
ABSTRACT - A great deal of controversy exists around the interpretation of

the I/O wait metric in AIX. This number shows up at the rightmost “wa”

column in vmstat output, the “% iowait” column in iostat, the %wio column

in the sar -P , and the ascii bar graph titled “wait” in topas. Confusion exists

when I/O wait is evaluated for performance or capacity planning as to

whether this number should be considered CPU cycles that are used or

cycles that should be added to the system idle time indicating unused

capacity. This paper will explain how this metric is captured and calculated

as well as provide a “case study” example to illustrate the effects.

A review of some of the basic AIX functions will assist in a better

understanding of how the I/O wait value is collected and calculated. The

AIX scheduler, the CPU “queues”, the CPU states, and the idle or wait

process, will be discussed.

The scheduler is a part of the AIX kernel that is tasked with making sure the

individual CPUs have work to do and in the case where there are more

runnable jobs (threads) than CPUs, to make sure each one gets its fair share

of the CPU resource. The system contains a hardware timer which

generates 100 interrupts/second. This interrupt will then dispatch the kernel

scheduler process which runs at a fixed priority of 16. The scheduler will

first charge the running thread with the 10 millisecond time slice and then

dispatch another thread (context switch) of equal or higher priority on that

CPU assuming there are other runnable threads. This short term CPU usage

Demystifying I/O Wait

Harold Lee - ATS 12/11/2002 Page 1

is reported in the “C” column when including a -l option with the ps

command.

One hundred times a second, the scheduler will take the process that is

currently running on each CPU, and increment the “C” value by one. It will

then recalculate that processes priority and rescan the process table looking

for the next process to dispatch. If there are no runnable processes the

scheduler will dispatch the “idle” kernel process. There are one of these

assigned to each CPU and are bound to that particular processor. The

following output shows a four way system with four wait processes each

bound to a CPU.

THREAD TABLE :

SLT ST TID PID CPUID POLICY PRI CPU EVENT PROCNAME
 0 s 3 0 unbound FIFO 10 78 swapper
 flags: kthread

Demystifying I/O Wait

Harold Lee - ATS 12/11/2002 Page 2

Partial ps command output showing short term CPU usage in “C’ column

#ps -aekl
 F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD
 303 A 0 0 0 120 16 -- 12012 12 - 4:17 swapper

 200003 A 0 1 0 0 60 20 c00c 732 - 0:22 init
 303 A 0 516 0 120 127 -- 13013 8 - 31972:23 kproc

 303 A 0 774 0 120 127 -- 14014 8 - 31322:34 kproc

 303 A 0 1032 0 0 16 -- 17017 12 - 0:00 kproc

 303 A 0 1290 0 0 36 -- 1e01e 16 - 0:32 kproc

 303 A 0 1548 0 0 37 -- 1f01f 64 * - 5:09 kproc

 303 A 0 1806 0 0 60 -- c02c 16 3127c558 - 0:04 kproc

 240001 A 0 2638 1 0 60 20 12212 108 3127ab98 - 102:04 syncd

 1 s 103 1 unbound other 3c 0 init
 flags: local wakeonsig cdefer
 unknown: 0x10000
 2 r 205 204 0 FIFO ff 78 wait
 flags: funnel kthread
 3 r 307 306 1 FIFO ff 78 wait
 flags: funnel kthread
 4 r 409 408 2 FIFO ff 78 wait
 flags: funnel kthread
 5 r 50b 50a 3 FIFO ff 78 wait
 flags: funnel kthread
 6 s 60d 60c unbound RR 11 2b reaper

Also notice that the wait process priority is 0Xff. The MSB has been turned

off to give a priority range of 0-127 on AIX 5.1 and lower. In AIX 5.2 and

higher the range of priorities has been increased to 255 to allow more

granularity for control when using Workload Manager (WLM).

If there are no processes to dispatch, the scheduler will dispatch the “wait”

process which will run until any other process becomes runnable at which

time it will immediately be dispatched since it will always have a higher

priority. The wait processes only job is to increment the counters that report

if that particular processor is “idle” or “waiting for I/O”. It is important to

remember that the “waiting for I/O” metric is incremented by the idle

process. The decision on whether the idle process decides to increment the

“idle” counter or the “waiting for I/O counter depends on whether there is a

process sitting in the blocked queue. Processes which are runnable but

waiting on data from a disk are placed on the blocked queue to wait for their

data. If no processes are sitting on that particular processors blocked queue,

then the wait process will charge the time to “idle”. If there are one or more

processes on that particular processors blocked queue, then the system

Demystifying I/O Wait

Harold Lee - ATS 12/11/2002 Page 3

charges the time to “waiting for I/O”. Waiting for I/O is considered to be a

special case of idle and therefore the percentage of time spent in waiting for

I/O is usable for process to perform work.

A case study will be presented to illustrate this concept. Consider a single

CPU system the has two tasks to perform. Task a is a CPU intensive

program and task B is an I/O intensive program. The effects of these

programs on the vmstat output will be considered separately and then

combined.

Task “A” which is CPU intensive is run on a single CPU system, the

majority of the CPU time will be spent in the “user” (us) mode. The vmstat

output below reflects the effects of a single process running.

$ vmstat 1
kthr memory page faults cpu
----- ----------- ------------------------ ------------ -----------
 r b avm fre re pi po fr sr cy in sy cs us sy id wa
 1 0 106067 164605 0 0 0 0 23 0 232 835 411 99 0 0 0
 1 0 106072 164600 0 0 0 0 0 0 239 2543 413 99 1 0 0
 1 0 106072 164600 0 0 0 0 0 0 234 2425 403 99 0 0 0
 1 0 106072 164600 0 0 0 0 0 0 235 2426 405 98 2 0 0
 1 0 106072 164600 0 0 0 0 0 0 241 2572 428 99 1 0 0
 1 0 106072 164600 0 0 0 0 0 0 233 2490 475 99 0 0 0

Task “B” which is I/O intensive is run on a single CPU system, the majority

of the CPU time will be spent in the “waiting for I/O” (wa) mode. The vmstat

output below reflects the effects of a single process running.

$ vmstat 1
kthr memory page faults cpu
----- ----------- ------------------------ ------------ -----------
 r b avm fre re pi po fr sr cy in sy cs us sy id wa
 0 1 106067 164605 0 0 0 0 23 0 232 835 411 0 1 0 99
 0 1 106072 164600 0 0 0 0 0 0 239 2543 413 0 1 0 99

Demystifying I/O Wait

Harold Lee - ATS 12/11/2002 Page 4

 0 1 106072 164600 0 0 0 0 0 0 234 2425 403 0 1 0 99
 1 1 106072 164600 0 0 0 0 0 0 235 2426 405 0 2 0 98
 0 1 106072 164600 0 0 0 0 0 0 241 2572 428 0 1 0 99
 0 1 106072 164600 0 0 0 0 0 0 233 2490 475 0 1 0 99

If while Task “B” which is I/O intensive is running, task “A” is started on a

single CPU system, the majority of the CPU time will be spent in the “user”

(us) mode. This shows that all of the CPU cycles spent in the “waiting for

I/O” mode have been recovered and are usable by other processes. The

vmstat output below reflects the effects of running a CPU intensive program

and an I/O intensive simultaneously.

$ vmstat 1
kthr memory page faults cpu
----- ----------- ------------------------ ------------ -----------
 r b avm fre re pi po fr sr cy in sy cs us sy id wa
 1 1 106067 164605 0 0 0 0 23 0 232 835 411 99 0 0 0
 1 1 106072 164600 0 0 0 0 0 0 239 2543 413 99 2 0 0
 1 1 106072 164600 0 0 0 0 0 0 234 2425 403 99 0 0 0
 2 1 106072 164600 0 0 0 0 0 0 235 2426 405 98 1 0 0
 1 1 106072 164600 0 0 0 0 0 0 241 2572 428 99 1 0 0
 1 1 106072 164600 0 0 0 0 0 0 233 2490 475 99 0 0 0

One item to note from this example. I/O bound systems cannot always be

determined by looking at the “waiting for I/O” metrics only. A busy system

can mask the effects of I/O bottlenecks. To determine if an I/O bottleneck

exists, the blocked queue as well as the output from iostat must also be

considered.

Demystifying I/O Wait

Harold Lee - ATS 12/11/2002 Page 5

