes new products.

! You have applied for and received an extension of your 60-day evaluation
license.

In any of these cases, you will receive a license update file by email as an attachment.
To update your BEA license file, do the following:

1. Save the license update file under a name other than license.bea in the BEA
home directory.

2. Make sure that the JDK (Java 2) is in your path. To add the JDK to your path,
enter one of the following commands:

" set PATH=.\jdk131\bin;%PATH% (Windows systems)

" set PATH=./jdk131/bin:$PATH (UNIX systems)

3. In a command shell, enter the following command in the BEA home directory:

UpdateLicense license_update_file

where license_update_file is the name under which you saved the license
update file that you received via email. Running this command updates the
license.bea file.

4. Save a copy of your license.bea file in a safe place outside the WebLogic
distribution. Although no one else can use your license file, you should save this
information in a place protected from either malicious or innocent tampering.

Administration Guide A-1

APPENDIX

A Using the WebLogic
Java Utilities

WebLogic provides several Java programs that simplify installation and configuration
tasks, provide services, and offer convenient shortcuts. The following sections
describe each Java utility provided with WebLogic Server. The command-line syntax
is specified for all utilities and, for some, examples are provided.

! AppletArchiver

! CertGen

! Conversion

! der2pem

! dbping

! Deployer

! EJBGen

! getProperty

! ImportPrivateKey

! logToZip

! MulticastTest

! myip

! pem2der

! Schema

A Using the WebLogic Java Utilities

A-2 Administration Guide

! showLicenses

! system

! t3dbping

! verboseToZip

! version

! writeLicense

To use these utilities you must correctly set your CLASSPATH. For more information,

see “Setting the Classpath.”

http://e-docs.bea.com/wls/docs70/adminguide/startstop.html#1127395

Administration Guide A-3

AppletArchiver

The AppletArchiver utility runs an applet in a separate frame, keeps a record of all
of the downloaded classes and resources used by the applet, and packages these into
either a .jar file or a .cab file. (The cabarc utility is available from Microsoft.)

Syntax

$ java utils.applet.archiver.AppletArchiver URL filename

Argument Definition

URL URL for the applet.

filename Local filename that is the destination for the .jar/.cab archive.

A Using the WebLogic Java Utilities

A-4 Administration Guide

CertGen

The CertGen utility generates certificates that should only be used for demonstration
or testing purposes and not in a production environment.

Syntax

$ java utils.CertGen password certfile keyfile [export]

Example

To generate a certificate:

1. Copy the following files to the directory in which you run the CertGen tool:

" WL_HOME/server/lib/CertgenCA.der—The certificate for a certificate
authority trusted by WebLogic Server.

" WL_HOME/server/lib/CertGenCAKey.der—The private key for a
certificate authority trusted by WebLogic Server.

2. Enter the following command to generate certificate files named testcert with
private key files named testkey:

$ java utils.CertGen mykeypass testcert testkey
Creating Domestic Key Strength - 1024

Encoding
..
..
..
Created Private Key files - testkey.der and testkey.pem

Argument Definition

password Defines the password for the private key.

certfile Defines the directory in which to copy the generated certificate file.

keyfile Defines the directory in which to copy the generated private key file.

export By default, the CertGen utility generates domestic strength
certificates. Specify the [export] option if you want the tool to generate
export strength certificates.

Administration Guide A-5

Encoding
..
..
..
Created Certificate files - testcert.der and testcert.pem
..

A Using the WebLogic Java Utilities

A-6 Administration Guide

Conversion

If you have used an earlier version of WebLogic, you must convert your
weblogic.properties files. Instructions for converting your files using a
conversion script are available in the Administration Console Online Help section
called “Conversion.”

http://e-docs.bea.com/wls/docs70/ConsoleHelp/conversion.html

Administration Guide A-7

der2pem

The der2pem utility converts an X509 certificate from DER format to PEM format.
The .pem file is written in the same directory as the source .der file.

Syntax

$ java utils.der2pem derFile [headerFile] [footerFile]

Example

$ java utils.der2pem graceland_org.der
Decoding
..

Argument Description

derFile The name of the file to convert. The filename must end with a .der
extension, and must contain a valid certificate in .der format.

headerFile The header to place in the PEM file. The default header is “-----BEGIN
CERTIFICATE-----”.

Use a header file if the DER file being converted is a private key file, and
create the header file containing one of the following:

! “-----BEGIN RSA PRIVATE KEY-----” for an unencrypted private
key.

! “-----BEGIN ENCRYPTED PRIVATE KEY-----” for an encrypted
private key.

Note: There must be a new line at the end of the header line in the file.

footerFile The header to place in the PEM file. The default header is “-----END
CERTIFICATE-----”.

Use a footer file if the DER file being converted is a private key file, and
create the footer file containing one of the following in the header:

! “-----END RSA PRIVATE KEY-----” for an unencrypted private
key.

! “-----END ENCRYPTED PRIVATE KEY-----” for an encrypted
private key.

Note: There must be a new line at the end of the header line in the file.

A Using the WebLogic Java Utilities

A-8 Administration Guide

dbping

The dbping command-line utility tests the connection between a DBMS and your
client machine via a JDBC driver. You must complete the installation of the driver
before attempting to use this utility. For more information on how to install a driver,
see WebLogic jDrivers at http://e-docs.bea.com/wls/docs70/jdrivers.html.

Syntax

$ java -Dbea.home=license_location utils.dbping DBMS user password DB

Argument Definition

license_location The directory containing your WebLogic Server license
(license.bea). For example, d:\beaHome\. Required only
if using a BEA-supplied JDBC driver.

DBMS Choose one of the following for your JDBC driver:

WebLogic jDriver for Microsoft SQL Server:
MSSQLSERVER4

WebLogic jDriver for Oracle:
ORACLE

Oracle Thin Driver:
ORACLE_THIN

Sybase JConnect driver:
JCONNECT

Sybase JConnect 5.5 (JDBC 2.0) driver:
JCONN2

user Valid username for login. Use the same values you use with isql
or sqlplus.

password Valid password for the user. Use the same values you use with
isql or sqlplus.

http://e-docs.bea.com/wls/docs70/jdrivers.html

Administration Guide A-9

Example

$ C:\bea\weblogic700b\samples\server\config\examples>java
utils.dbping ORACLE_THIN scott tiger lcdbsol1:1561:lcs901

**** Success!!! ****

You can connect to the database in your app using:

java.util.Properties props = new java.util.Properties();
props.put("user", "scott");
props.put("password", "tiger");

java.sql.Driver d =
(java.sql.Driver)Class.forName("oracle.jdbc.driver.OracleD
river").newInstance();
java.sql.Connection conn =
d.connect("jdbc:oracle:thin:@lcdbsol1:1561:lcs901",

DB Name of the database. Use the following format, depending on
which JDBC driver you use:

WebLogic jDriver for Microsoft SQL Server:
DBNAME@HOST:PORT

WebLogic jDriver for Oracle:
DBNAME

Oracle Thin Driver:
HOST:PORT:DBNAME

Sybase JConnect driver: JCONNECT:
HOST:PORT/DBNAME

Sybase JConnect driver: JCONN2:
HOST:PORT/DBNAME

Where:

! HOST is the name of the machine hosting the DBMS,

! PORT is port on the database host where the DBMS is
listening for connections, and

! DBNAME is the name of a database on the DBMS. (For Oracle,
this is the name of a DBMS defined in the tnsnames.ora
file.)

Argument Definition

A Using the WebLogic Java Utilities

A-10 Administration Guide

props);

// This mode is superior, especially in serverside classes because
// it avoids DriverManager calls are class synchronized, and will
// bottleneck any other JDBC in the server, even already-running
// connections, because all JDBC drivers useDriverManager.println()
// to log info and exceptions, and that call is also class

synchronized.

// For repeated connecting, a single driver instance can be re-used.

**** or ****

Class.forName("oracle.jdbc.driver.OracleDriver").newInstance();
java.sql.Connection conn =
Driver.connect("jdbc:oracle:thin:@lcdbsol1:1561:lcs901", "scott",
"tiger");

**** or ****

java.util.Properties props = new java.util.Properties();
props.put("user", "scott");
props.put("password", "tiger");
Class.forName("oracle.jdbc.driver.OracleDriver").newInstance();
java.sql.Connection conn =
Driver.connect("jdbc:oracle:thin:@lcdbsol1:1561:lcs901", props);

Administration Guide A-11

Deployer

weblogic.Deployer deploys J2EE applications and components to WebLogic
Servers. For additional information, see Deployment Tools and Procedures at
http://e-docs.bea.com/wls/docs70/programming/deploying.html#1094693.

The weblogic.Deployer utility is new in WebLogic Server 7.0, and replaces the
earlier weblogic.deploy utility, which has been deprecated. For more
information about the deprecated weblogic.deploy utility, see "Deploying
Applications" in the WebLogic Server Administration Guide.

Syntax

% java weblogic.Deployer [options]
[-activate|-deactivate|-remove|-cancel|-list] [files]

Actions (select one of the following)

Action Description

activate Deploys or redeploys the application specified by -name to the
servers specified by -targets.

cancel Attempts to cancel the task identified by -id.

deactivate Deactivates the application on the target servers. Deactivation suspends
the deployed components, leaving staged data in place in anticipation of
subsequent reactivation. This command only works in the two-phase
deployment protocol.

delete_files Removes files specified in the file list and leaves the application
activated. This is valid only for unarchived applications. You must
specify target servers.

deploy A convenient alias for -activate.

examples Displays example usages of the tool.

help Prints a help message.

list Lists the status of the task identified by -id.

http://e-docs.bea.com/wls/docs70/programming/deploying.html#1094693
http://e-docs.bea.com/wls/docs70/programming/deploying.html#1094693
http://e-docs.bea.com/wls/docs70/adminguide/appman.html
http://e-docs.bea.com/wls/docs70/adminguide/appman.html

A Using the WebLogic Java Utilities

A-12 Administration Guide

Options

remove Physically removes the application and any staged data from the target
servers. The components are deactivated and the targets are removed
from the applications configuration. If you remove the application
entirely, the associated MBeans are also deleted from the system
configuration. This command only works with the two-phase deployment
model.

undeploy A convenient alias for -unprepare.

unprepare Deactivates and unloads classes for the application identified by
-name on the target servers, leaving the staged application files in
a state where they may be edited or quickly reloaded.

upload Transfers the specified source file(s) to the administration server. Use this
option when you are on a remote system and want to deploy an
application that resides on the remote system. The application files are
uploaded to the WebLogic Server administration server prior to
distribution to named target servers.

version Prints version information.

Action Description

Option Description

adminurl https://<server>:<port> is the URL of the administration server.
Default is http://localhost:7001.

debug Turns on debug messages in the output log.

external_stage Sets the stagingMethod attribute on the application Mbean
when it is created so that the application will not be staged but
the value of the staging path will be used when preparing the
application.

Administration Guide A-13

id The task identifier -id is a unique identifier for the
deployment task. You can specify an -id with the
-activate, -deactivate, or -remove commands, and
use it later as an argument to -cancel or -list. Make sure
the -id is unique from all other existing deployment tasks.
The system generates an -id if you do not specify one.

name The application -name specifies the name of the application
being deployed. This can be the name of an existing,
configured application or the name to use when creating a
new configuration.

nostage Sets the no-staging attribute on the ApplicationMBean,
indicating that the application does not require staging. The
system assumes the application already resides at the location
specified by its Path attribute on the target servers.

nowait Once the action is initiated, the tool prints the task id and
exits. This is used to initiate multiple tasks and then monitor
them later using the -list action.

password Specifies the password on the command line. If you do not provide
a password, you will be prompted for one.

remote Signals that weblogic.Deployer is not running on the same
machine as the administration server and that the source path
should be passed through unchanged because it represents the
path on the remote server.

source Archive or directory, specifies the location of the file or
directory to be deployed. Use this option to set the application
Path. The source option should reference the root directory or
archive being deployed. If using upload, the source path is
relative to the current directory. Otherwise, it is relative to the
administration server root directory—the directory where the
config.xml file resides.

Option Description

A Using the WebLogic Java Utilities

A-14 Administration Guide

Examples

Examples of weblogic.Deployer commands:

! Deploying a New Application

! Redeploying an Application

! Redeploying Part of an Application

! Deactivating an Application

! Undeploying an Application

! Canceling a Deployment Task

! Listing All Deployment Tasks

stage Sets the stagingMethod attribute on the application when it
is created so that the application will always be staged. This
value overrides the stagingMethod attribute on any
targeted servers.

targets <server 1>,...<component>@<server N>, displays a
comma-separated list of the server and/or cluster names. Each target
may be qualified with a J2EE component name. This enables
different components of the archive to deployed on different servers.

When specified for an application that is already deployed, this list
is an addition to the existing targets. If any existing targets are again
specified, the application is redeployed on those targets and
deployed on the new ones.

timeout Seconds. Specifies the maximum time in seconds to wait for
the completion of the deployment task. When the time
expires, weblogic.Deployer prints out the current status of
the deployment and exits.

user User name.

verbose Displays additional progress messages.

Option Description

Administration Guide A-15

Deploying a New Application

java weblogic.Deployer -adminurl http://admin:7001 -name app
-source /myapp/app.ear -targets server1,server2 -activate

Redeploying an Application

java weblogic.Deployer -adminurl http://admin:7001 -name app
-activate

Redeploying Part of an Application

java weblogic.Deployer -adminurl http://admin:7001 -name appname
-targets server1,server2 -activate jsps/*.jsp

Deactivating an Application

java weblogic.Deployer -adminurl http://admin:7001 -name app
-targets server1 -deactivate

Undeploying an Application

java weblogic.Deployer -adminurl http://admin:7001 -name app
-targets server -remove -id tag

Canceling a Deployment Task

java weblogic.Deployer -adminurl http://admin:7001 -cancel -id
tag

Listing All Deployment Tasks

java weblogic.Deployer -adminurl http://admin:7001 -list

A Using the WebLogic Java Utilities

A-16 Administration Guide

EJBGen

EJBGen is an Enterprise JavaBeans 2.0 code generator. You can annotate your Bean
class file with javadoc tags and then use EJBGen to generate the Remote and Home
classes and the deployment descriptor files for an EJB application, reducing to one the
number of EJB files you need to edit and maintain.

If you have installed BEA WebLogic 7.0 examples, see
SAMPLES_HOME\server\src\examples\ejb20\ejbgen\ for an example application that
uses EJBGen.

For complete documentation of this tool, see EJBGen in WebLogic Server EJB
Utilities at http://e-docs.bea.com/wls/docs70/ejb/EJB_utilities.html#1079050.

http://e-docs.bea.com/wls/docs70/ejb/EJB_utilities.html#1079050
http://e-docs.bea.com/wls/docs70/ejb/EJB_utilities.html#1079050

Administration Guide A-17

getProperty

The getProperty utility gives you details about your Java setup and your system. It
takes no arguments.

Syntax

$ java utils.getProperty

Example

$ java utils.getProperty
-- listing properties --
user.language=en
java.home=c:\java11\bin\..
awt.toolkit=sun.awt.windows.WToolkit
file.encoding.pkg=sun.io
java.version=1.1_Final
file.separator=\
line.separator=
user.region=US
file.encoding=8859_1
java.vendor=Sun Microsystems Inc.
user.timezone=PST
user.name=mary
os.arch=x86
os.name=Windows NT
java.vendor.url=http://www.sun.com/
user.dir=C:\weblogic
java.class.path=c:\weblogic\classes;c:\java\lib\cla...
java.class.version=45.3
os.version=4.0
path.separator=;
user.home=C:\

A Using the WebLogic Java Utilities

A-18 Administration Guide

ImportPrivateKey

The ImportPrivateKey utility is used to load a private key into a private keystore
file.

Syntax

$ java utils.ImportPrivateKey keystore keystorepass alias keypass
certfile keyfile

Example

Use the following steps to:

! Generate a certificate and private key using the CertGen utility

! Create a keystore and store a private key using the ImportPrivateKey utility

1. Copy the WL_HOME/server/lib/CertGenCA.der file and the
WL_HOME/server/lib/CertGenCAkey.der file to your working directory.

2. Use the utils.CertGen utility to generate a certificate and private key. See
Using the CertGen Tool at
http://e-docs.bea.com/wls/docs70/secmanage/ssl.html#1165276.

Argument Definition

keystore Defines the name of the keystore file. A new keystore is created if one
does not exist.

keystorepass Defines the password to open the keystore file.

alias Defines the name that is used to look up certificates and keys in the
keystore.

keypass Defines the password used to unlock the private key file and to protect
the private key in the keystore.

certfile The name of the certificate associated with the private key.

keyfile The name of the file holding the protected private key.

http://e-docs.bea.com/wls/docs70/secmanage/ssl.html#1165276

Administration Guide A-19

java utils.CertGen mykeypass testcert testkey
Creating Domestic Key Strength - 1024

Encoding
..
..
..
Created Private Key files - testkey.der and testkey.pem
Encoding
..
..
..
Created Certificate files - testcert.der and testcert.pem
..

3. Convert the certificate from DER format to PEM format.

D:\bea2\weblogic700\samples\server\src>java utils.der2pem
CertGenCA.der
Encoding
..
..

4. Concatenate the certificate and the Certificate Authority (CA).

D:\bea2\weblogic700\samples\server\src>cat testcert.pem
CertGenCA.pem >> newcerts.pem

5. Create a new keystore named mykeystore and load the private key located in
the testkey.pem file.

D:\bea2\weblogic700\samples\server\src>java utils.ImportPrivateKey
mykeystore mypasswd mykey mykeypass newcerts.pem testkey.pem
Keystore file not found, creating it

A Using the WebLogic Java Utilities

A-20 Administration Guide

logToZip

The logToZip utility searches an HTTP server log file in common log format, finds
the Java classes loaded into it by the server, and creates an uncompressed .zip file that
contains those Java classes. It is executed from the document root directory of your
HTTP server.

To use this utility, you must have access to the log files created by the HTTP server.

Syntax

$ java utils.logToZip logfile codebase zipfile

Examples

The following example shows how a .zip file is created for an applet that resides in
the document root itself, that is, with no code base:

$ cd /HTTP/Serv/docs
$ java utils.logToZip /HTTP/Serv/logs/access "" app2.zip

The following example shows how a .zip file is created for an applet that resides in a
subdirectory of the document root:

C:\>cd \HTTP\Serv
C:\HTTP\Serv>java utils.logToZip \logs\applets\classes app3.zip

Argument Definition

logfile Required. Fully-qualified pathname of the log file.

codebase Required. Code base for the applet, or "" if there is no code base. By
concatenating the code base with the full package name of the applet, you
get the full pathname of the applet (relative to the HTTP document root).

zipfile Required. Name of the .zip file to create. The resulting .zip file is
created in the directory in which you run the program. The pathname for
the specified file can be relative or absolute. In the examples, a relative
pathname is given, so the .zip file is created in the current directory.

Administration Guide A-21

MulticastTest

The MulticastTest utility helps you debug multicast problems when configuring a
WebLogic Cluster. The utility sends out multicast packets and returns information
about how effectively multicast is working on your network. Specifically,
MulticastTest displays the following types of information via standard output:

1. A confirmation and sequence ID for each message sent out by this server.

2. The sequence and sender ID of each message received from any clustered server,
including this server.

3. A missed-sequenced warning when a message is received out of sequence.

4. A missed-message warning when an expected message is not received.

To use MulticastTest, start one copy of the utility on each node on which you want
to test multicast traffic.

Warning: Do NOT run the MulticastTest utility by specifying the same multicast
address (the -a parameter) as that of a currently running WebLogic
Cluster. The utility is intended to verify that multicast is functioning
properly before starting your clustered WebLogic Servers.

For information about setting up multicast, see the configuration documentation for the
operating system/hardware of the WebLogic Server host. For more information about
configuring a cluster, see Using WebLogic Server Clusters.

Syntax

$ java utils.MulticastTest -n name -a address [-p portnumber]
[-t timeout] [-s send]

Argument Definition

-n name Required. A name that identifies the sender of the sequenced
messages. Use a different name for each test process you start.

-a address Required. The multicast address on which: (a) the sequenced
messages should be broadcast; and (b) the servers in the clusters are
communicating with each other. (The default for any cluster for
which a multicast address is not set is 237.0.0.1.)

http://e-docs.bea.com/wls/docs70/cluster/index.html

A Using the WebLogic Java Utilities

A-22 Administration Guide

Example

$ java utils.MulticastTest -N server100 -A 237.155.155.1
Set up to send and receive on Multicast on Address 237.155.155.1 on
port 7001
Will send a sequenced message under the name server100 every 2
seconds.
Received message 506 from server100
Received message 533 from server200

I (server100) sent message num 507
Received message 507 from server100
Received message 534 from server200

I (server100) sent message num 508
Received message 508 from server100
Received message 535 from server200

I (server100) sent message num 509
Received message 509 from server100
Received message 536 from server200

I (server100) sent message num 510
Received message 510 from server100
Received message 537 from server200

I (server100) sent message num 511
Received message 511 from server100
Received message 538 from server200

I (server100) sent message num 512
Received message 512 from server100
Received message 539 from server200

I (server100) sent message num 513
Received message 513 from server100

-p portnumber Optional. The multicast port on which all the servers in the cluster
are communicating. (The multicast port is the same as the listen port
set for WebLogic Server, which defaults to 7001 if unset.)

-t timeout Optional. Idle timeout, in seconds, if no multicast messages are
received. If unset, the default is 600 seconds (10 minutes). If a
timeout is exceeded, a positive confirmation of the timeout is sent to
stdout.

-s send Optional. Interval, in seconds, between sends. If unset, the default is
2 seconds. A positive confirmation of each message sent out is sent
to stdout.

Argument Definition

Administration Guide A-23

myip

The myip utility returns the IP address of the host.

Syntax

$ java utils.myip

Example

$ java utils.myip
Host toyboat.toybox.com is assigned IP address: 192.0.0.1

A Using the WebLogic Java Utilities

A-24 Administration Guide

pem2der

The pem2der utility converts an X509 certificate from PEM format to DER format.
The .der file is written in the same directory as the source .pem file.

Syntax

$ java utils.pem2der pemFile

Example

$ java utils.pem2der graceland_org.pem
Decoding
..
..
..
..
..

Argument Description

pemFile The name of the file to be converted. The filename must end with a
.pem extension, and it must contain a valid certificate in .pem
format.

Administration Guide A-25

Schema

The Schema utility lets you upload SQL statements to a database using the WebLogic
JDBC drivers. For additional information about database connections, see
Programming WebLogic JDBC.

Syntax

$ java utils.Schema driverURL driverClass [-u username]
[-p password] [-verbose] SQLfile

Example

The following code shows a Schema command line for the examples.utils package:

D:\bea\weblogic700\samples\server\src>java utils.Schema
"jdbc:pointbase:server://localhost/demo"
"com.pointbase.jdbc.jdbcUniversalDriver" -u "examples"
-p "examples" examples/utils/ddl/demo.ddl

utils.Schema will use these parameters:

url: jdbc:pointbase:server://localhost/demo
driver: com.pointbase.jdbc.jdbcUniversalDriver
dbserver: null
user: examples
password: examples
SQL file: examples/utils/ddl/demo.ddl

Argument Definition

driverURL Required. URL for the JDBC driver.

driverClass Required. Pathname of the JDBC driver class.

-u username Optional. Valid username.

-p password Optional. Valid password for the user.

-verbose Optional. Prints SQL statements and database messages.

SQLfile Required. Text file with SQL statements.

http://e-docs.bea.com/wls/docs70/jdbc/index.html

A Using the WebLogic Java Utilities

A-26 Administration Guide

showLicenses

The showLicenses utility displays license information about BEA products installed
in this machine.

Syntax

$ java -Dbea.home=license_location utils.showLicenses

Example

$ java -Dbea.home=d:\bea utils.showLicense

Argument Description

license_location The fully qualified name of the directory where the
license.bea file exists.

Administration Guide A-27

system

The system utility displays basic information about your computer’s operating
environment, including the manufacturer and version of your JDK, your CLASSPATH,
and details about your operating system.

Syntax

$ java utils.system

Example

$ java utils.system
* * * * * * * java.version * * * * * * *
1.1.6

* * * * * * * java.vendor * * * * * * *
Sun Microsystems Inc.

* * * * * * * java.class.path * * * * * * *
\java\lib\classes.zip;\weblogic\classes;
\weblogic\lib\weblogicaux.jar;\weblogic\license
...

* * * * * * * os.name * * * * * * *
Windows NT

* * * * * * * os.arch * * * * * * *
x86

* * * * * * * os.version * * * * * * *
4.0

A Using the WebLogic Java Utilities

A-28 Administration Guide

t3dbping

The t3dbping utility tests a WebLogic JDBC connection to a DBMS via any two-tier
JDBC driver. You must have access to a WebLogic Server and a DBMS to use this
utility.

Syntax

$ java utils.t3dbping WebLogicURL username password DBMS
driverClass driverURL

Argument Definition

WebLogicURL Required. URL of the WebLogic Server.

username Required. Valid username of DBMS user.

password Required. Valid password of DBMS user.

DBMS Required. Database name.

driverClass Required. Full package name of the WebLogic two-tier driver.

driverURL Required. URL of the WebLogic two-tier driver.

Administration Guide A-29

 verboseToZip

When executed from the document root directory of your HTTP server,
verboseToZip takes the standard output from a Java application run in verbose mode,
finds the Java classes referenced, and creates an uncompressed.zip file that contains
those Java classes.

Syntax

$ java utils.verboseToZip inputFile zipFileToCreate

UNIX Example

$ java -verbose myapplication > & classList.tmp
$ java utils.verboseToZip classList.tmp app2.zip

NT Example

$ java -verbose myapplication > classList.tmp
$ java utils.verboseToZip classList.tmp app3.zip

Argument Definition

inputFile Required. Temporary file that contains the output of the application
running in verbose mode.

zipFileToCreate Required. Name of the .zip file to be created. The resulting .zip
file is be created in the directory in which you run the program.

A Using the WebLogic Java Utilities

A-30 Administration Guide

version

The version utility displays version information about your installed WebLogic via
stdout.

Syntax

$ java weblogic.Admin -url host:port -username username -password
password VERSION

Example

$ java weblogic.Admin
-url localhost:7001 -username system -password foo VERSION

Administration Guide A-31

writeLicense

The writeLicense utility writes information about all your WebLogic licenses in a
file called writeLicense.txt, located in the current directory. This file can then be
emailed, for example, to WebLogic technical support.

Syntax

$ java utils.writeLicense -nowrite -Dweblogic.system.home=path

Examples

$ java utils.writeLicense -nowrite

Example of UNIX Output

* * * * * * System properties * * * * * *

* * * * * * * java.version * * * * * * *
1.1.7

* * * * * * * java.vendor * * * * * * *
Sun Microsystems Inc.

* * * * * * * java.class.path * * * * * * *
c:\weblogic\classes;c:\weblogic\lib\weblogicaux.jar;
c:\java117\lib\classes.zip;c:\weblogic\license
...

Argument Definition

-nowrite Required. Sends the output to stdout instead of
writeLicense.txt.

-Dweblogic.system.home Required. Sets WebLogic system home (the root
directory of your WebLogic installation).

This argument is required unless you are running
writeLicense from your WebLogic system home.

A Using the WebLogic Java Utilities

A-32 Administration Guide

Example of Windows NT Output

* * * * * * * os.name * * * * * * *
Windows NT

* * * * * * * os.arch * * * * * * *
x86

* * * * * * * os.version * * * * * * *
4.0

* * * * * * IP * * * * * *
Host myserver is assigned IP address: 192.1.1.0

* * * * * * Location of WebLogic license files * * * * * *
No WebLogicLicense.class found

No license.bea license found in
weblogic.system.home or current directory

Found in the classpath: c:/weblogic/license/license.bea
Last Modified: 06/02/1999 at 12:32:12

* * * * * * Valid license keys * * * * * *
Contents:
Product Name : WebLogic
IP Address : 192.1.1.0-255
Expiration Date: never
Units : unlimited
key : b2fcf3a8b8d6839d4a252b1781513b9
...

* * * * * * All license keys * * * * * *
Contents:
Product Name : WebLogic
IP Address : 192.1.1.0-255
Expiration Date: never
Units : unlimited
key : b2fcf3a8b8d6839d4a252b1781513b9
...

* * * * * * WebLogic version * * * * * *
WebLogic Build: 4.0.x xx/xx/1999 10:34:35 #xxxxx

Administration Guide B-1

APPENDIX

B WebLogic Server
Command-Line
Interface Reference

The following sections discuss the WebLogic Server command-line interface syntax,
and describe each WebLogic Server administration, connection pool administration,
and MBean management command:

! “About the Command-Line Interface” on page B-1

! “Using WebLogic Server Administration Commands” on page B-3

! “WebLogic Server Administration Command Reference” on page B-4

! “WebLogic Server Connection Pools Administration Command Reference” on
page B-30

! “MBean Management Command Reference” on page B-40

About the Command-Line Interface

As an alternative to the Administration Console, WebLogic Server offers a
command-line interface to its administration tools, as well as to many configuration
and run-time MBean properties.

Use the command-line interface if:

B WebLogic Server Command-Line Interface Reference

B-2 Administration Guide

! You want to create scripts for administration and management efficiency.

! You cannot access the Administration Console through a browser.

! You prefer using the command-line interface over a graphical user interface.

Before You Begin

The examples in this document are based on the following assumptions:

! WebLogic Server is installed in the c:/weblogic directory.

! You have properly configured any domain-wide administration ports you have
enabled. See Configuring a Domain-Wide Administration Port at
http://e-docs.bea.com/wls/docs70/admin_domain/network.html#1126818.

! You have started WebLogic Server from the directory in which it was installed.

Before you can run WebLogic Server commands, you must do the following:

1. Install and configure the WebLogic Server software, as described in the WebLogic
Server Installation Guide. See
http://e-docs.bea.com/wls/docs70/install/index.html.

2. Set CLASSPATH correctly. See “Setting the Classpath” on page 2-17.

3. Enable the command-line interface by performing one of the following steps:

" Start the server from the directory in which it was installed.

" If you are not starting the server from its installation directory, enter the
following command, replacing c:/weblogic with the name of the directory
in which the WebLogic Server software is installed:

-Dweblogic.system.home=c:/weblogic

http://e-docs.bea.com/wls/docs70/admin_domain/network.html#1126818
http://e-docs.bea.com/wls/docs70/install/index.html
http://e-docs.bea.com/wls/docs70/install/index.html
http://e-docs.bea.com/wls/docs70/install/index.html
http://e-docs.bea.com/wls/docs70/adminguide/startstop.html#SettingClasspath

Using WebLogic Server Administration Commands

Administration Guide B-3

Using WebLogic Server Administration
Commands

This section presents the syntax and required arguments for using WebLogic Server
administration commands. The commands are not case-sensitive.

Syntax

java weblogic.Admin [–url URL] -username username
-password password COMMAND arguments

Arguments

The following arguments are required by many WebLogic Server commands.

Argument Definition

URL Specifies one of the following:

! The listen address of the domain’s Administration Server. In most cases,
we recommend that you use this URL because it runs the command
within the security context of the Administration Server.

! The listen address of the WebLogic Server that is the target of the
command. Use this URL if you cannot access the Administration Server
and you want to target a Managed Server.

The format is hostname:port. The default is localhost:7001.

Note: If you want to specify an administration port, make sure your
system administrator has set up an administration port for all
server instances in the domain as described in "Configuring
a Domain-Wide Administration Port" in the Creating and
Configuring WebLogic Server Domains guide.

username Username that has permission to complete the request on the server that you
specify in the -url argument.

For information about permissions for system administration tasks, refer to
“Protecting System Administration Operations” on page 3-1.

http://e-docs.bea.com/wls/docs70/admin_domain/network.html#administration_port_and_administration_channel
http://e-docs.bea.com/wls/docs70/admin_domain/network.html#administration_port_and_administration_channel

B WebLogic Server Command-Line Interface Reference

B-4 Administration Guide

Note: The exit code for all commands is 1 if the Administration client cannot connect
to the server.

WebLogic Server Administration Command
Reference

The following sections provide information about the WebLogic server administration
commands.

Table B-1 presents an overview of WebLogic Server administration commands. The
following sections describe command syntax and arguments, and provide an example
for each command.

See also “WebLogic Server Connection Pools Administration Command Reference”
on page B-30.

password Password to be authenticated so commands can be executed.

Argument Definition

Table B-1 WebLogic Server Administration Commands Overview

Task Command Description

Cancel shutting down
a WebLogic Server

CANCEL_SHU
TDOWN

(Deprecated) Cancels the SHUTDOWN command for the WebLogic
Server that is specified in the URL.

See “CANCEL_SHUTDOWN” on page B-7.

Connect to WebLogic
Server

CONNECT Makes the specified number of connections to the WebLogic Server
and returns two numbers representing the total time for each round
trip and the average amount of time (in milliseconds) that each
connection is maintained.

See “CONNECT” on page B-8.

Force shutdown of a
WebLogic Server

FORCESHUTD
OWN

Immediately terminates a WebLogic Server process.

See “FORCESHUTDOWN” on page B-9.

WebLogic Server Administration Command Reference

Administration Guide B-5

Determine the current
state of a server

GETSTATE Returns the current state of the WebLogic Server.

See “GETSTATE” on page B-11.

Get Help for one or
more commands

HELP Provides syntax and usage information for all WebLogic Server
commands (by default) or for a single command if a command value
is specified on the HELP command line.

See “HELP” on page B-12.

View WebLogic
Server licenses

LICENSES Lists the licenses for all the WebLogic Server instances installed on
a specific server.

See “LICENSES” on page B-13.

List JNDI naming tree
node bindings

LIST Lists the bindings of a node in the JNDI naming tree.

See “LIST” on page B-14.

Lock WebLogic
Server

LOCK (Deprecated) Locks a WebLogic Server against non-privileged
logins. Any subsequent login attempt initiates a security exception
which may contain an optional string message.

See “LOCK” on page B-15.

Migrate Services MIGRATE Migrates a JMS service or a JTA service to a targeted server within
the cluster.

See “MIGRATE” on page B-16

Verify WebLogic
Server listening ports

PING Sends a message to verify that a WebLogic Server is listening on a
port, and is ready to accept WebLogic client requests.

See “PING” on page B-18.

Move a server from
the STANDBY state to
RUNNING

RESUME Makes a server available to receive requests from external clients.

See “RESUME” on page B-19.

Viewing server log
files

SERVERLOG Displays the server log file generated on a specific server.

See “SERVERLOG” on page B-20.

Shut down a
WebLogic Server

SHUTDOWN Shuts down a WebLogic Server.

See “SHUTDOWN” on page B-21.

Table B-1 WebLogic Server Administration Commands Overview (Continued)

Task Command Description

B WebLogic Server Command-Line Interface Reference

B-6 Administration Guide

Note: The exit code for all commands is 1 if the Administration client cannot connect
to the server.

Start a remote
managed WebLogic
Server

START Uses a configured Node Manager to start a Managed Server in the
RUNNING state.

See “START” on page B-23.

Start a remote
managed WebLogic
Server and place it in
the STANDBY state

STARTINSTAN
DBY

Uses a configured Node Manager to start a Managed Server and
place it in the STANDBY state.

See “STARTINSTANDBY” on page B-25.

View threads THREAD_DUM
P

Provides a real-time snapshot of the WebLogic Server threads that
are currently running.

See “THREAD_DUMP” on page B-27.

Unlock a WebLogic
Server

UNLOCK (Deprecated) Unlocks the specified WebLogic Server after a LOCK
operation.

See “UNLOCK” on page B-28.

View WebLogic
Server version

VERSION Displays the version of the WebLogic Server software that is
running on the machine specified by the value of URL.

See “VERSION” on page B-29.

Table B-1 WebLogic Server Administration Commands Overview (Continued)

Task Command Description

WebLogic Server Administration Command Reference

Administration Guide B-7

CANCEL_SHUTDOWN

(Deprecated) The CANCEL_SHUTDOWN command cancels the SHUTDOWN
command for a specified WebLogic Server.

When you use the SHUT_DOWN command, you can specify a delay (in seconds). An
administrator may cancel the shutdown command during the delay period. Be aware
that the SHUTDOWN command disables logins, and they remain disabled even after
cancelling the shutdown. Use the UNLOCK command to re-enable logins.

See “SHUTDOWN” on page B-21 and “UNLOCK” on page B-28.

Syntax

java weblogic.Admin [-url URL] -username username
-password password CANCEL_SHUTDOWN

Example

In the following example, a system user named weblogic with a password of
weblogic requests to cancel the shutdown of the WebLogic Server listening on port
7001 on machine localhost:

java weblogic.Admin -url t3://localhost:7001 -username weblogic
-password weblogic CANCEL_SHUTDOWN

B WebLogic Server Command-Line Interface Reference

B-8 Administration Guide

CONNECT

Makes the specified number of connections to the WebLogic Server and returns two
numbers representing the total time for each round trip and the average amount of time
(in milliseconds) that each connection is maintained.

Syntax

java weblogic.Admin [-url URL] -username username
-password password CONNECT count

Example

In the following example, a user with the name adminuser and the password
gumby1234 runs the CONNECT command to establish 25 connections to a server named
localhost and return information about those connections:

java weblogic.Admin -url localhost:7001 -username adminuser
-password gumby1234 CONNECT 25

Argument Definition

count Number of connections to be made.

WebLogic Server Administration Command Reference

Administration Guide B-9

FORCESHUTDOWN

Immediately terminates a server process.

When you issue this command, the server notifies all applications and subsystems to
drop all current work and release all resources. A forceful shutdown could result in
rolled back transactions and session loss for some clients. You can shut down a server
forcefully from any state.

If you use this command for a Managed Server and it fails to respond, and if you started
the server with the Node Manager, the Node Manager kills the server process.

For information on performing this task from the Administration Console, refer to
Forcing Shutdown of a Server in the Administration Console Online Help.

This command is affected by the timeout period for LifeCycle operations. For more
information, refer to Timeout Period for LifeCycle Operations in the WebLogic
Administration Guide and Setting the Timeout Period for LifeCycle Operations in the
Administration Console Online Help.

Syntax

java weblogic.Admin [-url URL] -username username
-password password FORCESHUTDOWN [targetserver]

Example

In the following example, a user with the username adminuser and password
gumby1234 forces a server named MyServer to shut down via the Administration
Server:

java weblogic.Admin -url myAdminServer:7001 -username adminuser
-password gumby1234 FORCESHUTDOWN MyServer

In the following example, the Administration Server is not available. The same user
logs on to a Managed Server’s host machine and issues the following command:

Argument Definition

targetserv
er

Optional. The name of the server to shut down. If you do not specify a
value, the command shuts down the server that you specified in the -url
argument.

http://e-docs.bea.com/wls/docs70/ConsoleHelp/servers.html#server_force_shutdown
http://e-docs.bea.com/wls/docs70/adminguide/startstop.html#timeout_period_for_lifecycle_operations
http://e-docs.bea.com/wls/docs70/ConsoleHelp/servers.html#setting_timeout_period_for_lifecycle_operations

B WebLogic Server Command-Line Interface Reference

B-10 Administration Guide

java weblogic.Admin -url localhost:7001 -username adminuser
-password gumby1234 FORCESHUTDOWN

WebLogic Server Administration Command Reference

Administration Guide B-11

GETSTATE

Returns the current state of a server.

For more information about server states, refer to The Server Lifecycle.

Syntax

java weblogic.Admin [-url URL] -username username
-password password GETSTATE targetserver

Example

In the following example, a user with the adminuser username and password
gumby1234 attempts to determine the state of a server named MyServer via the
Administration Server:

java weblogic.Admin -url myAdminServer:7001 -username adminuser
-password gumby1234 GETSTATE MyServer

Argument Definition

targetserver Optional. The name of the server to shut down. If you do not specify a
value, the command returns the state of the server that you specified in
the -url argument.

http://e-docs.bea.com/wls/docs70/adminguide/startstop.html#the_server_lifecycle

B WebLogic Server Command-Line Interface Reference

B-12 Administration Guide

HELP

Provides syntax and usage information for all WebLogic Server commands (by
default) or for a single command if a command value is specified on the HELP
command line.

Syntax

java weblogic.Admin HELP [COMMAND]

Example

In the following example, information about using the PING command is requested:

java weblogic.Admin HELP PING

The HELP command returns the following to stdout:

Usage: weblogic.Admin [-url url] -username username
-password password <COMMAND> <ARGUMENTS>

PING <count> <bytes>

WebLogic Server Administration Command Reference

Administration Guide B-13

LICENSES

Lists the licenses for all WebLogic Server instances installed on the specified server.

Syntax

java weblogic.Admin [-url URL] -username username
-password password LICENSES

Example

In the following example, an administrator using the default username
(installadministrator) and default password (installadministrator)
requests the license information for a WebLogic Server running on port 7001 of
machine localhost:

java weblogic.Admin -url localhost:7001 -username
installadministrator

-password installadministrator LICENSES

B WebLogic Server Command-Line Interface Reference

B-14 Administration Guide

LIST

Lists the bindings of a node in the JNDI naming tree.

Syntax

java weblogic.Admin -username username -password password
LIST context

Example

In this example, user adminuser, who has a password of gumby1234, requests a list
of the node bindings in weblogic.ejb:

java weblogic.Admin -username adminuser -password gumby1234
LIST weblogic.ejb

Argument Definition

context Required. The JNDI context for lookup, for example, weblogic,
weblogic.ejb, javax.

WebLogic Server Administration Command Reference

Administration Guide B-15

LOCK

(Deprecated) Locks a WebLogic Server against non-privileged logins. Any subsequent
login attempt initiates a security exception which may contain an optional string
message.

Note: This command is privileged. It requires the password for the WebLogic Server
administrative user.

Syntax

java weblogic.Admin [-url URL] -username username
-password password LOCK “string_message”

Example

In the following example, a WebLogic Server is locked.

java weblogic.Admin -url localhost:7001 -username adminuser
-password gumby1234
LOCK "Sorry, WebLogic Server is temporarily out of service."

Any application that subsequently tries to log into the locked server with a
non-privileged username and password receives the specified message: Sorry,
WebLogic Server is temporarily out of service.

Argument Definition

“string_message” Optional. Message, in double quotes, to be supplied in the security
exception that is thrown if a non-privileged user attempts to log in
while the WebLogic Server is locked.

B WebLogic Server Command-Line Interface Reference

B-16 Administration Guide

MIGRATE

Migrates a JMS service or a JTA Transaction Recovery service to a targeted server
within a server cluster.

Syntax

java weblogic.Admin [-url URL] -username username -password
password
MIGRATE -jta -migratabletarget (migratabletarget_name|servername)
-destination servername [-sourcedown] [-destinationdown]

Argument Definition

-jta Specifies that the migration is a migration of JTA services.

-migrateabletarget Names a configuration file identified with the server from which
services will migrate. For each server, WebLogic Server
auto-creates a migratable target file named:

! "(servername)_migratable" for JMS

! servername for JTA

This migratable target file is a configuration file that specifies the
preferred servers for JMS service and JTA Transaction Recovery
service.

-destination Names the server to which the services will migrate.

-sourcedown Specifies that the source server is down. This switch should be
used very carefully. If the source server is not in fact down, but
only unavailable because of network problems, the service will be
activated on the destination server without being removed from
the source server, resulting in two simultaneous running versions
of the same service, which could cause corruption of the
transaction log or of JMS messages.

-destinationdown Specifies that the destination server is down. A JMS service
migrated to a non-running server will be lost. When migrating the
JTA Transaction Recovery Service to a non-running server, the
target server will assume recovery services when it is started.

WebLogic Server Administration Command Reference

Administration Guide B-17

Examples

In the following example, a JMS service is migrated from myserver2 to myserver3.

java weblogic.Admin MIGRATE -migratabletarget myserver2_migratable
-destination myserver3

In the following example, a JTA Transaction Recovery service is migrated from
myserver2 to myserver3.

java weblogic.Admin MIGRATE -jta -migratabletarget myserver2
-destination myserver3 -sourcedown

B WebLogic Server Command-Line Interface Reference

B-18 Administration Guide

PING

Sends a message to verify that a WebLogic Server is listening on a port, and is ready
to accept WebLogic client requests.

Syntax

java weblogic.Admin [-url URL] -username username
-password password PING [round_trips] [message_length]

Example

In the following example, the command checks a WebLogic Server running on port
7001 of machine localhost ten (10) times.

java weblogic.Admin -url localhost:7001 -username adminuser
-password gumby1234 PING 10

Argument Definition

round_trips Optional. Number of pings.

message_length Optional. Size of the packet to be sent in each ping. Requests for
pings with packets larger than 10 MB throw exceptions.

WebLogic Server Administration Command Reference

Administration Guide B-19

RESUME

Moves a server from the STANDBY state to the RUNNING state.

For information on performing this task from the Administration Console, refer to
Resuming a Server in the Administration Console Online Help. For more information
about server states, refer to The Server Lifecycle.

Syntax

java weblogic.Admin [-url URL] -username username
-password password RESUME [targetserver]

Example

In the following example, a user with the adminuser username and password
gumby1234 attempts to resume a server named MyServer via the Administration
Server:

java weblogic.Admin -url myAdminServer:7001 -username adminuser
-password gumby1234 RESUME MyServer

Argument Definition

targetserver Optional. The name of the server to shut down. If you do not specify a
value, the command resumes the server that you specified in the -url
argument.

http://e-docs.bea.com/wls/docs70/ConsoleHelp/servers.html#server_resume
http://e-docs.bea.com/wls/docs70/adminguide/startstop.html#the_server_lifecycle

B WebLogic Server Command-Line Interface Reference

B-20 Administration Guide

SERVERLOG

Displays the log file generated on a specific server.

! If you do not specify a URL, the server log for the Administration Server is
displayed by default.

! If you specify a server URL, you can retrieve a log for a non-Administration
Server.

! If you omit the starttime and endtime arguments, a running display of the
entire server log is started.

Syntax

java.weblogic.Admin [-url URL] -username username

-password password SERVERLOG [[starttime]|[endtime]]

Example

In the following example, a request is made for a running display of the log for the
server listening on port 7001 on machine localhost.

java weblogic.Admin -url localhost:7001
SERVERLOG “2001/12/01 14:00” “2001/12/01 16:00”

The request specifies that the running display should begin at 2:00 p.m. on December
1, 2001, and end at 4:00 p.m. on December 1, 2001.

Argument Definition

starttime Optional. Earliest time at which messages are to be displayed. If not
specified, messages display starts, by default, when the SERVERLOG
command is executed. The date format is yyyy/mm/dd. Time is
indicated using a 24-hour clock. The start date and time are entered inside
quotation marks, in the following format: “yyyy/mm/dd hh:mm”

endtime Optional. Latest time at which messages are to be displayed. If not
specified, the default is the time at which the SERVERLOG command is
executed. The date format is yyyy/mm/dd. Time is indicated using a
24-hour clock. The end date and time are entered inside quotation marks,
in the following format: “yyyy/mm/dd hh:mm”

WebLogic Server Administration Command Reference

Administration Guide B-21

SHUTDOWN

Shuts down the specified WebLogic Server.

When you issue this command, the server invokes any shutdown classes that you have
configured. It then notifies all applications and subsystems to stop receiving new
requests from external clients and to complete all current work. You can shut down a
server gracefully only from the RUNNING or STANDBY states.

In release 6.x, this command included an option to specify a number of seconds to wait
before starting the shutdown process. This option is now deprecated. To support this
deprecated option, this command must assume that any numerical value that you
supply in the field immediately after the SHUTDOWN command is intended to express
seconds. You cannot use this command to gracefully shut down a server whose name
is made up entirely of numbers. Instead, you must use the Administration Console. For
information, refer to Shutting Down a Server in the Administration Console Online
Help.

This command is affected by the timeout period for LifeCycle operations. For more
information, refer to Timeout Period for LifeCycle Operations in the WebLogic
Administration Guide and Setting the Timeout Period for LifeCycle Operations in the
Administration Console Online Help.

Syntax

java weblogic.Admin [-url URL] -username username
-password password SHUTDOWN [targetserver]

(Deprecated) java weblogic.Admin [-url URL] -username username
-password password SHUTDOWN
[seconds] [“lockMessage”]]

Argument Definition

targetserver The name of the server to shut down.

If you do not specify a value, the command shuts down the server that
you specified in the -url argument.

seconds (Deprecated) Optional. Number of seconds allowed to elapse between
the invoking of this command and the shutdown of the server.

http://e-docs.bea.com/wls/docs70/ConsoleHelp/servers.html#server_shutdown
http://e-docs.bea.com/wls/docs70/adminguide/startstop.html#timeout_period_for_lifecycle_operations
http://e-docs.bea.com/wls/docs70/ConsoleHelp/servers.html#setting_timeout_period_for_lifecycle_operations

B WebLogic Server Command-Line Interface Reference

B-22 Administration Guide

Example

In the following example, a user with the adminuser username and password
gumby1234 shuts down a server named MyServer via the Administration Server:

java weblogic.Admin -url MyAdminServer:7001 -username adminuser
-password gumby1234 SHUTDOWN MyServer

“lockMessage” (Deprecated) Optional. Message, in double quotes, to be supplied in the
message that is sent if a user tries to log in while the WebLogic Server
is locked.

Argument Definition

WebLogic Server Administration Command Reference

Administration Guide B-23

START

Starts a remote Managed Server using Node Manager.

Starts a remote Managed Server using Node Manager.

This command requires the following environment:

! The domain’s Administration Server must be running.

! The Node Manager must be running on the Managed Server’s host machine.

! The Managed Server’s startup items and Node Manager settings must be set up
as described in Managing Server Availability with Node Manager.

For information on performing this task from the Administration Console, refer to
Starting a Server in the Administration Console Online Help.

Note: In the Administration Console, the Servers→General tab includes a Startup
Mode field that you use to specify the state in which a server starts. However,
this setting only applies if you start a server from the local host using the
weblogic.Server command. The Node Manager, and therefore the
weblogic.Admin START command, does not use the value that you specify.
For example, even if you specify STANDBY as the value for the Startup Mode,
if you issue the weblogic.Admin START command, the server will start in the
RUNNING state.

Syntax

java weblogic.Admin [-url URL]
-username username -password password
START targetserver

Argument Definition

-url URL Must specify the listen address of the domain’s Administration Server.

The default is localhost:7001.

targetserver The name of the Managed Server to start in a RUNNING state.

http://e-docs.bea.com/wls/docs70/admin_domain/nodemgr.html
http://e-docs.bea.com/wls/docs70/ConsoleHelp/servers.html#server_start

B WebLogic Server Command-Line Interface Reference

B-24 Administration Guide

Example

In the following example, a user with the adminuser username and password
gumby1234 attempts to start a server named MyServer via the Administration Server:

java weblogic.Admin -url myAdminServer:7001 -username adminuser
-password gumby1234 START MyServer

WebLogic Server Administration Command Reference

Administration Guide B-25

STARTINSTANDBY

Starts a remote Managed Server using Node Manager and places it in a STANDBY state.
In this state, a server is not accessible to requests from external clients.

This command requires the following environment:

! The domain’s Administration Server must be running.

! The Node Manager must be running on the Managed Server’s host machine.

! The Managed Server’s startup items and Node Manager settings must be set up
as described in Managing Server Availability with Node Manager.

! The domain must be configured to use a domain-wide administration port as
described in Configuring a Domain-Wide Administration Port.

Note: In the Administration Console, the Servers→General tab includes a Startup
Mode field that you use to specify the state in which a server starts. However,
this setting only applies if you start a server from the local host using the
weblogic.Server command. The Node Manager, and therefore the
weblogic.Admin STARTINSTANDBY command, does not use the value that
you specify. For example, even if you specify RUNNING as the value for the
Startup Mode, if you issue the weblogic.Admin STARTINSTANDBY

command, the server will start in the STANDBY state.

For information on performing this task from the Administration Console, refer to
Starting a Server in the STANDBY State in the Administration Console Online Help.
For more information about server states, refer to The Server Lifecycle.

Syntax

java weblogic.Admin [-url URL] -username username
-password password STARTINSTANDBY [targetserver]

Argument Definition

-url Must specify the domain’s Administration Server.

The default is localhost:7001.

http://e-docs.bea.com/wls/docs70/admin_domain/nodemgr.html
http://e-docs.bea.com/wls/docs70/admin_domain/network.html#administration_port_and_administration_channel
http://e-docs.bea.com/wls/docs70/ConsoleHelp/servers.html#server_start_standby
http://e-docs.bea.com/wls/docs70/adminguide/startstop.html#the_server_lifecycle

B WebLogic Server Command-Line Interface Reference

B-26 Administration Guide

Example

In the following example, a user with the adminuser username and password
gumby1234 attempts to start a server named MyServer via the Administration Server:

java weblogic.Admin -url myAdminServer:7001 -username adminuser
-password gumby1234 STARTINSTANDBY MyServer

targetserver Optional. The name of the WebLogic Server to start in the STANDBY
state. If you do not specify a value, the command starts the server that
you specified in the -url argument.

Argument Definition

WebLogic Server Administration Command Reference

Administration Guide B-27

THREAD_DUMP

Provides a real-time snapshot of the WebLogic Server threads that are currently
running.

Syntax

java weblogic.Admin [-url URL] -username username
-password password THREAD_DUMP

B WebLogic Server Command-Line Interface Reference

B-28 Administration Guide

UNLOCK

(Deprecated) Unlocks the specified WebLogic Server after a LOCK operation.

Syntax

java weblogic.Admin [-url URL] -username username
-password password UNLOCK

Example

In the following example, an administrator named adminuser with a password of
gumby1234 requests the unlocking of the WebLogic Server listening on port 7001 on
machine localhost:

java weblogic.Admin -url localhost:7001 -username adminuser
-password gumby1234 UNLOCK

Argument Definition

username Required. A valid administrative username must be supplied to use this
command.

password Required. A valid administrative password must be supplied to use this
command.

WebLogic Server Administration Command Reference

Administration Guide B-29

VERSION

Displays the version of the WebLogic Server software that is running on the machine
specified by the value of URL.

Syntax

java weblogic.Admin -url URL -username username
-password password VERSION

Example

In the following example, a user requests the version of the WebLogic Server running
on port 7001 on machine localhost:

java weblogic.Admin -url localhost:7001 -username
installadministrator

-password installadministrator VERSION

Note: In this example, the default value of both the username and password

arguments, installadministrator, is used.

B WebLogic Server Command-Line Interface Reference

B-30 Administration Guide

WebLogic Server Connection Pools
Administration Command Reference

Table B-2 presents an overview of WebLogic Server administration commands for
connection pools. The following sections describe command syntax and arguments,
and provide an example for each command.

For additional information about connection pools see Programming WebLogic JDBC
at http://e-docs.bea.com/wls/docs70/jdbc/index.html and Managing
JDBC Connectivity in the Administration Guide at
http://e-docs.bea.com/wls/docs70/adminguide/jdbc.html.

Table B-2 WebLogic Server Administration Commands Overview—Connection Pools

Task Command Description

Create a Dynamic
Connection Pool

CREATE_POO
L

Allows creation of connection pool while WebLogic Server is
running. Note that dynamically created connection pools cannot be
used with DataSources or TxDataSources.

See “CREATE_POOL” on page B-32

Destroy a Connection
Pool

DESTROY_PO
OL

Connections are closed and removed from the pool and the pool dies
when it has no remaining connections.

See “DESTROY_POOL” on page B-35.

Disable a Connection
Pool

DISABLE_POO
L

You can temporarily disable a connection pool, preventing any
clients from obtaining a connection from the pool.

See “DISABLE_POOL” on page B-36.

Enable a Connection
Pool

ENABLE_POO
L

When a pool is enabled after it has been disabled, the JDBC
connection states for each in-use connection are exactly as they were
when the connection pool was disabled; clients can continue JDBC
operations exactly where they left off.

See “ENABLE_POOL” on page B-37.

http://e-docs.bea.com/wls/docs70/jdbc/index.html
http://e-docs.bea.com/wls/docs70/adminguide/jdbc.html
http://e-docs.bea.com/wls/docs70/adminguide/jdbc.html

WebLogic Server Connection Pools Administration Command Reference

Administration Guide B-31

Determine if a
Connection Pool
Exists

EXISTS_POOL Tests whether a connection pool with a specified name exists in the
WebLogic Server. You can use this command to determine whether
a dynamic connection pool has already been created or to ensure that
you select a unique name for a dynamic connection pool you want
to create.

See “EXISTS_POOL” on page B-38.

Resets a Connection
Pool

RESET_POOL Closes and reopens all allocated connections in a connection pool.
This may be necessary after the DBMS has been restarted, for
example. Often when one connection in a connection pool has
failed, all of the connections in the pool are bad.

See “RESET_POOL” on page B-39.

Table B-2 WebLogic Server Administration Commands Overview—Connection Pools

Task Command Description

B WebLogic Server Command-Line Interface Reference

B-32 Administration Guide

CREATE_POOL

Allows creation of connection pool while WebLogic Server is running. For more information,
see “Creating a Connection Pool Dynamically” in Programming WebLogic JDBC at
http://e-docs.bea.com/wls/docs70/jdbc/programming.html#programmin
g004.

Syntax

java weblogic.Admin [-url URL] -username username
-password password CREATE_POOL poolName aclName=aclX,
props=myProps,initialCapacity=1,maxCapacity=1,
capacityIncrement=1,allowShrinking=true,shrinkPeriodMins=15,
driver=myDriver,url=myURL

Argument Definition

poolName Required. Unique name of pool.

aclName Required. Identifies the different access lists within
fileRealm.properties in the server config directory.
Paired name must be dynaPool.

props Database connection properties; typically in the format
“database login name; database password; server network id”.

initialCapacity Initial number of connections in a pool. If this property is
defined and a positive number > 0, WebLogic Server creates
these connections at boot time. Default is 1; cannot exceed
maxCapacity.

maxCapacity Maximum number of connections allowed in the pool. Default
is 1; if defined, maxCapacity should be =>1.

capacityIncrement Number of connections that can be added at one time. Default
= 1.

allowShrinking Indicates whether or not the pool can shrink when connections
are detected to not be in use.
Default = true.

shrinkPeriodMins Required. Interval between shrinking. Units in minutes.
Minimum = 1.If allowShrinking = True, then default =
15 minutes.

http://e-docs.bea.com/wls/docs70/jdbc/programming.html#programming004

WebLogic Server Connection Pools Administration Command Reference

Administration Guide B-33

Example

In the following example, a user with the name weblogic and the password weblogic
runs the CREATE_POOL command to create a dynamic connection pool:

java weblogic.Admin -url localhost:7001 -username weblogic
-password weblogic CREATE_POOL myPool

java weblogic.Admin -url t3://forest:7901 -username weblogic
-password weblogic CREATE_POOL dynapool6 "aclName=someAcl,
allowShrinking=true,shrinkPeriodMins=10,
url=jdbc:weblogic:oracle,driver=weblogic.jdbc.oci.Driver,

driver Required. Name of JDBC driver. Only local (non-XA) drivers
can participate.

url Required. URL of the JDBC driver.

testConnsOnReserve Indicates reserved test connections. Default = False.

testConnsOnRelease Indicates test connections when they are released. Default =
False.

testTableName Database table used when testing connections; must be present
for tests to succeed. Required if either testConnOnReserve or
testConOnRelease are defined.

refreshPeriod Sets the connection refresh interval. Every unused connection
will be tested using TestTableName. Connections that do not
pass the test will be closed and reopened in an attempt to
reestablish a valid physical database connection. If
TestTableName is not set then the test will not be performed.

loginDelaySecs The number of seconds to delay before creating each physical
database connection. This delay takes place both during initial
pool creation and during the lifetime of the pool whenever a
physical database connection is created. Some database servers
cannot handle multiple requests for connections in rapid
succession. This property allows you to build in a small delay
to let the database server catch up. This delay takes place both
during initial pool creation and during the lifetime of the pool
whenever a physical database connection is created.

Argument Definition

B WebLogic Server Command-Line Interface Reference

B-34 Administration Guide

initialCapacity=2,maxCapacity=8,
props=user=SCOTT;password=tiger;server=bay816"

WebLogic Server Connection Pools Administration Command Reference

Administration Guide B-35

DESTROY_POOL

Connections are closed and removed from the pool and the pool dies when it has no
remaining connections.

Syntax

java weblogic.Admin [-url URL] -username username
-password password DESTROY_POOL poolName [true|false]

Example

In the following example, a user with the name adminuser and the password
gumby1234 runs the DESTROY_POOL command temporarily freeze the active pool
connections:

java weblogic.Admin -url localhost:7001 -username adminuser
-password gumby1234 DESTROY_POOL myPool false

Argument Definition

poolName Required. Unique name of pool.

false

(soft shutdown)

Soft shutdown waits for connections to be returned to the pool
before closing them.

true

(default—hard
shutdown)

Hard shutdown kills all connections immediately. Clients using
connections from the pool get exceptions if they attempt to use a
connection after a hard shutdown.

B WebLogic Server Command-Line Interface Reference

B-36 Administration Guide

DISABLE_POOL

You can temporarily disable a connection pool, preventing any clients from obtaining
a connection from the pool.

You have to options for disabling a pool. 1) Freezing the connections in a pool that you
later plan to enable, and 2) destroy the connections.

Syntax

java weblogic.Admin [-url URL] -username username
-password password DISABLE_POOL poolName [true|false]

Example

In the following example, a user with the name adminuser and the password
gumby1234 runs the DISABLE_POOL command to freeze a connection that is to be
enabled later:

java weblogic.Admin -url localhost:7001 -username adminuser
-password gumby1234 DISABLE_POOL myPool false

Argument Definition

poolName Name of the connection pool

false

(disables and
suspends)

Disables the connection pool, and suspends clients that currently
have a connection. Attempts to communicate with the database
server throw an exception. Clients can, however, close their
connections while the connection pool is disabled; the connections
are then returned to the pool and cannot be reserved by another client
until the pool is enabled.

true

(default—
disables and
destroys)

Disables the connection pool, and destroys the client’s JDBC
connection to the pool. Any transaction on the connection is rolled
back and the connection is returned to the connection pool.

WebLogic Server Connection Pools Administration Command Reference

Administration Guide B-37

ENABLE_POOL

When a pool is enabled, the JDBC connection states for each in-use connection are
exactly as they were when the connection pool was disabled; clients can continue
JDBC operations exactly where they left off.

Syntax

java weblogic.Admin [-url URL] -username username
-password password ENABLE_POOL poolName

Example

In the following example, a user with the name adminuser and the password
gumby1234 runs the ENABLE_POOL command to reestablish connections that have
been disabled (frozen):

java weblogic.Admin -url localhost:7001 -username adminuser
-password gumby1234 ENABLE_POOL myPool

Argument Definition

poolName Name of the connection pool.

B WebLogic Server Command-Line Interface Reference

B-38 Administration Guide

EXISTS_POOL

Tests whether a connection pool with a specified name exists in the WebLogic Server.
You can use this method to determine whether a dynamic connection pool has already
been created or to ensure that you select a unique name for a dynamic connection pool
you want to create.

Syntax

java weblogic.Admin [-url URL] -username username
-password password EXISTS_POOL poolName

Example

In the following example, a user with the name adminuser and the password
gumby1234 runs the EXISTS_POOL command to determine wether or not a pool with a
specific name exists:

java weblogic.Admin -url localhost:7001 -username adminuser
-password gumby1234 EXISTS_POOL myPool

Argument Definition

poolName Name of connection pool.

WebLogic Server Connection Pools Administration Command Reference

Administration Guide B-39

RESET_POOL

This command resets the connections in a registered connection pool.

This is a privileged command. You must supply the password for the WebLogic Server
administrative user to use this command. You must know the name of the connection
pool, which is an entry in the config.xml file.

Syntax

java weblogic.Admin URL RESET_POOL poolName system password

Example

This command refreshes the connection pool registered as "eng" for the WebLogic
Server listening on port 7001 of the host xyz.com.

java weblogic.Admin t3://xyz.com:7001 RESET_POOL eng system gumby

Argument Definition

URL The URL of the WebLogic Server host and port number of the TCP port at
which WebLogic is listening for client requests; use
"t3://host:port."

poolName Name of a connection pool as it is registered in the WebLogic Server's
config.xml file.

password Password to be authenticated so commands can be executed. Default is the
password that is associated with the default username.

B WebLogic Server Command-Line Interface Reference

B-40 Administration Guide

MBean Management Command Reference

Table B-3 presents an overview of the MBean management commands. The following
sections describe command syntax and arguments, and provide an example for each
command.

Specifying MBean Types

All of the MBean management commands can accept a -type argument, which causes
the command to operate on all MBeans that are an instance of a type that you specify.
An MBean’s type refers to the interface class of which the MBean is an instance. All
WebLogic Server MBeans are an instance of one of the interface classes defined in the

Table B-3 MBean Management Command Overview

Task Command(s) Description

Create Administration
MBeans

CREATE Creates an Administration MBean. Returns OK to stdout when
successful. This command cannot be used for Runtime MBeans and
we recommend that you do not use it to create Local Configuration
MBeans.

See “CREATE” on page B-43.

Delete MBeans DELETE Deletes an MBean. Returns OK in stdout when successful.

See “DELETE” on page B-45.

View MBean
properties (attributes)

GET Displays properties of MBeans.

See “GET” on page B-47.

Invoke MBean
operations

INVOKE Invokes management operations that an MBean exposes for its
underlying resource.

See “INVOKE” on page B-49.

Set property values for
Administration
MBeans or Local
Configuration
MBeans

SET Sets the specified property values for the named MBean. Returns OK
on stdout when successful. This command cannot be used for
Runtime MBeans.

See “SET” on page B-50.

MBean Management Command Reference

Administration Guide B-41

weblogic.management.configuration or weblogic.management.runtime
packages. For configuration MBeans, type also refers to whether an instance is an
Administration MBean or a Local Configuration MBean. For a complete list of all
WebLogic Server MBean interface classes, refer to the WebLogic Server Javadoc for
the weblogic.management.configuration or weblogic.management.runtime
packages.

To determine the value that you provide for the -type argument, do the following:

1. Find the MBean’s interface class and remove the MBean suffix from the class name.
For an MBean that is an instance of the
weblogic.management.runtime.JDBCConnectionPoolRuntimeMBean, use
JDBCConnectionPoolRuntime.

2. For a Local Configuration MBean, append Config to the name. For example, for
a Local Configuration MBean that is an instance of the
weblogic.management.configuration.JDBCConnectionPoolMBean

interface class, use JDBCConnectionPoolConfig. For the corresponding
Administration MBean instance, use JDBCConnectionPool.

Specifying Servers

All of the MBean management commands include a -url argument that you use to
specify the WebLogic Server instance that hosts the MBean.

To work with Administration MBeans, you must use the -url argument to specify the
Administration Server. To work with Local Configuration MBeans or Runtime
MBeans, you must use the -url argument to specify the WebLogic Server instance
that hosts the MBeans.

If all of the following conditions are true, you can use weblogic.Admin to access any
MBean in the entire domain:

! Your Administration Server listens on port 7001

! You issue the weblogic.Admin command from the Administration Server

! You omit the -url argument

For example, if all of the above conditions are true, then you can determine the state
of all servers in the domain by issuing the following command:

http://e-docs.bea.com/wls/docs70/javadocs/index.html

B WebLogic Server Command-Line Interface Reference

B-42 Administration Guide

java weblogic.Admin -username weblogic -password weblogic GET -type

ServerRuntime -property State

MBean Management Command Reference

Administration Guide B-43

CREATE

Creates an instance of a WebLogic Server Administration MBean. Returns OK to stdout

when successful. This command cannot be used for Runtime MBeans and we
recommend that you do not use it to create Local Configuration MBeans.

When you use this command to create an Administration MBean instance, WebLogic
Server populates the MBean with default values and saves the MBean’s configuration
in the domain’s config.xml file. WebLogic Server does not create the corresponding
Local Configuration MBean replica until you restart the server instance that hosts the
underlying managed resource. For example, if you create a JDBCConnectionPool
Administration MBean to manage a JDBC connection pool on a Managed Server
named peach, you must restart peach so that it can create its local replica of the
JDBCConnectionPoolAdministration MBean that you created. For more information
on MBean replication and the lifecycle of MBeans, refer to "MBeans for Configuring
Managed Resources" in the Programming WebLogic Management Services with JMX
guide.

Syntax

java weblogic.Admin [–url URL] -username username
-password password CREATE –name name –type mbean_type
[–domain domain_name]

java weblogic.Admin [–url URL] -username username
-password password CREATE –mbean mbean_name

Argument Definition

URL The WebLogic Server instance that is the target of the command. For
more information, refer to “Specifying Servers” on page B-41.

name The name you choose for the MBean that you are creating.

mbean_type The type of MBean that you are creating. For more information, refer
to “Specifying MBean Types” on page B-40.

mbean_name Fully qualified object name of an MBean in the
WebLogicObjectName format. For example:
“domain:Type=type,Name=name”

For more information, refer to the Javadoc for
WebLogicObjectName.

http://e-docs.bea.com/wls/docs70/javadocs/weblogic/management/WebLogicObjectName.html
http://e-docs.bea.com/wls/docs70/jmx/overview.html#MBeans_for_Configuring_Managed_Resources
http://e-docs.bea.com/wls/docs70/jmx/overview.html#MBeans_for_Configuring_Managed_Resources

B WebLogic Server Command-Line Interface Reference

B-44 Administration Guide

Example

The following example uses the -name and -type arguments to create a
JDBCConnectionPool Administration MBean named myPool on an Administration
Server named adminserver that listens on port 7001:

java weblogic.Admin -url adminserver:7001 -username adminuser
-password gumby1234 CREATE -name myPool -type JDBCConnectionPool

The following example uses the -mbean argument and WebLogicObjectName

conventions to create a JDBCConnectionPoolAdministration MBean named myPool
on an Administration Server named adminserver that listens on port 7001:

java weblogic.Admin -url adminserver:7001 -username adminuser
-password gumby1234

CREATE -mbean “mydomain:Type=JDBCConnectionPool,Name=myPool”

domain_name Name of the domain in which you want to create the MBean instance.
If domain_name is not specified, the command assumes the domain
to which the target server belongs.

Argument Definition

MBean Management Command Reference

Administration Guide B-45

DELETE

Deletes an MBean. If you delete an Administration MBean, WebLogic Server removes
the corresponding entry from the domain’s config.xml file. Returns OK in stdout

when successful.

Note: When you delete an Administration MBean, a WebLogic Server instance does
not delete the corresponding Configuration MBean until you restart the server
instance.

Syntax

java weblogic.Admin [–url URL] -username username -password
password DELETE {–type mbean_type|–mbean mbean_name}

Example

The following example deletes all JDBCConnectionPool Local Configuration
MBeans for a server named peach:

java weblogic.Admin -url peach:7001 -username adminuser
-password gumby1234 DELETE -type JDBCConnectionPoolConfig

The following example deletes only the JDBCConnectionPool Local Configuration
MBean named myPool on a server named peach:

Arguments Definition

URL The WebLogic Server instance that is the target of the command. For
more information, refer to “Specifying Servers” on page B-41.

mbean_type Deletes all MBeans of the specified type. For more information, refer to
“Specifying MBean Types” on page B-40.

mbean_name Fully qualified object name of an MBean in the
WebLogicObjectName format. For example:
“domain:Type=type,Name=name”

For more information, refer to the Javadoc for
WebLogicObjectName.

http://e-docs.bea.com/wls/docs70/javadocs/weblogic/management/WebLogicObjectName.html

B WebLogic Server Command-Line Interface Reference

B-46 Administration Guide

java weblogic.Admin -url peach:7001 -username adminuser
-password gumby1234 DELETE -mbean
myDomain:Location=peach,Name=myPool,Type=JDBCConnectionPoolConfig

The following example deletes the JDBCConnectionPool Administration MBean
named myPool:

java weblogic.Admin -url adminserver:7001 -username adminuser
-password gumby1234 DELETE -mbean
myDomain:Name=myPool,Type=JDBCConnectionPool

MBean Management Command Reference

Administration Guide B-47

GET

Displays MBean properties (attributes) and JMX object names (in the
WebLogicObjectName format).

The output of the command is as follows:

{MBeanName object-name {property1 value} {property2 value}. . .}
{MBeanName object-name {property1 value} {property2 value} . . .}
. . .

Note that the properties and values are expressed as name-value pairs, each of which
is returned within curly brackets. This format facilitates parsing of the output by a
script.

If -pretty is specified, each property-value pair is displayed on a new line and curly
brackets are not used to separate the pairs:

MBeanName: object-name
property1: value
property2: value
.
.
.
MBeanName: object-name
property1: value
abbribute2: value

Syntax

java weblogic.Admin [–url URL] -username username -password
password GET [-pretty] {–type mbean_type|–mbean mbean_name}
[–property property1] [–property property2]...

Argument Definition

URL The WebLogic Server instance that is the target of the command. For
more information, refer to “Specifying Servers” on page B-41.

mbean_type Returns information for all MBeans of the specified type. For more
information, refer to “Specifying MBean Types” on page B-40.

B WebLogic Server Command-Line Interface Reference

B-48 Administration Guide

Example

The following example displays all properties of the Server Administration MBean
for a server named peach. Note that the command must target the Administration
Server to retrieve information from an Administration MBean:

java weblogic.Admin -url adminserver:7001 -username adminuser
-password gumby1234 GET -pretty -mbean
mydomain:Name=peach,Type=Server

The following example displays the ListenPort property of the local configuration
instance of the ServerMBean. The command must target the server instance that hosts
the Local Configuration MBean, which is peach. Note that the WebLogicObjectName
of Local Configuration MBeans include a Location=server-name component (for
more information, refer to the Javadoc for WebLogicObjectName):

java weblogic.Admin -url peach:7001 -username adminuser
-password gumby1234 GET -pretty -mbean
mydomain:Location=peach,Name=peach,Type=ServerConfig
-property ListenPort

The following example displays properties of all JDBCConnectionPoolRuntime
MBeans on a server named peach:

java weblogic.Admin -url peach:7001 -username adminuser
-password gumby1234 GET -pretty
-type JDBCConnectionPoolRuntime

mbean_name Fully qualified object name of an MBean in the
WebLogicObjectName format:
“domain:Type=type,Location:location,Name=name”

For more information, refer to the Javadoc for
WebLogicObjectName.

pretty Places property-value pairs on separate lines.

property The name of the MBean property (attribute) or properties to be listed.

Note: If property is not specified using this argument, all properties
are displayed.

Argument Definition

http://e-docs.bea.com/wls/docs70/javadocs/weblogic/management/WebLogicObjectName.html
http://e-docs.bea.com/wls/docs70/javadocs/weblogic/management/WebLogicObjectName.html

MBean Management Command Reference

Administration Guide B-49

INVOKE

Invokes a management operation for one or more MBeans. For WebLogic Server
MBeans, you usually use this command to invoke operations other than the
getAttribute and setAttribute that most WebLogic Server MBeans provide.

Syntax

java weblogic.Admin [–url URL] -username username -password
password INVOKE {–type mbean_type|–mbean mbean_name} –method
methodname [argument . . .]

Example

The following example enables a JDBC connection pool buy invoking the enable
method of the JDBCConnectionPoolRuntimeMBean on a server named peach:

java weblogic.Admin -url http://peach:7001 -username adminuser
-password gumby1234 INVOKE
-mbean mydomain:Location=peach,Name=myPool,ServerRuntime=peach,
Type=JDBCConnectionPoolRuntime -method enable

Arguments Definition

URL The WebLogic Server instance that is the target of the command. For more information, refer
to “Specifying Servers” on page B-41.

mbean_type Invokes the operation on all MBeans of a specific type. For more information, refer to
“Specifying MBean Types” on page B-40.

mbean_name Fully qualified object name of an MBean, in the WebLogicObjectName format:
“domain:Type=type,Location=location,Name=name”

For more information refer to the Javadoc for WebLogicObjectName.

methodname Name of the method to be invoked.

argument Arguments to be passed to the method call.

When the argument is a String array, the arguments must be passed in the following format:

“String1;String2;. . . ”

http://e-docs.bea.com/wls/docs70/javadocs/weblogic/management/WebLogicObjectName.html

B WebLogic Server Command-Line Interface Reference

B-50 Administration Guide

SET

Sets the specified property (attribute) values for a configuration MBean. Returns OK on
stdout when successful. This command cannot be used for runtime MBeans.

If you use this command for an Administration MBean, the new values are saved to the
config.xml file or the security realm, depending on where the new values have been
defined.

Syntax

java weblogic.Admin [–url URL] -username username
-password password SET {–type mbean_type|–mbean mbean_name}
–property property1 property1_value
[-property property2 property2_value] . . .

Argument Definition

URL The WebLogic Server instance that is the target of the command. For more information,
refer to “Specifying Servers” on page B-41.

mbean_type Sets the properties for all MBeans of a specific type. For more information, refer to
“Specifying MBean Types” on page B-40.

mbean_name Fully qualified object name of an MBean in the WebLogicObjectName format. For
example:
“domain:Type=type,Name=name”

For more information, refer to the Javadoc for WebLogicObjectName.

property The name of the property to be set.

property _value The value to be set.

! When the argument is an MBean array, the arguments must be passed in the
following format:

“domain:Name=name,Type=type;domain:Name=name,Type=type”

! When the argument is a String array, the arguments must be passed in the following
format:

“String1;String2;. . . ”

! When setting the properties for a JDBC Connection Pool, you must pass the
arguments in the following format:

“user:username;password:password;server:servername”

http://e-docs.bea.com/wls/docs70/javadocs/weblogic/management/WebLogicObjectName.html

MBean Management Command Reference

Administration Guide B-51

Example

The following example sets to 64 the StdoutSeverityLevel property of the local
configuration instance of the ServerMBean for a server named peach:

java weblogic.Admin -url http://peach:7001 -username adminuser
-password gumby1234 SET -mbean
mydomain:Location=peach,Name=peach,Type=ServerConfig
-property StdoutSeverityLevel 64

The following example sets to 64 the StdoutSeverityLevel property for all
administration instances of ServerMBean in the current domain:

java weblogic.Admin -url http://adminserver:7001
-username adminuser -password gumby1234
SET -type Server -property StdoutSeverityLevel 64

B WebLogic Server Command-Line Interface Reference

B-52 Administration Guide

	About This Document
	Audience
	e-docs Web Site
	How to Print the Document
	Contact Us!
	Documentation Conventions

	1 Overview of WebLogic System Administration
	Introduction to System Administration
	WebLogic Server Domains
	System Administration Infrastructure
	The Administration Server and Managed Servers
	Failover for the Administration Server
	Failover for Managed Servers
	Domain-Wide Administration Port
	Service Packs and WebLogic Server Instances

	System Administration Tools
	Security Protections for System Administration Tools
	System Administration Console
	Command-Line Interface
	JMX
	Configuration Wizard
	Java Utilities
	Node Manager
	SNMP
	Logs
	Editing config.xml

	Resources You Can Manage in a WebLogic Server Domain
	Servers
	Clusters
	Machines
	Network Channels
	JDBC
	JMS
	WebLogic Messaging Bridge
	Web Servers and Web Components
	Applications
	Application Formats
	Editing Deployment Descriptors Using the Administration Console
	Editing and Creating Deployment Descriptors with WebLogic Builder

	Startup and Shutdown Classes
	JNDI
	Transactions
	XML
	Security
	WebLogic Tuxedo Connector
	Jolt
	Mail

	Starting and Using the Administration Console
	Browser Support for the Administration Console
	Starting the Administration Console
	Using the Administration Console
	Navigating in the Administration Console
	Configuring Objects or Resources
	Using the Administration Console to Manage Multiple Domains
	Monitoring a Domain Using the Administration Console
	Monitoring Administration Console Tasks
	Getting Help for Using the Administration Console

	Using WebLogic Server with Web Servers
	Monitoring
	Licenses

	2 Starting and Stopping WebLogic Servers
	The Server Lifecycle
	Controlling the Server Lifecycle
	Timeout Period for LifeCycle Operations

	Providing Usernames and Passwords to Start a Server
	Specifying an Initial Administrative Username
	Bypassing the Prompt for Username and Password
	Creating a Boot Identity File
	Using a Boot Identity File
	Removing a Boot Identity File After Startup
	Alternate Method: Passing Identity Information on the Command Line

	Starting an Administration Server
	Starting an Administration Server from the Windows Start Menu
	Starting an Administration Server Using a Script
	Using the Configuration Wizard Scripts to Start an Administration Server
	Creating Your Own Script to Start an Administration Server
	Using a Non-Default JVM with WebLogic Server

	Using the weblogic.Server Command
	Setting the Classpath
	Command Syntax for weblogic.Server
	Required Arguments
	Frequently Used Optional Arguments
	Other Optional Arguments
	Development Mode vs. Production Mode
	Startup Arguments for the Administration Port and the weblogic.Admin Utility
	A Server’s Root Directory

	Using the Default Configuration to Start a Server

	Starting a Managed Server
	Adding a Managed Server to a Domain
	Starting a Managed Server from the Windows Start Menu
	Starting a Managed Server Using a Script
	Using the Configuration Wizard Scripts to Start a Managed Server
	Creating Your Own Script to Start a Managed Server

	Starting a Managed Server from the Command Line
	Configuring a Connection to the Administration Server
	Specifying the Default Startup State
	Starting a Remote Managed Server
	Starting and Killing All WebLogic Servers in a Domain or Cluster
	Starting All Managed Servers in a Domain
	Starting All Managed Servers in a Cluster
	Killing All Servers in a Domain
	Killing All Servers in a Cluster

	Shutting Down WebLogic Servers
	Configuring Startup and Shutdown Classes
	Setting Up a WebLogic Server as a Windows Service
	Setting Up a Windows Service
	Using a Non-Default JVM with a Windows Service
	Verifying the Setup
	Using the Control Panel to Stop or Restart the Service
	Removing a Server as a Windows Service
	Changing Startup Credentials for a Server Set Up as a Windows Service
	The WebLogic Server Windows Service Program (beasvc.exe)

	3 Protecting System Administration Operations
	Operations Available to Each Role
	Default Group Associations

	Protected User Interfaces
	Overlapping Permissions for System Administration MBeans and Policies on Resources
	Resources and Policies
	Working with Policies
	Maintaining a Consistent Security Scheme

	Permissions for Starting and Shutting Down a WebLogic Server
	Permissions for Using the weblogic.Server Command
	Permissions for Using the Node Manager
	Shutting Down a WebLogic Server

	4 Using Log Messages to Manage WebLogic Server
	WebLogic Server Log Messages
	Message Attributes
	Message Severity

	Message Output

	Exceptions and Stack Traces
	WebLogic Server Log Files
	Local Log Files and Domain Log Files
	Log File Names and Locations
	Log File Rotation
	WebLogic Log File Viewer

	Output to Standard Out
	JVM Messages

	Additional Log Files

	5 Deploying Applications
	Supported Formats for Deployment
	Deploying a Web Application Using the (deprecated) weblogic.deploy Utility
	Deployment Documentation

	6 Configuring WebLogic Server Web Components
	Overview
	HTTP Parameters
	Configuring the Listen Port
	Web Applications
	Web Applications and Clustering
	Designating a Default Web Application

	Configuring Virtual Hosting
	Virtual Hosting and the Default Web Application
	Setting Up a Virtual Host

	How WebLogic Server Resolves HTTP Requests
	Setting Up HTTP Access Logs
	Log Rotation
	Common Log Format
	Setting Up HTTP Access Logs by Using Extended Log Format
	Creating the Fields Directive
	Supported Field identifiers
	Creating Custom Field Identifiers

	Preventing POST Denial-of-Service Attacks
	Setting Up WebLogic Server for HTTP Tunneling
	Configuring the HTTP Tunneling Connection
	Connecting to WebLogic Server from the Client

	Using Native I/O for Serving Static Files (Windows Only)

	7 Managing Transactions
	Overview of Transaction Management
	Configuring Transactions
	Configuring Domains for Inter-Domain Transactions
	Inter-Domain Transactions for WebLogic Server 7.0 Domains
	Inter-Domain Transactions Between WebLogic Server 7.0 and WebLogic Server 6.x Domains

	Monitoring and Logging Transactions
	Transaction Monitoring
	Transaction Log Files
	Heuristic Log Files

	Handling Heuristic Completions
	Abandoning Transactions
	Moving a Server to Another Machine
	Transaction Recovery After a Server Fails
	Transaction Recovery Service Actions After a Crash
	Recovering Transactions for a Failed Non-Clustered Server
	Recovering Transactions for a Failed Clustered Server
	Limitations of Migrating the Transaction Recovery Service
	Preparing to Migrate the Transaction Recovery Service

	8 Managing JDBC Connectivity
	Overview of JDBC Administration
	About the Administration Console
	About the Command-Line Interface
	About the JDBC API
	Related Information
	Administration and Management
	JDBC and WebLogic jDrivers
	Transactions (JTA)

	JDBC Components—Connection Pools, Data Sources, and MultiPools
	Connection Pools
	Application-Scoped JDBC Connection Pools

	MultiPools
	Data Sources
	JDBC Data Source Factories

	Security for JDBC Connection Pools
	Security for JDBC Connection Pools in Compatibility Mode

	Configuring and Managing JDBC Connection Pools, MultiPools, and DataSources Using the Administrat...
	JDBC Configuration
	Creating the JDBC Objects
	Assigning the JDBC Objects
	Configuring JDBC Connectivity Using the Administration Console
	Database Passwords in Connection Pool Configuration
	JDBC Configuration Tasks Using the Command-Line Interface

	Managing and Monitoring Connectivity
	JDBC Management Using the Administration Console
	JDBC Management Using the Command-Line Interface

	JDBC Configuration Guidelines for Connection Pools, MultiPools, and DataSources
	Overview of JDBC Configuration
	When to Use a Tx Data Source
	Drivers Supported for Local Transactions
	Drivers Supported for Distributed Transactions Using XA
	Drivers Supported for Distributed Transactions without XA

	Configuring a JDBC Connection Pool
	Avoiding Server Lockup with the Correct Number of Connections
	Configuring JDBC Drivers for Local Transactions
	Configuring XA JDBC Drivers for Distributed Transactions
	WebLogic jDriver for Oracle/XA Data Source Properties
	Additional XA Connection Pool Properties
	Configuring Non-XA JDBC Drivers for Distributed Transactions

	Increasing Performance with the Prepared Statement Cache
	Usage Restrictions for the Prepared Statement Cache
	Calling a Stored Prepared Statement After a Database Change May Cause Errors
	Using setNull In a Prepared Statement
	Prepared Statements in the Cache May Reserve Database Cursors

	Determining the Proper Prepared Statement Cache Size
	Using a Startup Class to Load the Prepared Statement Cache

	9 Managing JMS
	JMS and WebLogic Server
	Configuring JMS
	Starting WebLogic Server and Configuring JMS
	Starting the Default WebLogic Server
	Starting the Administration Console
	Configuring a Basic JMS Implementation

	Configuring JMS Servers
	Configuring Connection Factories
	Configuring Destinations
	Configuring JMS Templates
	Configuring Destination Keys
	Configuring Stores
	About JMS JDBC Stores
	About JMS Store Table Prefixes
	Recommended JDBC Connection Pool Settings for JMS JDBC Stores

	Configuring Session Pools
	Configuring Connection Consumers

	Monitoring JMS
	Monitoring JMS Objects
	Monitoring Durable Subscribers
	Monitoring Distributed Destination System Subscriptions and Proxy Topic Members

	Tuning JMS
	Persistent Stores
	Configuring a Synchronous Write Policy for JMS File Stores

	Using Message Paging
	Configuring Paging
	JMS Paging Attributes

	Establishing Message Flow Control
	Configuring Flow Control
	Flow Control Thresholds

	Tuning Distributed Destinations
	Configuring Message Load Balancing
	Configuring Server Affinity

	Configuring Distributed Destinations
	Steps for Configuring Distributed Destinations
	Creating a Distributed Topic and Creating Members Automatically
	Creating a Distributed Topic and Adding Existing Physical Topics as Members Manually
	Creating a Distributed Queue and Creating Members Automatically
	Creating a Distributed Queue and Adding Existing Physical Queues as Members Manually

	Monitoring Distributed Destinations

	Recovering from a WebLogic Server Failure
	Programming Considerations
	Migrating JMS Data to a New Server

	10 Using the WebLogic Messaging Bridge
	What Is a Messaging Bridge?
	Configuring a Messaging Bridge
	Using the Bridge Adapters
	Deploying the Bridge Adapters

	Configuring the Bridge Destinations
	Configuring a JMS Bridge Destination
	Configuring a General Bridge Destination

	Configuring a Messaging Bridge

	Bridge Interoperability Checklists
	Bridging Different WebLogic Server Versions and Different Domains
	Bridging from a WebLogic Server 7.0 Domain to a Version 6.1 Domain or to Another Remote 7.0 Domain
	Bridging from WebLogic Server 7.0 to a Version 6.0 Domain
	Bridging from WebLogic Server 7.0 to a Version 5.1 Domain

	Bridging to a Third-Party Messaging Provider

	Managing a Messaging Bridge
	Stopping and Restarting a Messaging Bridge
	Monitoring Messaging Bridges
	Configuring the Execute Thread Pool Size

	11 Managing JNDI
	Overview of JNDI Management
	What Do JNDI and Naming Services Do?

	Viewing the JNDI Tree
	Loading Objects in the JNDI Tree

	12 Managing the WebLogic J2EE Connector Architecture
	Overview of WebLogic J2EE Connectors
	Configuring Resource Adapters (Connectors) for Deployment
	Configuring a Connector to Display a Connection Profile
	Deploying Resource Adapters (Connectors)
	Viewing Deployed Resource Adapters (Connectors)
	Undeploying Deployed Resource Adapters (Connectors)
	Updating Deployed Resource Adapters (Connectors)
	Monitoring Connections
	Getting Started
	Viewing Leaked Connections
	Viewing Idle Connections
	Deleting Connections

	Deleting a Connector
	Editing Resource Adapter Deployment Descriptors

	13 Managing WebLogic Server Licenses
	Installing a WebLogic Server License
	Updating a License

	A Using the WebLogic Java Utilities
	AppletArchiver
	Syntax

	CertGen
	Syntax
	Example

	Conversion
	der2pem
	Syntax
	Example

	dbping
	Syntax
	Example

	Deployer
	Syntax
	Actions (select one of the following)
	Options
	Examples

	EJBGen
	getProperty
	Syntax
	Example

	ImportPrivateKey
	Syntax
	Example

	logToZip
	Syntax
	Examples

	MulticastTest
	Syntax
	Example

	myip
	Syntax
	Example

	pem2der
	Syntax
	Example

	Schema
	Syntax
	Example

	showLicenses
	Syntax
	Example

	system
	Syntax
	Example

	t3dbping
	Syntax

	verboseToZip
	Syntax
	UNIX Example
	NT Example

	version
	Syntax
	Example

	writeLicense
	Syntax
	Examples

	B WebLogic Server Command-Line Interface Reference
	About the Command-Line Interface
	Before You Begin

	Using WebLogic Server Administration Commands
	Syntax
	Arguments

	WebLogic Server Administration Command Reference
	CANCEL_SHUTDOWN
	Syntax
	Example

	CONNECT
	Syntax
	Example

	FORCESHUTDOWN
	Syntax
	Example

	GETSTATE
	Syntax
	Example

	HELP
	Syntax
	Example

	LICENSES
	Syntax
	Example

	LIST
	Syntax
	Example

	LOCK
	Syntax
	Example

	MIGRATE
	Syntax
	Examples

	PING
	Syntax
	Example

	RESUME
	Syntax
	Example

	SERVERLOG
	Syntax
	Example

	SHUTDOWN
	Syntax
	Example

	START
	Syntax
	Example

	STARTINSTANDBY
	Syntax
	Example

	THREAD_DUMP
	Syntax

	UNLOCK
	Syntax
	Example

	VERSION
	Syntax
	Example

	WebLogic Server Connection Pools Administration Command Reference
	CREATE_POOL
	Syntax
	Example

	DESTROY_POOL
	Syntax
	Example

	DISABLE_POOL
	Syntax
	Example

	ENABLE_POOL
	Syntax
	Example

	EXISTS_POOL
	Syntax
	Example

	RESET_POOL
	Syntax
	Example

	MBean Management Command Reference
	Specifying MBean Types
	Specifying Servers
	CREATE
	Syntax
	Example

	DELETE
	Syntax
	Example

	GET
	Syntax
	Example

	INVOKE
	Syntax
	Example

	SET
	Syntax
	Example

